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FOREWORD

In recent years, the field of laser technology has experienced unprece-
dented growth and development, becoming an integral part of various scientific
and industrial applications. As we continue to unlock the potential of solid-
state lasers, the need for a comprehensive understanding of their dynamics
and parameters becomes increasingly critical. This book, “Solid State Laser
Dynamics,” has been crafted with this urgency in mind, serving as an essential
resource for students and master's candidates eager to navigate the complexities
of laser generation and performance analysis.

The structure of this book facilitates a progressive learning experience,
guiding readers from fundamental principles to advanced concepts in laser
dynamics. Each chapter is designed to build upon the previous one, ensuring
a coherent and integrated approach to the subject matter. Topics encompass
various laser modes of operation, including free-running mode, Q-switching —
both active and passive — as well as mode locking, with detailed discussions
on the mechanisms that govern each mode.

Moreover, the book delves into the methodologies for calculating laser
parameters, providing students with the analytical tools necessary to evaluate
and predict laser behavior. Emphasis on real-world applications and problem-
solving exercises enriches the learning experience and equips students with
practical skills that are highly sought after in both academic and industrial settings.
We focus on the neodymium and ytterbium lasers, exploring their performance
across different crystal host materials. By analyzing these configurations, we aim
to highlight their unique properties and advantages, offering readers valuable
insights into their operational dynamics and potential applications.

We hope this book inspires a new generation of laser scientists and engineers,
fostering a deeper understanding of solid-state laser dynamics. May this book
serve not only as a textbook but also as a source of inspiration in your academic
journey and professional endeavors.

Happy reading and learning!



THEORETICAL MATERIAL

Some properties of rare-earth ions in a crystalline matrix

The splitting of energy levels of rare-earth ions into separate electronic
states is determined by three types of interaction: Coulomb interaction —
the interaction of nuclei with electrons and electrons with each other, spin-
orbital interaction, and interaction with an intracrystalline field. The Coulomb
interaction leads to the appearance of (25 + 1)-multiple degenerate levels with
different values of the total orbital momentum L in the form of 'L (L > 5)
with energy gaps between them of the order of ~10* cm™". The spin-orbit
interaction leads to the splitting of each of the S-L multiplets into a number
of levels with different values of the total angular momentum J. This splitting
for rare-earth ions is an order of magnitude smaller than the Coulomb one.
Interaction with the crystalline field leads to Stark splitting of energy levels
with different J. This splitting is of the order of ~10> cm™, i. e., significantly
less than the energy intervals between levels with different J. Thus, for all
matrices, the structure of energy levels for the same rare-earth ion turns out to
be similar, and differs only in the value of the Stark splitting. Next, we consider
in more detail the formation of the structure of the energy levels of the ion in
the crystal matrix using the example of neodymium.

Energy levels of neodymium ions in a crystal field

The electronic structure of the neodymium atom Nd consists of 60 electrons,
which are located on 13 shells. Since the neodymium ion is found only in the
oxidation state of +3, the final electronic configuration of the ion is [Xe] 4f°.

For this electronic configuration of the ion, there are several energy states
(terms) (fig. 1). Taking into account the Coulomb repulsion between electrons
and the exchange interaction, which is a consequence of the Pauli principle,
the ground state with the lowest energy is characterized by the maximum value
of total orbital momentum and the maximum value of the total spin. In this
case, this is the term */. The magnitude of the splitting is ~10* cm™' [1].

The next perturbation that affects the splitting of energy levels is the
spin-orbit interaction. For rare-earth ions, the states are best described by the
Russell-Saunders states (the approximation of LS-coupling).



In such a model, the electron repulsion is much larger than the spin-orbit
interaction, as a result of which the energy levels are split into By J energy
sublevels, and the total angular momentum J, according to the rule of addition
of moments, is determined by the orbital L and spin S quantum numbers. Since
the shell is filled with three electrons (less than half), according to the Hund
rule, the underlying and basic state of the neodymium ion is the state with a
minimum value of J. In this case, this is the term 419 /2- The amount of splitting

is~10°cm™!.
Level Level Level degeneration
degeneration degeneration 2J+1)

S+ 1)L+ 1)

J+

Partial degeneracy:

1/2 sublevels

3 electrons R,
in the nuclear R,
field, the electron
energy H,
~1.3 um
s
P
s X,
~1.06 um
ATy,
The electron energy s e— Y
taking into account 1
the electron-electron 900—950 nm
interaction v
H0+Hee (HoHee) ——~§§EE__ ZS
The electron energy S 7
H,+ H,+ Hg,. !
‘An aceount The electron energy

of the spin-orbit
interaction (H,, Hy,)

H +H,+Hg+ Ve
An account of the Stark
splitting (HgVp)

Fig. 1. Formation of energy levels of the neodymium ion in a crystalline matrix



When an ion is placed in a crystalline matrix, the spherical symmetry
of the state functions, that are the eigenfunctions of the Hamiltonian of
a free ion, is broken due to the surrounding ligands, which cause electrostatic
interaction between the 4f-electrons of the neodymium ion and its static
electric field. Individual terms are split into sublevels due to the Stark effect,
and the magnitude of the splitting depends on the total quantum number J, the
magnitude of the crystal field strength and its symmetry. However, since the
radius of the 4f orbitals of the neodymium ion in space is smaller than that of
the filled 5s and 5p orbitals, the latter shields 4f electrons from the external
field, therefore, the splitting is very small and amounts to ~10> cm™".

Electronic transitions in the neodymium ion

The tuning range of the radiation of neodymium solid-state lasers
is quite wide, starting from the generation at the high-energy transition
2Lis = 419 /2, Which is equivalent to a wavelength of electromagnetic radiation
of approximately 340 nm, ending with the long-wavelength laser transition
*F, N = s > With a wavelength of the order of 1.9 um. However, the main
Eransiti(ins of the neodymium ion are *F; n = 115 /25 *F, 2 = 1 /2 and

Fyp— "Iy (fig. 1).

It should be noted that the transitions of the neodymium ion are not
limited to the ones indicated in fig. 1; in fact, other Stark sublevels can also
participate. However, the greatest relative intensity is observed precisely for the
indicated levels, in which case it is easier to achieve generation.

It can be seen from Fig. 1 that the main transitions of the neodymium ion
(F3p— 13, *F— *1) p, *F30 — *1y)) are internal 4f° < 4f° transitions
(ff transitions) occurring within the partially filled 4/ 3 configuration of the
neodymium ion. Moreover, all the main terms of this configuration are
odd. Therefore, these transitions are forbidden by the Laporte selection
rule, according to which the parities of the initial and final states during the
transitions must be opposite. This prohibition, which is strictly observed
in the spectra of free ions, is partially lifted due to non centrosymmetric
interactions of neodymium ions with a crystalline matrix, causing mixing of
states of opposite parity. For such interactions in the matrix, both static (even
terms in the expansion of the crystal field potential in spherical harmonics)
and dynamic (lattice vibrations, which cause inverse symmetry breaking)
perturbations of the crystal field potential are responsible, and a transition is
called a stimulated dipole transition. The final selection rules for this type of
transitions compared to the selection rule for Laporte-enabled transitions are
shown in table 1.



Table 1
Rules for selecting ff transitions

Transition type Selection rules Oscillator strength
Electric dipole (ED)  |AS=0; |AL|<1;|AJ|< 1, ~0.01—1
4f3-4f?5d junction Transitions J=0¢>J =0
and L =0« L'=0 are forbidden
Forced electric dipole  |AS=0; |AL|<6;[AJ] < 6; ~10~*of ED
4f3-4f3 junction |AL|=2,4,6if L=0or L' =0;
AJ|=2,4,6if /J=00rJ’ =0
Transitions J=0 > J'=0
and L =0« L’=0 are forbidden

Magnetic dipole AS=0;AL=0;|AJ|<1; ~10~% of ED
4f 3 -4f 3 junction Transition J = 0 <> J'= 0 forbidden

Electric quadrupole AS=0; AL <2;|AJ|<2; ~107"9of ED
4f 3—4f 3 junction The transitions /=0« J'=0,1

and L =0« L'=0,1 are forbidden

Since in the case of a stimulated dipole transition the oscillator strengths
are small compared to the electric dipole transition (ED), this transition will
have a lower intensity. A magnetic dipole transition is also possible, but its
intensity is even lower than that of a stimulated dipole It Can be seen that the
laser transmons classical for the neodymium ion *F; 2= i3 /25 4K, = 1 )
and F3 /> 19 /2 are thus stimulated electrical dipole transitions.

Non-radiative relaxation

At low levels of doping with neodymium ions, the latter practically do not
interact with each other, i. e. in each ion all processes occur independently
of processes in the other ions. There are three such processes in total: light
absorption, light emission and nonradiative transitions in which the ion
excitation energy is transformed into the phonon spectrum excitation energy
of the crystalline matrix.

After the transition of an ion to an excited state, a further change in the
absorbed energy depends on the relationship between the probabilities of
radiative and nonradiative transitions. In the case of rare-earth ions, after
absorption of the pump radiation, the electron usually falls on the energy level,
for which the non-radiative transition to a lower-lying level is most likely. Such
nonradiative transitions occur until the neodymium ion is in the metastable
state, for which the probability of the radiative transition is greater than the
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probability of the nonradiative transition. Since the neodymium ion transitions
considered mainly are radiative transitions in the optical range, and the
energy gap is several times greater than the phonon energy, the simultaneous
participation of several phonons is necessary for the nonradiative process
to occur.
Theoretical calculations and experimental studies give the following
expression for the probability of nonradiative transitions:
W(AE) = L BeTHAE), (1)
TNR

where B and o are parameters that depend only on the matrix; Ty is the
nonradiative lifetime; AE is the energy gap between the considered level and
the underlying level.

It can be seen that the probability of nonradiative transition W between
energetically close levels strongly depends on the energy gap between them
AE. The reason is that the probability W depends on the number of phonons
of the lattice that participate in the nonradiative process. In a solid, the
phonon energy is limited by the limiting value hQ,,,. If the energy gap AE is
greater than 2Q,, ., then the nonradiative transition requires the simultaneous
participation of several phonons in the crystal matrix. The probability of such
a process is much less than the probability of a process in which one phonon
is involved. Therefore, the larger the number of phonons necessary for the
implementation of the nonradiative process, the less likely such a process is
going on.

As an example, the time of nonradiative relaxation in the case of Nd: YAG
can be calculated. The parameter B is approximately 10%s™!, ocis 3.1- 10> cm,
therefore, the nonradiative lifetime for the level *F; > in Nd:YAG is of the
order of 50 ms with an energy gap of 5000 cm™! between 4F3 /2 and next level
s /2. For YAG the maximum phonon energy is ~700 cm.

However, this law is not applicable for values AE two times smaller
than the maximum phonon energy. In such cases, the nonradiative lifetime
decreases faster (with AE decreasing), than the law (1). It was calculated that
the relaxation time for levels within the term is in the picosecond range. This
time is much shorter than any time characteristic of solid-state lasers. This fact
is of great importance in modeling the operation of lasers, since it allows us to
consider problems in the framework of thermodynamic equilibrium. The latter
establishes that the relative populations at all levels of neodymium ions obey
the Boltzmann distribution at any given time and are thus constants. Then the
relative population of the sublevel Z; of some multiplet / (419 /20T 4F3 10, see fig. 1),
considered later in the work, is equal to:



E,.
N, = —’exp(——"} Sl e

where N is the population of the sublevel Z;; f; is its relative population; Ej; is its
energy; N, is the total population of the multiplet; k£ = 1.3806485 - 102 J/K is the
Boltzmann constant; 7'is the temperature; Z; is the statistical sum (summation
is performed over all sublevels of multiplet):

7 i (_E li )
=) exp| —= |
: i=1 b kT

Similarly, other sublevels of the multiplet can be analyzed.

It should be noted that for the upper laser level, this distribution is applicable
in the case of stationary pumping, when the ion relaxation rate over the levels
of the multiplet is considered to be higher than the pump speed.

Transition schemes of activator ions in crystal hosts

A quantitative difference between the type of a given transition and three-
and four-level transitions is usually based on the analysis of the gain in the
absence of saturation:

8o =G[YN2 _(Y_l)Ns]’ (3)

where G is the stimulated emission cross section; N, is the population of the
upper laser level; N, is the volume concentration of ion doping. The parameter
v=1+/f,//, where f; and f; are the relative populations of the lower and upper
laser levels, respectively. If the parameter v is 1, then the transition scheme is
four-level. If y is equal to 2, then it is three-level. If the value of y lies in the
range from 1 to 2, then this is a quasi-three-level scheme.

Four-level generation scheme

In the case of this scheme, the generation can occur between the lower
sublevel *F, /» (population N,) and one of the sublevels of the multiplets 1 /25
i 3/25 i 5,2- We consider the case of the transition 4F3 = 1 ) (fig. 2).

According to formula (1), the time of nonradiative relaxation of neodymium
ions from *7;, nto 419 /218 approximately several tens of nanoseconds, while the
lifetime of a metastable state is measured by several tens of microseconds
(see, for example, table Al). In a first approximation, the sublevel of the
multiplet *7 11,2 (to which the neodymium ion passes radiating a photon),
can be considered uninhabited. However, in order to increase the accuracy
of calculations, we will further take into account the population of the lower
laser sublevel.

10
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Fig. 2. Neodymium ion transitions in four-level lasing scheme.
Wavy lines indicate spontaneous transitions

The lifetime of the pumped level F5 ), is of the order of 10 ns; transitions
to the metastable upper laser level F3 /» are nonradiative.

To study the generation of solid-state lasers in a first approximation, we can
use the point model of the laser based on the rate equations [2; 3]. The laser in
this case is single-mode.

The approximation of the point model of the active medium is applicable
in the case when the photon lifetime in the cavity is sufficiently large and the
intensity in the cavity slowly changes with time (the relative change per cavity
passage is much less than one). Assuming that the intensity in the cavity does
not depend on spatial coordinates, we can write down the change in intensity
during the round-trip of the cavity as

2L inactive
AI[AI J [(t)|:p p e gdm2[ Kioss 2L, p[) 1:|=
C

= 1)L HE 2 o) g | g0y (ke 20 - KDL

gain loss ‘opt )

where L, is the cavity optical length, / is the length of the active element;
P, P — the reflection coefficients of the mirrors. The total loss coefficient is
equal to the sum of the active (output radiation through the cavity mirrors)

11



and passive (absorption / scattering of radiation by optical elements in the
cavity) losses:

1 )
k ltc?stsa lltr)lszcme 2 1 ( 05 j

Lopt

Averaging the change in intensity during the cavity round-trip, we obtain

total
ﬂ =~ A_I = [(t)(kgain 2= kl;ssa 2L0pl) = [(t)(kgain
dt At 2Ly e

total ¢
- kloss Lopt )L_
opt

The gain coefficient is equal to the number of emitted photons per unit
length of the active medium:

Kopin =Cem (M T)N, —G

gain

(A, T)N,,

abs

where N, and N, are the population densities at the upper and lower laser
levels, respectively (without taking into account degeneracy); G.,(A, T)
and o, (A, T) are the effective emission and absorption cross sections at
a certain wavelength. If the levels are nondegenerate, then the absorption and
emission cross sections are equal. In the case when the levels are degenerate,
the effective cross sections of stimulated emission and absorption at a certain
wavelength and temperature can be written as

Gabs(}\” T) = Zflicli,2j (}\')5 (4a)
i,J

Cem 1) =Y 13,651 (M), (4b)
iJ

Gll‘,2j (}\’) = GZj,li (7\‘),

where f|; and f,; are the relative populations of / and j sublevels of multiplets N, and
Nat temperature 7, 6y; ,;(A)=0,; ;;(A) are the cross sections of the transition
between sublevels i and j of multiplets N and N, at a certain wavelength.

Thus, the effective cross sections relate to the whole multiplet and are the
sum of the transition cross sections between all pairs of sublevels, taking into
account their relative populations. These cross sections can be quite simply
determined from the experimental data (absorption and emission spectra), but
it must be taken into account that they depend on temperature, because the
energies of the sublevels and their relative populations vary with temperature.
The cross sections for the transition between specific sublevels 6, ,;(A)
cannot always be determined from the absorption and emission spectra,
because the lines corresponding to these transitions are broadened and most
often overlap. It is also worth noting that relations (4a, 4b) are valid in the case

12



when the relative populations at all levels obey the Boltzmann distribution at
any moment of time.

Thus, we can write the system of rate equations for the four-level lasing
scheme. Instead of intensity we will use the photon flux density S=1/hv,
because it does not depend on the wavelength, in contrast to the intensity, and
we add another term to the first equation that will give the seed radiation of the
generation, i. e. the fraction of spontaneous photons that go into the resonator
mode. In the approximation of equal emission and absorption cross sections
in the generation channel, the system of equations takes the following form:

N
ﬁ_w oS S(N, — N))+ Kl —2-5r,,
dt T,
dN. N
_3 Rpump ggS(N N N2 N3 __3’
E 5)
N N, N
s _oemsv, - Ny -2 s
dt T, Ty
N, N, N
d——021S(N2 Ny)-—L+—2,
dt T T,

where S is the flux density of the generated radiation inside the resonator
(photons / cm / us); N3 — the populatlon of F5 /,» multiplet (cm™ 3 N, is the
populatlon of the upper laser level F3 /25 N, is the population of the lower
laser level *1;, /25 T; — the lifetime of the i-th level (us) Ryump — the rate of the
upper laser level coherent pumplng (photons/ (cm?- us)); ooz — the effective
absorption cross section (cm?); 0, — the effective emission cross section
(cm2); N is the bulk density of neodymium ions in the crystal (cm’3); v, is
the speed of light in the medium (cm/ps), K; is the fraction of spontaneous
emission in the generation channel, / is the length of the active element,
u is the parameter characterizing the value of the cavity filling with the active
medium, r; is the reciprocal of the photon lifetime in the resonator (us™h),
in our case, this value is proportional to the loss coefficient.
In this case, the parameter p and the value of r,, are defined as follows:

n.l
n= L’ ; (6)
opt
Ly =L +(n, =D, (7)

where 7, is the refractive index of laser crystal; L, is the cavity optical length;,
[ is the length of the active element; L, is the cavity length (fig. 3);

13



=c— 2, ®)

where c is the speed of light; p is the reflection coefficient of the output mirro;
v is the coefficient of inactive radiation loss in the active medium (cm™).

Fig. 3. The scheme of longitudinally pumped laser:
I — diode pump laser; 2 — lens; 3, 4 — cavity mirrors; 5 — laser crystal

The relationship between the pump rate and the incident pump power is
determined as follows:
P_ (I1-exp[-lo;s N ]
L — e PR D), ©)

pPer

where P, is the incident pump power on the crystal surface (longitudinal
pump); hv, — pump photon energy; S, =mnd 2 /4 — pumped cross-section
of the crystal with diameter d. For all matrices under consideration,
the parenthesized expression is close to one, therefore, it can be omitted in
the calculations.

Quasi-three-level generation scheme

In the case of a quasi- three level scheme (fig. 4), the generation occurs
between the lower sublevel of *F, /> (total populatlon of the multiplet N,) and
the upper sublevel of the split ground state 19 /2 (total population Nj).

The main difference from the four-level scheme is that the population of
the lower laser level is not equal to zero due to the temperature distribution
of neodymium ions over Stark sublevels. The fact is that the magnitude of
the Stark splitting is several hundred cm™', which is comparable to the value

14



of kT at room temperature. Therefore, according to the formula (2), all
Stark sublevels are populated, but significantly to a different extent. At room
temperature, the population of the upper sublevel is of the order of 1 %, which
makes it easy to obtain an inverse population and, accordingly, lasing.

E, cm™ ‘R N;
4 5/2
. A, 11507
3/2 A N, 11423
10000 |- 2
808 nm
946 nm
4
[15/2
5000 - %
113/2
4
[11/2 S
y \V 852
— N,
4
L Ly, P 0 0

Fig. 4. Transitions of a neodymium ion
in a quasi-three-level generation scheme

The system of the rate equations for the quasi-three scheme takes the
following form:

S N.
— =W, 000S(fy Ny = fosNo) + Kl === Sr,,

dt T,
dN3 b N,

- Ny -3

dt Rpump 03 470 T (]0)
dN, A
Y2 600 S(foy Ny — fosNy)— ,

7 20521 N, = fysNo) 5
N;=Ny+N,+Nj,

where S'is generated flux density inside the resonator (photons / cm?/ps); Ny—
population of the lower level 19 2 (cm™ 3 T;is the lifetime of the i-th level (ps);
Rpump is the coherent pumping rate of the upper laser level (photon / (cm -us));
6825 is the effective absorption cross section (cm ); Gy is the cross section of

the stimulated transition between the Ist sublevel of the multiplet N, and the
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Sth sublevel of the multiplet N, (cm?); N; is the bulk density of neodymium
jons in the crystal (cm™); Jos is the relative population of the upper sublevel
of the lower laser level 419 /2;./21 1s the relative population of the lower sublevel
of the upper laser level 4F3 /25 Ve is the speed of light in the medium (cm/ps);
U is the parameter characterizing the value of the cavity filling with the active
medium, r;. is the reciprocal of the photon lifetime in the cavity (us7h.

A specific example of modeling of a quasi-three-level solid-state laser
operation is demonstrated for the Nd: YAG laser with specific parameters
given in the Mathematica software package. The choice of a method for
solving the ODE system numerically is also explained in the program itself.

Ytterbium laser

The dopant element in laser crystals and glasses with ytterbium is the
trivalent ion Yb*". There is only one excited level 2Fs /2, Which splits into three
sublevels under the action of the electric field of the crystal lattice. The ground
state 2F7 12 also splits into four sublevels (fig. 5). Compared to the neodymium
laser, the ytterbium laser has a much wider gain band, which makes it possible
to generate ultrashort pulses. The lifetime at the upper laser level exceeds
1 ms, which makes it attractive for working in the Q-switching mode. Its
energy levels scheme is actually two-level, therefore, concentration quenching
is absent here and the concentration of ytterbium ions can be very high.

2 10679 cm™
F5/2 +*
10624

N.
A \ 10327 ’

A

941 nm 1030 nm

2 R 785
Fip o Y 612
r 505 N,

~kT/
0

Fig. 5. Transitions of ytterbium ion
during generation in a Yb: YAG crystal
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From the aspect of calculating the lasing characteristics, the ytterbium
laser is described by a quasi-three-level lasing scheme. In this case, the sublevel
to which the transition occurs upon excitation and the sublevel from which
the generation transition occurs belong to the same level F5 /25 therefore
only two levels are considered in the system of equations (level 0 — F7 25
level 2 — FS/Q)

ds N,
E:Wc%oS(leNz_fosNo)’LKsl . —Shes
2
dN. N,
dt2 Ryump02/01Vo —_‘Gzos(leNz Jo3No)s (11)
T
NS =N0 +N2.
Q-Switching

Q-switching is a technique for generating high power pulses. The principle
of generating such pulses is to control the quality factor (Q) of the resonator
by introducing additional losses that depend on time or intensity inside
the resonator. Initially, under the action of pumping, the gain (population
inversion) in the active medium increases, but lasing does not start because of
the large loss factor. Significant energy is accumulated in the active media in the
form of excited particles. When the gain becomes close to its maximum value
(for a given pump power), the loss factor decreases rapidly. Then generation
begins and all the energy accumulated in the resonator is ejected from the laser
in one short powerful pulse.

Active Q-switching

To obtain a powerful pulse in the active Q-switching mode, an active
shutter is placed in the laser cavity. Usually this is an electro-optical crystal
with a polarizer (fig. 6). To create a high level of losses in the cavity, a quarter-
wave voltage is applied to the crystal. Linearly polarized radiation transmitted
through the polarizer acquires circular polarization after passing the electro-
optical crystal. Reflected from the mirror, circular polarization changes
direction (e.g. left becomes right). Then, after passing through the electro-
optical crystal a second time, the beam again becomes linearly polarized,
however, the direction of polarization changes by 90 degrees. As a result, the
polarizer does not pass such radiation and the shutter is in the closed state.
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To open the shutter, the voltage is removed from the crystal and it ceases to
affect the polarization of the transmitted light beam. As a result, the level of
losses in the system is significantly reduced and a short and powerful laser
pulse is generated.

To calculate the parameters of this pulse, the specific shutter design is not
important for us. We also assume that the shutter opens quickly enough and
its switching time can be neglected.

Fig. 6. The scheme of a laser with an electro-optical shutter:
1 — diode pump laser; 2 — a lens; 3, 4 — resonator mirrors;
5 — laser crystal; 6 — polarizer; 7 — electro-optical crystal

To simulate the generation of a powerful pulse in a laser with a four-level
scheme, one can use the system of rate equations (5), where the loss coefficient
in the system depends on time. In the approximation of instantaneous shutter
switching, the loss coefficient can be written in the form

(_111(p)+v1 +oc (t))
h()=c , (12)
Lopl
1y, t<t s
rEoc(r>={O° s (13)
’ =‘EOC>

where rpoc — additional losses introduced by the electro-optical crystal (ry is
a sufficiently large loss coefficient, ~50 % or more); #zqc is the moment of time
when the shutter is switched off [ps].

In this case, the processes in the system can be divided into two stages.
At the first stage, the gain in the active medium increases under the constant
pumping, but there is no generation, because losses in the cavity are very high.
At the second stage, the losses are decreased and a laser pulse forms with
parameters determined by the properties of the active medium, resonator,
and pump power.
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Passive Q-switching

In order to obtain a laser pulse in the passive Q-switching mode,
a saturable absorber is placed in the laser cavity (fig. 7). It is called a passive
shutter. The generation process proceeds as follows: under the influence of
pumping, the gain of the active medium increases, but the generation does
not start, because the loss coefficient is high due to the light absorption in the
passive shutter. When the gain exceeds the losses, the generation begins. After
the radiation intensity in the cavity becomes sufficient to bleach the shutter,
the loss coefficient drops sharply and a shot powerful laser pulse forms.

3 4

Fig. 7. The design of a laser with a passive shutter:
1 — diode pump laser; 2 — lens; 3, 4 — cavity mirrors;
5 — laser crystal; 6 — passive shutter

Usually, the crystal Cr**:YAG is used as a passive shutter in neodymium
lasers. Its initial transmission can vary widely. The parameters of this crystal
used in the calculations are shown in table 2.

Table 2
Crystal Cr*": YAG parameters
The bulk density of chromium ions, cm ™ 1.85-10'
Effective absorption cross section from the ground state, cm? 8.7-107"
Upper level life time, ps 4
Refractive index at 1064 nm 1.83

Cr**: YAG has the energy level diagram presented on fig. 8. The transition
from the ground energy level to the third corresponds to a wavelength of
radiation from an yttrium aluminum garnet laser — 1064 nm. Relaxation from
the third to the second level occurs in a much shorter time than the lifetime at the
second level. As a result, we can assume that all excited ions immediately go to
the second energy level. Also, the radiation wavelength of 1064 nm corresponds
to the transition from the second to the fourth energy level. However, the
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lifetime at the fourth level is much shorter than the lifetime at the second level,
so the transitions to the fourth level can be neglected in the simulations. Thus,
the saturable absorber can be considered as a two-level medium.

E,cm™' A
1,=0.5ns 4
\

T
»

15000 -

E 6y, =2.2-10"" cm’
10000 + T3 <<T, :

RN 2

5000 +
6,;=8.7-10" cm’

0  / 1

Fig. 8. The scheme of energy levels (1—4)
of a passive shutter on a Cr*": YAG crystal

To calculate the parameters of a pulse, the system of rate equations for

four-level scheme must be supplemented by equations for the saturable

absorber:
das N
— =, 051 S(N, = N))+ Kgl =2 = Sr, 1, v, 01 S(Ny = N,y),
dt Ty
dN N
_t3:Rpump abS(N Nl N2 N3 __3’
T3
N.
%:GETS(NZ—NI —£+—3, (14)
dt T, T
dN N, N
EH OSSN, - N -—Le 22,
dt T 172
dN,, N,
q2 b q2
a O Wy =Ny =

where N, is the population of the second level of the saturable absorber (cm™);

abs

T, — its lifetime (ps); Cg13 — effective absorption cross section for the
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transition from the lower level of the saturable absorber (cm?); N, is the bulk
density of chromium ions in a crystal Cr*": YAG (cm™>); Vg is the speed of
light in a Cr*": YAG crystal (cm/ps).

The parameter p, for the saturable absorber is calculated by formula (6),
the parameters p and r,, for the active medium are calculated by formulas (6)
and (8). It should be noted that the cavity optical length (7) will be

Loy = L, +(n, = D)l +(n,, =D)L, (15)

where n,, and /, are the refractive index and the length of the saturable
absorber, respectively.

Laser output power

Total laser output power P, is given by the following formula
Py = Shvs,,(1-p), (16)

where S is the photon flux density in the resonator, which is found from
the system of rate equations; /v is the photon energy for the generation
wavelength; s, is the pumped area at the laser crystal, in our case it is equal
to the area of the focused pump spot (this should be the output beam cross
section area), p is the reflection coefficient of the output mirror.

Mode-Locking

Mode-locking is a method to produce short and high-power laser pulses
of the pico- and femtosecond duration.

The laser cavity is actually a Fabry-Perot interferometer, where only the
resonance beams corresponding to the standing waves with the nodes on the
mirrors do not decay. On the laser generation, such standing waves (stable
configurations of the electromagnetic field, called the longitudinal modes)
are formed in the cavity. Each mode has its own frequency, and a generation
spectrum as a whole looks like a set of frequencies with different amplitudes
(fig. 9).

The frequency difference between adjacent modes is the same for the
entire generation spectrum:

_ 2me

Aw = s
2L,

a7

where c is the speed of light; L, is the cavity optical length.
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Fig. 9. Laser gain bandwidth (a), intracavity mode structure (b),
and laser generation spectrum (c)

In the case of free-running lasing, the longitudinal modes have random
initial phases, i.c., they are not coherent with each other. As a result, the
output laser intensity is equal to the sum of the intensities of individual modes.
However, the situation changes if the initial phases of all modes are equal (or
different by 2n/N) — this state is called the mode-locking.

Let us find the total field in the cavity resulting from the interference
of several longitudinal modes with equal initial phases and equidistant
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frequencies (17). Here we use the fact that a standing wave (longitudinal mode)
is formed when two identical plane waves propagate in opposite directions (for
example, along the z-axis).

The field of the m-th plane wave propagating along the z-axis can be
expressed as

Ef(z,1)= AL expli(o,t - kiz)} =
= Ay expli(@yt + Aw,,t — kyz — Ak, 2)} = A5 (2, Yexpli(wyt — ky2)}, (18)

Al (z,1) = A} exp{i(Aw ,t — Ak, 2)}, (19)
hy =28 =0 (20)
Ay €

where oy is the center frequency of the lasing line; k is the corresponding
wave number; A,(,], is the wave amplitude. The expression for the field of
a wave propagating in the opposite direction (counter to the z-axis) is similar,
considering that k,, = -k, . Accordingly, the field of the m-rh longitudinal
mode is defined as a sum of plane waves with &, and &, :

E, (z,1)= Ay exp{i((Aw,, +w))t —(Ak,, +ko)z)} +
+ Ay expli((Aw,, +wy)t +(Ak,, +ky)z)}- 20

In the first approximation, we assume that the amplitudes of all modes are
equal: A,g = A. Then the light field in a laser cavity can be represented as a sum
of plane waves with the frequencies corresponding to the longitudinal modes:

M)2
E(z,)= Y En(z,0+E,(z,1)=
m=—M]/2
M)2
=AY Expli((w+m)t—(ky +mk)z) | +
m=—M/2
M[2
+A Y Exp|i((0g+m)t+(ky +mk)z) ], (22)

m=—M/2

where Ak, = mAk; Aw,, = mAw; M is the number of longitudinal modes, which
is determined by the cavity length and the width of a generation spectrum Av,
(see table 6):

Av_c
M=—2" Ap=2mAv=—S Ak=-T_. (23)
2Lopt ‘opt opt
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The mode amplitudes 4 (note that in the first approximation they are
considered identical) can be determined from the average value of the photon
flux density within the cavity S in the free-running mode:

Shv
A= ,/7 (24)

The total amplitude of the intracavity light field can be written in a frame
of reference associated with the principal mode (in this case gt — kyz = 0 for
a wave propagating along the z-axis and m + kyz = 0 for the one propagating
in the counter direction):

M2
Az)= Y A0+ A, (z,1)=
m=-M/2
M2
=A Y Expli(mt—mkz)|+Expli(mt + mkz)]. (25)
m=—M/2

Here A(z, 1) is the amplitude of the envelope of the pulse formed in
the cavity during the mode-locking; its intensity profile is given by /(z,7) =
—| Az, 1)

Thus, the waves corresponding to the longitudinal modes coherently add
up and, as a result of the interference, form a single short pulse that propagates
in the cavity from one mirror to another with the speed of light. While propagating
in the cavity, this pulse is amplified in the laser active medium and is partly
output from the cavity through the semitransparent mirror. The laser outputs
periodic pulses with the repetition rate

4

Jow =57 (26)

‘opt

The peak amplitude of the pulse is proportional to the number of the
locked modes M whereas the pulse length is inversely proportional to the width
of a generation spectrum Avg:

T ! 27)
< .
Avg

To implement passive mode-locking, a passive shutter must be added
to the laser operating in the free-running mode (fig. 10). Semiconductor
saturable absorber mirrors (SESAM, SAM) are usually used as passive shutters
for mode-locking in solid-state lasers [14]. Such mirrors are placed instead
of a highly reflective cavity mirror. The relaxation time of such an absorber is
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about 1 ps, and its absorption coefficient nonlinearly depends on the intensity
of the incident radiation |A(f)[:

4
1+]4@)|?/1

sat

q(t)= , (28)

where [, is the saturation intensity of the absorber.

For the spikes with high intensity, the reflection coefficient is several percent
higher than that for the low-intensity radiation (fig. 11). This insignificant
difference is sufficient to separate and amplify the most intensive pulse from
the fluctuation spikes in the cavity. Subsequently, the duration of this pulse
is reduced to a minimum as its leading and trailing edges exhibit higher
attenuation than the central part while passing through the absorber. Hence,
the passive mode-locking is performed.

= &

Fig. 10. The Scheme of the passively mode-locked laser:
1 — semiconductor pump laser; 2 — lens; 3 — high reflective
mirror (transparent for pump light); 4 — cavity output mirror;
5 — laser crystal; 6 — semiconductor saturable absorber mirror (SESAM)

To simulate the mode-locking and calculate the parameters of the generated
pulse, it is necessary to account for the change in the pulse shape during
propagation in the cavity and the width of the laser gain line. However, to find
the average intensity (photon flux density) and the population densities at
the laser levels in the cavity, one can use the rate equations written in the
approximation of the point model of the active medium (e. g., (4) for the
neodymium laser and (6) for the ytterbium laser). Here it is considered that
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the relative population inversion and the average pulse intensity change
insignificantly during the cavity round-trip time.

The influence of the saturable absorber could be included in the formula
for the inverse photon lifetime in the cavity. The reflection coefficient p, is
introduced for the mirror with the saturable absorber:

(_ In(p,p,) + Yl)
ezt (29)

‘opt

Here, p, = 0.98 describes the saturated losses introduced by the absorber
(see fig. 11).

100
AR, =0.61 %
99 _,_.”“‘
//Ffinf
R
= 98-
B AR=3.9%
3
E 97~ ® Measured
— Fit
96 .
° M ....... 8 A A Y R PR I
95 Rlin:|95|'5|70|””| 1 1 ||||:| 1 Lol 1 [
0.1 1 10 100

Pulse fluence, wJ /cm2

Fig. 11. Reflectivity of a ssmiconductor saturable
absorber mirror (SESAM) as a function of the pulse fluence.
Source: [15]

The amplitudes of the longitudinal modes can be estimated by such a model
if their number and the average photon flux density in the cavity (24) are known.

The effect of the finite width of the laser gain line on the mode-locking
pulse parameters can be estimated considering the distribution of amplitudes
to be the same as the gain profile.

For example, a line with homogenous broadening has a Lorentz contour
that can be approximated by a parabola near the center frequency:
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8Lorentz (('0) = el 2 (30)
Ao, /2
[ Rl )] 2
— %o
gparabolic (('0) =80 [1 + (A(Dg/ZJ J’ (31)

where g is the peak value of the gain (at the center frequency ®,); Aw, is the
width of the gain line.

The time dependence of the laser output power during the mode-locking
is determined by the total intensity of the intracavity light field and by the
reflection coefficient of the output mirror:

P, =1z, s, (1-p,). (32)




PROBLEMS

Free lasing mode, neodymium laser,
four-level scheme

1. Calculate the time needed to reach the steady-state lasing mode in the
case of a neodymium laser with the given matrix for the given pump level.

2. Calculate the duration of the first spike in the dynamic generation mode
in the case of a neodymium laser with the given matrix.

3. Plot the dependence of the output power of the laser on the pump power
P,(P,,) and calculate the generation efficiency (dP,,,/dP;,) in the stationary
mode. Find the threshold pump power for the given laser. The cross-section
area of the output beam is assumed to be equal to the pumping area.

4. Calculate the generation efficiency (dP,,/dP;,) of the laser in steady-
state mode in the case of transition *F; n = 113 /» for a matrix No. 5 (lasing
wavelength 1341.6 nm, 6,,,=2.2 - 10~ cm?).

5. Calculate the optimal reflection coefficient of the output mirror for
a given pump power (corresponding to the maximal output power).

6. Plot the dependence of the output power on the loss coefficient.

For the task, take the following parameter values: cavity length L =20 cm,
crystal length /= 0.3 cm, inactive lossy=0.002 cm™ !, reflection coefficient p=0.97.
Spectroscopic parameters are shown in table Al. Temperature 7= 300 K.

Free lasing mode, neodymium laser,
quasi-three-level scheme

1. Calculate the time needed to reach the steady-state lasing mode in the
case of a neodymium laser with the given matrix.

2. Calculate the duration of the first spike in the dynamic generation mode
in the case of a neodymium laser with the given matrix.

3. Calculate the generation efficiency (dP,,,/dP;,) of the laser in the
stationary mode in the case of the transition to the fourth Stark sublevel of
the ground multiplet 419 /2 for the given matrix.

4. Calculate the generation efficiency (dP,,/dP;,) of the laser in the
stationary generation mode in the case of a neodymium laser with the given
matrix.
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5. Calculate the threshold pump power in the stationary generation mode
in the case of a neodymium laser with the given matrix.

6. Find out how the generation threshold changes when the temperature
increases by 40 °C

The spectroscopic parameters are shown in table A2.

Free-running mode, ytterbium laser

Yiterbium lasers (Yb**) operate only according to a quasi-three-level scheme.
This is due to the fact that the ytterbium ion has only 2 energy multiplets — >F. 5/
and 2F7 1> (generation wavelength ~1040 nm).

1. Calculate the time needed to reach the steady-state lasing mode with
the given matrix.

2. Calculate the threshold pump power in the stationary generation mode
with the given matrix. Find out how the threshold changes when the temperature
increases by 40 °C.

3. Calculate the generation efficiency (dP,,,/dP;,) of the laser in the steady-
state lasing mode with the given matrix.

4. Calculate how the power will change in the stationary generation mode
if the temperature of the laser crystal is lowered by 30 °C.

5. Compare the start time of generation at 300 K and 270 K.

The spectroscopic parameters are shown in table A3.

Active Q-switching, neodymium laser, four-level scheme

1. Calculate the pulse duration and maximum intensity for matrix No. 4 and
No. 5. Explain the effect of the lifetime in the excited state on the parameters
of the pulse.

2. Calculate the pulse duration and intensity at maximum for matrix No. 2
and No. 6. Explain the effect of the radiation cross section on the pulse
parameters.

3. Calculate the optimal time of the shutter switching (for which the pulse
peak intensity is maximal) and the pulse duration for the given matrix.

4. Calculate the pulse peak intensity as a function of pump power.

5. Find energy in a single pulse at the laser output.

6. Find the reflection coefficient of the output mirror for a given pump
power at which the peak intensity of the output pulses is maximal.

7. Plot the dependence of the output pulse peak power on the loss
coefficient.
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Passive Q-switching mode, neodymium laser,
four-level scheme

1. Calculate the pulse duration, maximum intensity, and generation start
time for the given matrix.

2. Find out the pulse repetition rate for the constant pumping for the given
matrix. How will the repetition rate increase when the pump is doubled?

3. Find out the energy in one pulse at the laser output for the given matrix.
How will the energy in one pulse increase when the pump is doubled?

4. Find the reflection coefficient of the output mirror for a given pump
power at which the peak intensity of the output pulses is maximal for the given
matrix.

5. Plot the dependence of the output pulse peak power on the loss coefficient
for the given matrix.

Mode-Locking

1. Calculate the pulse duration and maximum intensity for the given laser
crystal.

2. Calculate the pulse duration and maximum intensity for Nd: KGW and
Nd: YAG laser crystal. Explain the effect of gain bandwidth on the parameters
of the pulse.

3. Calculate the pulse duration, maximum intensity and the energy in one
pulse for Nd: YAG laser crystal for cavity length L =20 cm and L = 100 cm.
Explain the effect of cavity length on the parameters of the laser pulse.

4. Calculate the pulse duration, maximum intensity and the energy in one
pulse for Yb: YAG laser crystal for cavity length L =20 cm and L = 100 cm.
Explain the effect of cavity length on the parameters of the laser pulse.

For the task, take the following parameter values: cavity length L =20 cm,
crystal length /=0.3 cm, inactive loss y = 0.002 cm™', output mirror reflection
coefficient p; = 0.97, SESAM saturable reflection coefficient p, = 0.98.
Spectroscopic parameters are shown in table 3. Temperature 7= 300 K.
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2. Listing of the “Wolfram Mathematica” program
for Nd:YAG free lasing mode

Nd:YAG 4 - Level Laser: free lasing mode

Laser and active medium parameters:

= Aa i= 808.6x 1072 (x[m]*) (xPump wavelengthx)
e := 1064 x10°° (x[m]*) (xLasing wavelengthx)
h :=6.626x1072% (x[Jxus]*) (xPlanck constantx)
021 := 28x10'2°(*[cm2]*) (#Stimulated emission cross sectionx) (x6.0x10 %)
013 := 7.7 x 102 (x [cm?] +) (+Absorption cross sectionx) (+7.0x1072%x)
t3 :=0.03 (*[us]*) (xLife time at the top levelx)
t2 := 230 (*[us]*) (xLife time at the metastable levelx) (%2.2x107%x)
t1 :=0.01 (% [us]*) (xLower laser level life timex)
Ns :=1.38(+[cm™3]#) (xConcentration of neodymium ions) (x1.25x102°x)
Lar :=0.3 (*x[cm]#*) (xLaser Crystal Lengthx)
Lc :=20 (x[cm]*) (xCavity lengthx)
¥ :1=0.002 (x[cm]x) («Inactive loss ratiox)
p :=0.97 (xReflection coefficient of the output mirrorsx)
nref := 1.82 (xLaser crystal refractive indexx)
c:=3x10* (x[cm/us]+) (*+The speed of light in vacuumsx)
Ve = c/nref (x[cm/us] ) (xThe speed of light in matterx) (x1.64x10%%x)
Lopt := Lc+ (nref-1) « Lar (xOptical cavity lengthx)
rtc :=c/Lopt » (¥ »Lar-Log[p] /2) (+[us!]+)
(#Inverse photon lifetime in the cavitys) (#3x107x)
u :=nref Lar/Lopt (*Resonator fill factor with active mediumx) (%x0.007x)
a:=0.25 (x[cm]*) (*The radius of the pump beam on the laser crystalx)
Sar :=;wxa”2 (x[cm?]%) (xPump areax)
Ppump := 10 (* [W] %) (*Pump powerx) (*Threshold pump power - 3.8 Wx)
Rpump := Ppump /Sar /h /cx Aa + 100 /10° (x[phot/cm?/us]*)
(*Pump photon flux densityx) (%5.0x10%%x)
Ks := 1x107'® (xThe share of spontaneous photons that pass into the cavity mode
into the cavity mode *)
0 := 1071 (x[phot/cm?/us]+) («Seed spontaneous emissions) (x107%° «)
hne :=hxc/ e /100 (*[J]*) (xRadiated photon energyx)
T :=1000 (x[us]*) (xCalculation timex)

The system of equations:

1= (*The system of equations taking into
account the nonzero population of the lower laser
level nilx)
solvedDynl = NDSolve|
{s'[tl-vcuo21S[t] # (n2[t] - ny[t]) x10%° -Ks Lar ny[t] x 10%° /t2+ S[t] rtc =0,
ny'[t] +n3[t] /3 -Rpump 013 (Ns-n;[t] -ny[t] - n3[t]) == O,
ny'[t] -n3[t] /t3+n[t] /t2+021S[t] (ny[t] - ny[t]) =0,
ny'[t] +ng[t] /tl-ny[t] /t2-021S[t] (ny[t] - ny[t]) =0,
S[e] = se, n;[8] =@, n,[0] == 8, n3[0] == 0},
{S[t]) nB[t]) nz[t], nl[t] 1,
{t, 8, T}]
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out31)=

In[32):=

In[34]:=

out[34j=

In[35]:=

out(3s}=

{{S[t] - Inter‘polatingFunction[ J[\» Pomain: {{0 1'00“03}} ] [t1,
Output: scalar

n;[t] - InterpolatingFunction| ‘y\.v (E;omain: {{OI 1.00x10°}} e,
utput: scalar
na[t] - InterpolatingFunction| "/\ zomain: {{OI 1.00x10°}} ity
utput: scalar
n : . Domain: {{OA, 1.00x 105}}
1[t] - Inter‘polatlngFunctlon[ /J\h» } [t] }}

Output: scalar
Output laser intensity and the relative population inversion:

Intensityl[t_] := Evaluate[S[t] /. solvedDyn1[[1]]] hne« (1-p)
(*[Mw/cmz]*) (*Laser output intensityx)

PopulationInversionl[t_] := Evaluate[(ny[t] -ny[t]) /. solvedDyni[[1]]] /Ns
(xRelative population inversions)

Laser radiation intensity attime T:

SetPrecision[Intensityl[t] /. t-> T, 10]
0.0001494313101

Graphs of the dependence of the intensity and density of populations
at levels on time:
Plot[{Intensityl[t]}, {t, @, T}, AxesLabel - {"t, us", "I, MW/cm*"},

PlotRange -» Full, PlotLegends - Automatic]

Plot[{PopulationInversioni[t]}, {t, ©, T}, PlotRange - Full,
AxesLabel - {"t, us", "Any;/Ns"}, PlotLegends -» Automatic]

I, MW/cm?
0.003
0.002
0.001 -
AL
L 1 | Lt s
200 400 600 800 1000
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3. Listing of the “Wolfram Mathematica” program
for Nd:YAG active Q-switch mode

Nd:YAG 4 - Level Laser: active Q-switching

In[80]:=

36

Laser and active medium parameters:

2a 1= 808.6x107° (#[m]*) (xPump wavelengthx)

e := 1064 x107° (x[m]*) (+Lasing wavelengthx)

h :=6.626x10°2% (x[Jxmcs]*) (xPlanck constantx)

021 := 28 x107%° (« [cm?] #) (xStimulated emission cross sectionx) (#6.0x107'%x)
013 :=7.7x107%° (x [cm?] #) (+Absorption cross sectionx) (x7.0x1072%x)

t3 :=0.83(x[us]*) (xLife time at the top levelx)

t2 := 230 (x[us]*) (xLife time at the metastable levelx) (%2.2x107%x)

t1 :=0.01 (% [us]*) (xLower laser level life timex)

Ns := 1.38(*[cm‘3]*) (xConcentration of neodymium ionsx) (#1.25x10%°x)

Lar := 0.3 (x[cm]*) (xLaser Crystal Lengthx)

Lc :=20 (x[cm]*) (xCavity lengthx)

¥ :=0.002 (x[cm']«) (#Inactive loss ratiox)

p :=0.97 (xReflection coefficient of the output mirrorsx)

nref := 1.82 (xLaser crystal refractive indexx)

c:=3x10* (x[cm/us]«) («The speed of light in vacuumsx)

vc := ¢ /nref (x[cm/us]*) (xThe speed of light in matterx) (x1.64x10°x)
Lopt := Lc+ (nref - 1) « Lar (xOptical cavity length«)

u = nref x Lar/Lopt (xResonator fill factor with active mediumx) (x0.007x)
a:=0.25 (x[cm]*) (*The radius of the pump beam on the laser crystals)
Sar :=smxa”2 («[cm?]+) («Pump areax)

Ppump := 50 (* [W]*) (*Pump powersx) (*Threshold pump power - 3.8 Wx)

Rpump := Ppump /Sar /h /c»2a »100 /16° ([phot/cm?/us] )

(*Pump photon flux densityx) (%5.0x10%°x)

Ks := 1x1071° (xThe share of spontaneous photons that pass into the cavity modex)
0 :=107'° («[phot/cm?/us]«) («Seed spontaneous emissions) (x107° «)

hne :=hxc/ 2e /100 (*[J]1*) (xRadiated photon energyx)

T :=400 (*[us]=) (xCalculation timex)

T1 := 300 (x[us]#*) (*Atthistime the electro-optical shutter switchesx)



The loss coefficient in the system
depends on the time:

npo71= 1@[t_] 1= 50 » Boole[t < T1] (*[%]*)
(*Additional losses in the system before switching electro-optical
shuttersx)
Rtc[t_] :=c/Lopt % (yLar-Log[p] /2+10[t] /160) ([
us‘l]*) (*Inverse photon lifetime in the cavityx)
Plot[Rtc[t], {t, @, T}, AxesLabel » {"t, us", "Rtc,us™*"}]

th,ps'1
800 -

600 -

out[109]=

200 -

L L | E———
100 200 300 400 "

The system of equations:

ni1o)= (*The system of equations taking into
account the nonzero population of the lower laser
level nix)
solvedDyn1 = NDSolve|
{s'[t]-veuo21S[t] #(n2[t] - ny[t]) x10% -Ks Lar ny[t] x 16%°/t2 + S[t] - Rtc[t]= O,
ns'[t] +n3[t] /3 -Rpump 013 (Ns - ny[t] - np[t] - n3[t]) == O,
ny'[t] -n3[t] /t3+ny[t] /t2+021S[t] (n2[t] - ny[t]) = O,
ny'[t] +ny[t] /tl-ny[t] /t2-021S[t] (n2[t] - ny[t]) =@,
S[e] ==s@, n;[@] =0, n,[0] == 0@, n3[0] == @},
{S[tl, n3[t], ma[tl, nyi[t]}, {t, @, T}]

J Domain: {{0., 400.}}

ourtior {{S[t] - InterpolatingFunction | Output: scalar

rtr,

n3[t] - InterpolatingFunction | N gz:r;?::s{c(;;joo‘)} Jtl1,
ny[t] - InterpolatingFunction | /L gz?;?::s{c{gl.;joo.}) 11,
n[t] - InterpolatingFunction[ /{‘ gz:;?::s{c(;;:mo‘)} ] (t1}}
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Output laser intensity and the relative population inversion:

wiin= Intensityl[t_] := Evaluate[S[t] /. solvedDyn1[[1]]] *hne« (1-p)
(% [MW/cm?] %) («Laser output intensitys)

PopulationInversionl[t_] := Evaluate[(n,[t] - ni[t]) /. solvedDyni[[1]]] /Ns
(xRelative population inversionx)

Graphs of the dependence of the intensity and density of populations
at levels on time:

In[113):= Plot[{Intensityl [t1y, {t, 71, T1+1},
AxesLabel - {"t, us", "I, MW/cm*"}, PlotRange - Full, PlotLegends - Automatic]

Plot [ {PopulationInversionl[t]}, {t, @, T}, PlotRange - Full,
AxesLabel - {"t, us", "An,;/Ns"}, PlotLegends - Automatic]

1, MW/cm?

20+

out(113)=

0.5+

L L Lt s
300.2 300.4 300.6 300.8 301.0

Angy/Ng
0.014

0.012
0.010 -
0.008 -
out[114]=
0.006 -

0.004

0.002

L L Lt s
100 200 300 400

4. Listing of the “Wolfram Mathematica” program
for Nd:YAG passive Q-switch mode

Nd:YAG 4 - Level Laser: passive Q-switching
Laser and active medium parameters:
ni1s= Aa i= 808.6 x107° (% [m] %) (*Pump wavelengthx)

e := 1064 x 10™° (#[m] ) (xLasing wavelengthx)
h :=6.626x1072% (x[Jxmcs]*) (*Planck constants)
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In[142]:=

In[147]:=

021 :=28x107%° (x [cm?] %) (xStimulated emission cross sectionx) (x6.8x10°x)
013 := 7.7 x107%° (x [cm?] &) (+Absorption cross sections) (x7.0x1072%x)

t3 :=0.03(*[us]*) (xLife time at the top levelx)

t2 1= 230 (x[us]*) (xLife time at the metastable levelsx) (%2.2x107%x)

t1 :=0.01(x[us]*) (xLower laser level life timex)

Ns :=1.38(x[cm3]#) (xConcentration of neodymium ionsx) (x1.25x10%°x)
Lar :=0.3 (x[cm]*) (xLaser Crystal Lengthx)

Lc :=20 (x[cm]x) (xCavity lengthx)

¥ :=0.002 (x[cm?]x) («Inactive loss ratiox)

p :=0.97 (xReflection coefficient of the output mirrorsx)

nref := 1.82 (xLaser crystal refractive indexx)

c:=3x10* (x[cm/us]«*) (xThe speed of light in vacuumsx)

vc :=c /nref (x[cm/us]*) (xThe speed of light in matters) (+1.64x10%x)
Lopt := Lc+ (nref - 1) « Lar («Optical cavity lengthx)

rtc := ¢ /Lopt » (y xLar-Log[p] /2) (x[ust]*)

(xInverse photon lifetime in the cavityx) (*3x107x)

u = nref Lar/Lopt (*Resonator fill factor with active mediumx) (%0.007x)
a:=0.25 (x[cm]*) (*The radius of the pump beam on the laser crystalx)
Sar :=wxat2 (x[cm?]+) (+xPump areax)

Ppump := 100 (x [W] *) (*Pump powerx) (xThreshold pump power - 3.8 Wx)
Rpump := Ppump /Sar /h /c x Xa x 100 /10° (x[phot/cm?/us]«)

(*Pump photon flux densityx) (%5.0x10%%x)

Ks :=1x1072° (xThe share of spontaneous photons that pass

into the cavity mode *)

0 := 107" («[phot/cm?/us] ) (xSeed spontaneous emissionx) (x107%° x)
hne :=hxc/2e /160 (*[J]*) (xRadiated photon energyx)

T :=1000 (*[us]*) (xCalculation timex)

Passive Shutter parameters (Cr**:YAG):

tq2 := 4 (x[us]*) (xLife time at the top levelx)

Nsq := 0.0185 (x[10%° cm3]x) (xConcentration of chromium ionsx)
0q12 := 87 x107° («[cm?]«) (»Absorption cross sections)

uq := 0.015 (xResonator fill factor with saturable absorberx)
veq := 1.64x10% (x[cm/us]+) («#The speed of light in matters)

The system of equations:

(*The system of equations taking into
account the nonzero population of the lower laser
level nlx)
solvedDyn1 = NDSolve |
{s'[t]-vcuo21s[t] * (n2[t] - ny[t]) x10%° -

Ks Larny [t] x 10% /t2 + S[t] rtc + veq uq 0q12S[t] (Nsq- ng[t]) x 10%° == 0,
n3'[t] +n3[t] /t3 - Rpump o013 (Ns -ny[t] -ny[t] - n3[t]) =0,
ny'[t] -n3[t] /t3+ny[t] /t2+021S[t] (n2[t] - ny[t]) =,
n'[t] +ng[t] /tl-ny[t] /t2-021S[t] (n2[t] - ny[t]) = O,

Ngy ' [t] +ngy[t] /192 - 0q12S[t] (Nsq- ng[t]) =0,

S[0] =58, ny[0] = O, ny[8] == @, N3[0] == @, ng[0] = 0},
{S[tl, n3[t], na[t], ni[t], ng[t]},
{t, 0, T}];
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In[148]:=

In[151):=

out[151]=

In[152):=

out[154]=

40

Output laser intensity
and the relative populationinversion:

Intensityl[t_] := Evaluate[S[t] /. solvedDyn1[[1]]] =hne % (1-p)
(*[Mw/cmz]*) (*Laser output intensitys)

PopulationInversionl[t_] := Evaluate[ (n,[t] -ny[t]) /. solvedDyni[[1]]] /Ns

(*Relative population inversionsx)

nql[t_] := Evaluate[ (ng[t]) /. solvedDynl[[l]]]/qu
(*The relative population of the upper level of saturable absorbersx)

The radiation intensity in the cavity at time T:

SetPrecision[Intensityl[t] /. t > T, 10]
3.458923563 x 1077

Graphs of the dependence
of the intensity and density
of populations at levels on time:

t1 := 267

t2 := 269

Plot[{Intensityl[t]}, {t, t1, t2}, AxesLabel » {"t, us", "I, MW/cm*"},
PlotRange - Full, PlotlLegends - Automatic]

Plot [ {PopulationInversioni[t]}, {t, t1, t2}, PlotRange - Full,
AxesLabel - {"t, us", "An,;/Ns"}, PlotLegends » Automatic]

Plot[{nql[t]}, {t, t1, t2}, PlotRange - Full,
AxesLabel - {"t, us", "ng2/Nsq"}, PlotLegends -» Automatic]

I, MW/cm?
25f
20f

151

L N L L t, s
267.5 268.0 268.5 269.0



=

n

out[15

out[156]=

Anz1/Ns
0.025 =

0.020

0.015

)=

0.010

0.005

s

L t,
268.0 268.5 269.0
Ng2/Nsq

1.0+

0.8

04r

021

s

L t,
267.5 268.0 268.5 269.0

5. Listing of the “Wolfram Mathematica” program
for Nd:YAG Mode Locking

Mode Locking: Nd:YAG 4-level laser

In[157):=

Laser and active medium parameters:

Aa i= 808.6x107° (% [m]*) (*Pump wavelengthx)

Ae 1= 1064 x 10™° (#[m]*) (*Lasing wavelengthx)

h := 6.62607015 x 1072% (x[Jxus]) (*Planck constantx)

O21,em = 28 x107%° (x [cm?] #) (#Stimulated emission cross section)
Oe3,abs := 7.7 x 1072 (x [cm?] ») (xAbsorption cross sectionx)

T3 1= 0.03 (% [us]*) (xLifetime at the top levelx)

Ty 1= 230 (% [us]*) (xLifetime at the metastable levelx)

Ty 1= 0.01(x[us]*) (xLifetime at the lower laser levelx)

Ns := 1.38(x[10%° cm3]«) (xConcentration of neodymium ionsx)
1:=0.3 (x[cm]*) (xLaser crystal lengthx)

Lc :=20 (x[cm]%) (xCavity lengthx)

¥ :=0.002 (x[cm']x) (xCoefficient of inactive lossesx)

pl :=0.97 (xOutput mirror reflection coefficientx)

p2 := 0.95 (xSESAM saturable reflection coefficientx)

n. :=1.82 (xLaser crystal refractive indexx)
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Co := 2.99792458 x 10* (% [cm/us] ) (xSpeed of light in the vacuumsx)
Ve 1= Co/ N (%[cm/us]+) («Speed of light in the laser crystalx)
Lopt = Lc+ (Np-1) #1 (x[cm]«) (#Optical cavity lengths)

Ptc 1= Co / Lopt * (¥ % 1-Log[plp2] /2) (x[ust]+)

(*Inverse photon lifetime in the cavityx)

Uiz nNpox l/Lopt (xResonator fill factor with active mediumx)
d:=0.5 (x[cm]*) (xDiameter of the pump beam on the laser crystalx)
Scr i=7txd? /4 (x[cm?]*) («Pump areax)

Pounp 3= 50 (% [W]*) (*xPump powerx) (xThreshold pump power - 3.8 Wx)
Rpunp := Ppump / Ser /1 / Co % 2o %100 /10° (x]

phot/cm? /us] ») (xPump photon flux density«)

Ks :=1x107%° («The ratio of spontaneous photons that pass

into the cavity modex)

So := 107 («[phot/cm?/us] ) (+Seed spontaneous emissions)

hve :=hxcog/ A /109 (*[J]*) (xEnergy of the radiated photonx)
tealc 1= 1000 (x[us]*) (xCalculation timex)

The system of equations:

nissi= (*The system of equations taking into account nonzero population at the lower
laser level Ni1x)
solvedDyn = NDSolve
{S'[t] -Vcuou,enSIt] » (N2[t] - NI[t]) x10%° - K 1N2[t] x10%° /Ty + S[t] rc = O,
N3'[t] +N3[t] /T3 - Roump Oe3,abs (Ns - N1[t] -N2[t] -N3[t]) =0,
N2'[t] -N3[t] /T3 +N2[t] / T2+ 021,enS[t] (N2[t] - N1[t]) == O,
N1'[t] +N1[t] /t1-N2[t] /T2~ 02,enS[t] (N2[t] - N1[t]) = O,
S[@] == Se, N1[0] == @, N2[0] = @, N3[@] = 0},
{S[t], N3[t], N2[t], N1[t]},
{t) 0) tcalc}]

Domain: {{0 1.00x103}} } [t],

outies= {{S[t] - InterpolatingFunction|
Output: scalar

Domain: {{0, 1.00x 10%}} ]

N3[t] - InterpolatingFunction| [t1,

Output: scalar

N2[t] - Inter‘polatingFunction[ k gomain:{{()l., 1.00x 10%}} } t1,
utput: scalar

Domain: {{0,, 1-00"103}} } [t] }}

N1[t] - InterpolatingFunction [
Output: scalar

Output laser intensity
and relative population inversion :

In[186]:=
AverageIntensity[t_] := Evaluate[S[t] /. solvedDyn[[1]]] * hv.
(*[Mw/cmz]*) (*»Average intensity in the cavityx)
PopulationInversion[t_] := Evaluate[ (N2[t] -N1[t]) /. solvedDyn[[1]]] /Ns
(xRelative population inversions)
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Laser radiation intensity at time t.,c :

inpse;= SetPrecision[AverageIntensity[t] /. t » tcac, 10]

(*[

outiss= 0.0

Graphs of the intensity (average value) and population inversion

Mw/cmz]*) (*Laser output intensityx)

1192091664

dependence on time:

npiesl= Plot [ {AverageIntensity[t]}, {t, @, tcaic},
AxesLabel - {"t, us", "Iouts MW/cml"}, PlotRange -» Full, PlotLegends - Automatic]
Plot [ {PopulationInversion[t]}, {t, @, tc.ic}, PlotRange - Full,

Ax

esLabel -» {"t, us", "ANp;/Ns"}, PlotLegends - Automatic]

Jout, MW/cm?

0.30

out[189}=

AN

0.004 -

0.003 -

out[190]=

0.002 -

0.001

I I I L s
400 600 800 1000

21/Ns

Mod

In[191]:=

out[195}=

ks

L L L L Y
200 400 600 800 1000

e-locking of longitudinal modes

Mode-locking parameters:

WO 1= 2% 7TxCo/ e

Aw := 7% Co/ Lopt (* [us'l] =[MHz] %)

(*Frequency difference between two subsequent cavity modesx)
wg := 200 x 10> (% [MHz] ) (*Gain bandwidthx)

Mg := Floor [wg / Aw]

(*The number of supported longitudinal modes for the given gain bandwidthx)

M= Mg
42
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Amplitude of light field in the cavity is calculated
as a sum of the longitudinal modes fields with equal
amplitudes and equidistant frequencies:
nies= AG[t_] := Sqrt[AverageIntensity[t] /M ] (+ [MW/cm?]+) (+Intensity of the modesx)
Alz_, t.1 :=AO[t]« 50 (Exp[iowsms (t+2/co)]+Expiaasms (t-2/c0)])
m=-M/2

(*Amplitudes of the modes are equal to the
square root of the average intensity in the cavitys)

Intensity in the cavity at time t,:

in1981= teale 1= 999.5 (% [uS]*)
Plot[{Evaluate[Abs[A[z, t]]172 /. t - teaic]}s {Z5 @, Lopt},
PlotRange - {{@, Lopt}, All}, AxesLabel » {"z, cm", "I, MW/cm*"}]
Plot[{Evaluate[Abs[A[z, t1172 /7. t > taacl}s {2, 0, Lopt}s
PlotRange - {{12, 16}, All}, AxesLabel » {"z, cm", "I, MW/cm*"}]

I, MW/cm?
05F
04f

out[199]= 0.3

0.1+

0.0 - - = 7 cm

1, MW/cm?

05

0.4+

out200)= 0.3}

0.2+

0.0 L L z,cm

Consider different mode amplitudes with distribution
defined by the gain shape:

In[201]:=
gliw_] :=1/(1+w”2/ (wg/2)"2); (+xLorentzian gain shapex)
gplw_] :=1-w"2/ (wg/2)~2; (+Parabolic gain shapex)
Plot[{1, gl[w], gplw]l}, {w, -Aw*M/2, AwxM/2},
PlotRange -» All, AxeslLabel - {"dw, MHz", "Relative gain, a.u."},
PlotLegends » {"Constant", "Lorentzian", "Parabolic"}]|
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Out[203]=

In[204]:=

In[206]:=

out[207]=

Relative gain, a.u.

081
— Constant
0.6 )
Lorentzian
o0al Parabolic
02f
L . L L dw, MHz
-100000 -50000 F 50000 100000

Al[z_, t_] :=

AQ[t] * E glidw+m] # (Exp[idwsmx (t+2/Co)] +Exp[idwsms (t-2/co)])
m=-M/2

(xLorentzian distribution of the amplitudessx)

Ap[z_, t_] :=

AG[t] * E gplAw+m] # (Exp[idwsmx (t+2/Co)] +Exp[idwsmx (t-2/co)])
m=-M/2

(xParabolic distribution of the amplitudesx)

Intensity in the cavity at time t ,c in the case of constant, parabolic and
Lorentzian gain shape:
teaic 1= 999.5 (% [us]*)
Plot[{Evaluate[Abs[A[z, t1172 /. t - tacd,
Evaluate[Abs[Al[z, t]]1”2 /. t -» tcaic], Evaluate[Abs[Ap[z, t]]1”2 /.t > tcacl},
{Z, 0, Lopt}, PlotRange -» {{@, Lopt}, All}, AxesLabel - {"z, cm", "I, MW/cmZ"},
PlotLegends » {"Constant", "Lorentzian", "Parabolic"}]
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Time dependence of the intensity in the cavity for z=z_, in the case of con-

stant, parabolic and Lorentzian gain shape:

In[208:= Zcale = Lopt/Z (x[cm]*)

dt :=2Lept / Co (x[us]*) (xCavity round-trip timesx)
dtmin = dt/M %10° (x[ps]*) (*Minimal pulse lengthx)
Plot[{Evaluate[Abs[A[z, t]]"2 /. {Z > Zcalcs t - tearc + t*103}],

Evaluate [Abs [Al[z, t]1]"2 /. {z > Zeale, o teare +t* 10-3}] )

Evaluate [Abs[Ap[z, t1]1"2 /. {Z > Zcales t - tearc +t#107°}]}, {t, 0, dt /2 10%},
PlotRange - {{@, dt /2 » 10}, All}, AxesLabel » {"t, ns", "I, MW/cm*"},
PlotLegends - {"Constant", "Lorentzian", "Par‘abolic")]
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ou210)= 32.1588
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6. Listing of the “Wolfram Mathematica” program
for Nd:YAG quasi three level scheme

Nd:YAG Quasi-Three-Level Laser: free lasing mode

Laser and active medium parameters:

nasp- Aa = 808 x 107 (% [m] %) (*Pump wavelength«)
e 1= 946 x107° (x[m]*) (xLasing wavelengthx)
h :=6.626 x1072% (x[Jxus]*) (*Planck constants)
020 :=6.4x107%° (x[cm?] %) (xStimulated emission cross sectionx) (x6.0x107'9x)
003 := 7.7 x 1072 (x [cm?] ») (xAbsorption cross section) (x7.0x107°x)
13 :=0.03 (% [us]*) (xLife time at the top levelx)
t2 1= 230 (% [us]*) (xLife time at the metastable levelx) (#2.2x107%x)
Ns := 1.38(+[16%° cm-3]«) (xConcentration of neodymium ions) (»1.25x10%x)
Lar :=0.3 (x[cm]*) (xLaser Crystal Lengthx)
Lc :=20 (x[cm]x) (xCavity lengthx)
¥ :=0.002 (x[cm]*) (xInactive loss ratios)
p :=0.97 (xReflection coefficient of the output mirrorsx)
nref := 1.82 (xLaser crystal refractive indexx)
C :=2.99792458 x 10* (x[cm/us]*) (*xThe speed of light in vacuums)
vc :=c /nref (x[cm/us]+) (xThe speed of light in matters) (x1.64x10%x)
Lopt := Lc+ (nref-1) « Lar («Optical cavity lengths)
rtc :=c/Lopt » (¥ Lar - Log[p] /2) (*[us™t]*)
(*Inverse photon lifetime in the cavitys) (*3x107x)
u = nref % Lar/Lopt (*Resonator fill factor with active mediumx) (%0.007x)
a:=0.25 (x[cm]*) (*xThe radius of the pump beam on the laser crystalx)
Sar :=wxa2 («[cm?]x) (xPump areax)
Ppump := 100 (* [W] *) (*xPump powerx) (*Threshold pump power - 64 BTx)
Rpump = Ppump /Sar /h /c « 2a 100 /10° (+[phot/cm?/us] )
(*Pump photon flux densityx) (*5.0x10%%x)
Ks :=1x107'® (xThe share of spontaneous photons that pass into the cavity modex)
S0 := 107" («[phot/cm?/us]«) (xSeed spontaneous emissionx) (1072 )
hne :=hxc/2e /100 (*[J]*) (xRadiated photon energyx)
t1 := 1000 (x[us]*) (xCalculation timex)

oufsel= 2.07162 x 10%°
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The relative populations of sublevels depend on temperature:

nea= K 1= 1.3806485 x 10723 (xJ/Kx) (*Boltzmann constantsx)
T := 300 (xKx) (*Temperaturex)
kT :=kT /h/c (xcmtx)
EQ := {@, 133, 199, 312, 857} (#cmlx) (xSublevels of “Iy,, energyx)
fo5 = Exp[-E@[[5]] /kT] /Sum[Exp[-Ea[ (111 /KkT], {i, 1, 5}]
(*Relative upper sublevel population “Ig, )
fol = Exp[-E@[[1]] /kT] /Sum[Exp[-E@[[i]] /KT], {i, 1, 5}]
(*Relative population of lower sublevel *Iy,,x)
E2 := {11427, 11512} (%cM'x) (xEnergy sublevels “F3,,x)
f21 = Exp[-E2[[1]] /KkT] /Sum[Exp[-E2[[i]] /kT], {i, 1, 2}]

(*Relative population of lower sublevel “F3,,x)

oues= 0.00761743

outeo= 0.464287

ou71= 0.600524

The system of equations:

n72= (%A system of equations describing generation according to a quasi-
three-level schemex)
solvedDyn = NDSolve|{
{s'[t] -vcuo20S[t] » (f21n,[t] - @5 ne[t]) x 10%° -
Ks Larn,[t] x10%° /t2+S[t] rtc == @,
n;'[t] +n3[t] /t3 - Rpump c@3 ne[t] == O,
ny'[t]-n3[t] /t3+ny[t] /t2+020S[t] (f21ny[t] - fO5Sne[t]) == @} /.
{n3[t] > Ns-ne[t] -na[t], n3'[t] » -ng'[t] -ny'[t] },
S[e] = S@, ny[@] = Ns, n[0] = 0},
{S[t], n2[t], ne[t]},
{t, 0, t1}]

ourz= {{S[t] - InterpolatingFunction| Jﬂ, goma'm: {{OI’ 1.00x10%} Jrt1,
utput: scalar

ny[t] - InterpolatingFunction[ F CD)omain: {{OI 1‘00”03}} ] [tl,
utput: scalar

nelt] - Inter‘polatingFunction[ L gomain: {{OI 1.00x10°}} ] [(t1}}
utput: scalar

Output laser intensity and the relative population inversion:
In[73]:=
Intensity[t_] := Evaluate[S[t] /. solvedDyn[[1]]] »hne  (1-p)
(*[MW/cm?] %) (xLaser output intensitys)
PopulationInversion[t_] := Evaluate[(f21n,[t] - f@5n,[t]) /. solvedDyn[[1]]] /
Ns (*Relative population inversionx)

Laser radiation intensity at time t1

n7s= SetPrecision[Intensity[t] /. t » t1, 10]
ours)= 0.0008921400612
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Graphs of the dependence of the intensity and density
of populations at levels on time:

In[76]:= Plot[{Intensity[t] }, {t, @, t1}, AxesLabel -» {"t, us", "I, MW/cmZ"},
PlotRange - Full, PlotLegends - Automatic]
Plot[ {PopulationInversion[t]}, {t, @, t1}, PlotRange - Full,
AxesLabel - {"t, us", "Any/Ns"}, PlotLegends - Automatic]
1, MW/em?

0.020
0.015
out[76]=

0.010

0.005

Lt ps

200 1000

0.006 MA

Anzo/Ng

0.004
0.002 -

out[77}= . . . . i
200 400 600 800 1000

-0.002 -

-0.004

-0.006

-0.008

7. Listing of the “Wolfram Mathematica” program
for Yb:YAG free lasing mode

Yb:YAG Quasi-Three-Level Laser: free lasing mode

Laser and active medium parameters:

n7si= A@ t= 940 x 107° (x[m] %) (xPump wavelengthx)
e :=1030x10°° (x[m]*) (xLasing wavelengthx)
h :=6.626 x10°2% (% [J#us]+*) (*Planck constantx)
020 :=2.0x 1072 (x[cm?]+) (xStimulated emission cross sectionx)
003 := 7.0x107%° (« [cm?] ») (#Absorption cross sections)
t3 :=0.001 (% [us]*) (xLife time at the top levelx)
t2 := 1200 (x[us]*) (xLife time at the metastable levelx)
Ns :=1.38(+[16% cm 3] «) («Concentration of ytterbium ionsx)
Lar :=0.3 (x[cm]*) (xLaser Crystal Lengthx)
Lc :=20 (%[cm]*) (xCavity lengthx)
¥ 1=0.002 (x[cm?]x) (s+Inactive loss ratiox)
p :=0.97 (xReflection coefficient of the output mirrorsx)
nref :=1.82 (xLaser crystal refractive indexsx)
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Out[296]=

In[301]:=

out[305}=

out[306]=

out[308

In[309]:=

C 1= 2.99792458 x 10* (% [cm/us]*) (xThe speed of light in vacuums)

Ve := c/nref (x[cm/us]*) («+The speed of light in matterx) (x1.64x10%°x)
Lopt := Lc+ (nref-1) «Lar (xOptical cavity lengthx)

rtc :=c/Lopt # (yLar-Log[p] /2) (x[ust]*)

(*Inverse photon lifetime in the cavitys) (*3x107x)

u = nref % Lar/Lopt (*Resonator fill factor with active mediumx) (%0.007x)
a:=0.25 (x[cm]*) (*The radius of the pump beam on the laser crystalx)
Sar :=xan2 (x[cm?]x) (xPump areax)

Ppump := 100 (* [W] *) (*Pump powersx) (*Threshold pump power - 64 BTx)
Rpump = Ppump /Sar /h /c + Xa « 100 /10° (x[phot/cm?/us] )

(*Pump photon flux densityx) (%5.0x10%°x)

Ks := 1x107 (xThe share of spontaneous photons that pass

into the cavity modex)

S0 := 10 («[phot/cm?/us]«) (xSeed spontaneous emissionx) (x107%° )
hne :=hxc/2e /100 (*[J3]*) (xRadiated photon energyx)

t1 := 1500 (x[us]*) (x#Calculation timex)

2.41005 x 10%°

The relative populations of sublevels depend on temperature:

k := 1.3806485 x 10723 (%J/K%) (*Boltzmann constants)

T := 300 (*Kx) (*Temperaturex)

kT :=kT /h/c (xcmix)

EO@ := {0, 581, 619, 786} (xcmix) (xSublevels of 2F;,, energyx)

f03 = Exp[-E@[[3]] /KkT] /Sum[Exp[-E@[[i]] /kT], {i, 1, 4}]

(*Relative third sublevel population 2F;,,x)

fo1 = Exp[-E@[[1]] /kT] /sum[Exp[-E@[[i]] /kT], {i, 1, 4}]

(*Relative population of lower sublevel 2F;/,x)

E2 := {10327, 10634, 10927} (xcMm x) (xEnergy sublevels Z2Fs,,x)

f21 = Exp[-E2([1]] /KkT] /Sum[Exp[-E2([[i]] /kT], {i, 1, 3}]
(*Relative population of lower sublevel 2Fs,,x)

0.0452195

0.880222
0.777808

The system of equations:

(%A system of equations describing generation according to a quasi-
three-level schemex)
solvedDyn = NDSolve| {

{s'[t]-vcuo2es[t] « (f21n,[t] - fO3ng[t]) x 10%° -

Ks Larn,[t] x10% /t2+S[t] rtc = @,

Ns :=1.38(x[10%° cm™3]«) (xConcentration of ytterbium ionsx)
Lar :=0.3 (x[cm]*) (xLaser Crystal Lengthx)
Lc :=20 (x[cm]*) (xCavity lengthx)
¥ :=0.002 (x[cm]x) (xInactive loss ratiox)
p :=0.97 (xReflection coefficient of the output mirrorsx)
nref := 1.82 (xLaser crystal refractive indexx)

suros= {{S[t] - InterpolatingFunction | JM Domain: {{0., 1.50x10°}} 11,

Output: scalar
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In[310}:=

In[312):=

out[312)=

In[313]:=

out[313]=

out[314]=

50

n2[t] - InterpolatingFunction| /'— Domain: {{0, 1.50x10°}} Jrtl,
Output: scalar
ne[t] - InterpolatingFunction| \k Domain: {{0, 1.50x10°}} Jit1}}

Output: scalar
Output laser intensity and the relative population inversion :

Intensity[t_] := Evaluate[S[t] /. solvedDyn[[1]]] = hnex (1-p)

(*[Mw/cmz]*) (xLaser output intensityx)

PopulationInversion[t_] := Evaluate[ (f21n,[t] - f@3ne[t]) /. solveddyn[[1]]1] /
Ns (*xRelative population inversions)

Laserradiation intensity at time t1

SetPrecision[Intensity[t] /. t - t1, 10]
0.0003601702559

Graphs of the dependence of the intensity and density
of populations at levels on time:

Plot[{Intensity[t]}, {t, @, t1}, AxesLabel » {"t, us", "I, MW/cm*"},
PlotRange -» Full, PlotLegends - Automatic]

Plot[{PopulationInversion[t]}, {t, @, t1}, PlotRange - Full,
AxesLabel - {"t, us", "Anys/Ns"}, PlotLegends » Automatic]
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8. Listing of the “Wolfram Mathematica” program
for Yb:YAG Mode Locking

Yb:YAG Quasi-Three-Level Laser Mode-locking

Average intensity in the cavity

In[890]:=

outf11)=

In[916]:=

Laser and active medium parameters:

2Aa := 940 x10°° (x[m] *) (*Pump wavelengthx)

e :=1030x10°° (x[m]*) (xLasing wavelengthx)

h :=6.626 x1072% (% [J*us]) (*Planck constants)

020 :=2.0x107%° («[cm?] x) (+Stimulated emission cross sectionx)

003 :=7.0x107%° (x[cm?] %) (xAbsorption cross sections)

13 :=0.001 (% [us]*) (xLife time at the top levelx)

t2 := 1200 (% [us] %) (xLife time at the metastable levelx)

Ns :=13.8(#[10% cm-3]«) (xConcentration of Itterbium ions 10%x)

Lar :=0.3 (x[cm]*) (xLaser Crystal Lengthx)

Lc :=20 (x[cm]*) (xCavity lengthx)

¥ :=0.002 (x[cm™]#) («Inactive loss ratiox)

p :=0.97 (xReflection coefficient of the output mirrorsx)

nref :=1.82 (xLaser crystal refractive indexx)

C 1= 2.99792458 x 10* (x[cm/us]*) (*The speed of light in vacuums)

vec := c /nref (x[cm/us]*) (+The speed of light in matters) (x1.64x10%°x)
Lopt := Lc+ (nref - 1) » Lar («Optical cavity lengthx)

rtc := c/Lopt » (¥ *Lar - Log[p] /2) (% [us] %)

(*Inverse photon lifetime in the cavityx)

u :=nref * Lar'/ Lopt (xResonator fill factor with active mediumx) (%0.007x)
a:=0.25 (x[cm]*) (+xThe radius of the pump beam on the laser crystalx)
Sar := yw#xa"2 («[cm?] ) («Pump areax)

Ppump := 40 (% [W] %) (*xPump powersx)

Rpump = Ppump /Sar /h /c + xa 100 / 10°

(* [phot/cm?/us] ») (xPump photon flux densitysx)

Ks := 1x107'° (xThe share of spontaneous photons that pass into the cavity modex)

S0 :=107'° («[phot/cm?/us]«) (xSeed spontaneous emissionx)
hne :=hxc/2e /100 (*[J]*) (xRadiated photon energyx)
t1 := 5000 (x[us]x) (*Calculation timex)

9.6402 x 10%*

The relative populations of sublevels depend on temperature:

k := 1.3806485 » 10-2> (%J/Kx) (*Boltzmann constants)

T := 300 (xKx) (xTemperaturex)

KT :=kT /h/c (xcmix)

E@ := {0, 581, 619, 786} (*cmix) (xSublevels of 2F;,, energyx)

03 = Exp[-E@[[3]] /KkT] /sum[Exp[-E@[[i]] /kT], {i, 1, 4}]

(*Relative third sublevel population 2F;,;x)

fo1 = Exp[-E@[[1]] /kT] /sum[Exp[-E@[[i]] /kT], {i, 1, 4}]

(*Relative population of lower sublevel 2F;/,x)

E2 := {10327, 10634, 10927} (xcMmx) (xEnergy sublevels 2Fs,,«)

f21 = Exp[-E2[[1]] /KkT] /Sum[Exp[-E2[[i]] /kT], {i, 1, 3}]
(*Relative population of lower sublevel 2Fs,,x)
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oute20)= 0.0452195
out921- ©.880222

oute23- ©.777808

The system of equations:

no2a1= (%A system of equations describing generation according to a quasi-
three-level schemex)
solvedDyn = NDSolve | {
{s'[t] -vcuo20S[t] » (f21ny[t] - FO3ne[t]) x10%° - Ks uny [t] x10%° /t2 + S[t] rtc==0,
ny ' [t] +ny[t] /t2+020S[t] (f21n,[t] - O3 ng[t]) - Rpump 003 fOlne[t] =@} /.
{n2[t] > Ns-ne[t], ny' [t] -» -ng'[t] },
S[@] == S8, ng[@] = Ns, n,[0] == Ns-ne[0]},
{S[t], nz2[t], ne[t]},

{t, 0, t1}]
outeza= {{S[t] - InterpolatingFunction | J» Domain: {{0., 5.00x10°}} | 1t], na[t] = ny[t],
Output: scalar
ne[t] - InterpolatingFunction| L Domain: {{0, 5.00x 107} Jrt1}}

Output: scalar

Output laser intensity
and the relative population inversion:

In[925]:=

Intensity[t_] := Evaluate[S[t] /. solvedDyn[[1]]] « hne x (1-p)
(% [MW/cm?] %) (xLaser output intensitys)
PopulationInversion[t_] :=

Evaluate[ (21 (Ns -ng[t]) - f83 ne[t]) /. solvedDyn[[1]]] /Ns

(xRelative population inversionx)

Laser radiation intensity at time t1
no271= SetPrecision[Intensity[t] /. t » t1, 10]
SetPrecision[PopulationInversion[t] /. t » t1, 10]
ou9271= ©.001229412454

outfe2el= ©.001911903402

Graphs of the dependence
of the intensity and density-
of populations at levels on time:
In[929]:= Plot[{Intensity[t] }, {t, @, t1}, AxesLabel - {"t, us", "I, MW/cmz"},
PlotRange -» Full, PlotLegends - Automatic]

Plot [ {PopulationInversion[t]}, {t, @, t1}, PlotRange - Full,
AxesLabel - {"t, us", "Any/Ns"}, PlotLegends - Automatic]
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out[929]=

out[930}=
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Mode-locking of longitudinal modes

In[933]:=

out[937]=

In[938]:=

In[940]:=

Mode-locking parameters:

WO 1= 2% 7xCop/ A€

Aw i=7xc/Lopt (x[us™t]=[MHZ]x)

(xFrequency difference between two subsequent cavity modesx)

wg := 26600 x 10> (* [MHz]*) (*Gain bandwidthx)

Mg := Floor[wg / Aw]

(*The number of supported longitudinal modes for the given gain bandwidthx)
M= Mg

5718

Amplitude of light field in the cavity is calculated as a sum
of the longitudinal modes fields with
equal amplitudes and equidistant frequencies:

AO[t_] :=Sqrt[Intensity[t] /M] (+[MW/cm?]) (xIntensity of the modesx)

Alz_, t_] := AQ[t] * ﬁ (Exp[iAawxmx (t+z/c)] +Exp[iaw*mx (t-2/c)])
m=-M/2
(*Amplitudes of the modes are equal to the
square root of the average intensity in the cavitys)

Intensity in the cavity at time t.;c:

tearc = 2999.5 (% [us]*)

Plot[{Evaluate [Abs[A[z, t]]1"2 /.t > tcaic]}, {2z, ©, Lopt},
PlotRange - {{@, Lopt}, All}, AxesLabel » {"z, cm", "I, MW/cm*"}]

Plot[{Evaluate[Abs[A[z, t]]"2 /. t > teacl}, {2, O, Lopt},
PlotRange » {{16, 18}, All}, AxesLabel -» {"z, cm", "I, MW/cm?"}]
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Time dependence of the intensity in the cavity for z=z ;. :
In943]:= Zeale = Lopt/Z (*[cm] *)
dt := 2Lopt/c (*[us]*) (xCavity round-trip timex)
dtmin = dt/M %10° (x[ps]*) (*Minimal pulse lengthx)
Plot[{Evaluate[Abs[A[z, t]1]1"2 /. {Z - Zcatc, t - tearc +t x1073}]},
{t, e, dt /2 +10%}, PlotRange » {{0.43, 0.44 (xdt/2+10°+)}, All},
AxesLabel - {"t, ns", "I, MA/cm’"}, PlotLegends - Automatic]
out945)- ©0.236213
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Benopycckuii rocynapcTBeHHbII YHUBEPCUTET.
CBUIETETBCTBO O TOCYAAPCTBEHHOU PETUCTPAIINU U3AATesI, U3TOTOBUTEIIS,
pacrpocTpaHuTeNsT TiedaTHbIX u3gaHuii Ne 1/270 ot 03.04.2014.

ITp. HezaBucumoctu, 4, 220030, MuHCK.

PecnybmkaHcKoe yHUTapHOE TIpeAnpuUsiTue
«MHbOPMaMOHHO-BBIYMCIUTEIBHBIN LIEHTP
MuHuctepcTBa huHaHcoB Pecny6iuku benapych».
CBUIETEIBCTBO O FOCYIAPCTBEHHOM perucTpaiiuy u3naTesisi, MU3AroTOBUTEIS,
pacrpocTpaHMUTes TieyaTHbIX u3gaHuii Ne 2/41 ot 29.01.2014.

Vi. KansBapuiickas, 17, 220004, MuHCK.



