БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ

Ректор Белорусского госу дарственного университета

А.Д.Король

(5 июля 2024 г.) Регистрационный №УД-13390/уч.

ИССЛЕДОВАНИЕ ОПЕРАЦИЙ

Учебная программа учреждения образования по учебной дисциплине для специальности:

1-31 03 04 Информатика

Учебная программа составлена на основе образовательного стандарта высшего образования ОСВО 1-31 03 04-2021, учебного плана БГУ: №G31-1-031/уч. от 30.06.2021, № G31-1-021/уч. ин. от 23.07.2021, №G31-1-213/уч. от 22.03.2022.

составители:

А.Н. Исаченко — доцент кафедры информационных систем управления факультета прикладной математики и информатики Белорусского государственного университета, кандидат физико-математических наук, доцент.

РЕЦЕНЗЕНТЫ:

В.В. Карпук – доцент кафедры высшей математики БНТУ, кандидат физикоматематических наук, доцент.

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой информационных систем управления БГУ (протокол № 16 от 23.05.2024).

Научно-методическим Советом БГУ (протокол № 9 от 28.06.2024)

Заведующий кафедрой

В.В. Краснопрошин

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

«Исследование операций» - прикладная математическая дисциплина, которая занимается вопросами обоснования решений по управлению целенаправленными процессами (операциями) в сложных организационных системах. Обоснование решений осуществляется на основе построения математических моделей и их анализа математическими методами и алгоритмами.

Цели и задачи учебной дисциплины

Цель учебной дисциплины «Исследование операций» состоит в формировании у студентов фундаментальных знаний и практических навыков по разработке математических моделей, их классификации и применении в различных предметно-практических областях.

Задачи учебной дисциплины

В рамках поставленной цели задачи учебной дисциплины «Исследование операций», состоят в:

- 1. Освоении студентами принципов и методов операционного исследования;
- 2. Построении основных классов математических моделей для определённых предметных областей, анализ и принятие решений по построенным математическим моделям.

Место учебной дисциплины в системе подготовки специалиста с высшим образованием.

Учебная дисциплина относится к модулю «Математические методы принятия решений» компонента учреждения высшего образования.

Программа составлена с учётом межпредметных связей с учебными дисциплинами.

Дисциплина «Исследование операций» непосредственно связана с дисциплинами: «Методы оптимизации» модуля «Математические методы принятия решений» компонента учреждения высшего образования; «Дискретная математика и математическая логика», «Алгоритмы и структуры данных» модуля «Дискретные структуры и алгоритмы» государственного коипонента.

Знания, полученные по учебной дисциплине «Исследование операций», могут использоваться при изучении дисциплин специализации, при выполнении курсовых и дипломных работ, а также применяться для моделирования и компьютерного решения задач ряда математических дисциплин, изучаемых на старших курсах.

Требования к компетенциям

Освоение учебной дисциплины «Исследование операций» должно обеспечить формирование следующей специализированной компетенции:

- строить и анализировать математические модели для задач принятия оптимальных решений в прикладных областях экономики, обосновывать методы их

теоретического исследования, включающие аппарат математического программирования, теории игр, вариационного исчисления, оптимального управления и упорядочения.

В результате освоения учебной дисциплины студент должен: знать:

- этапы операционного исследования;
- типы задач исследования операций, их особенности и свойства;
- методологию формализации и решения задач исследования операций;
- основные принципы принятия оптимальных решений;
- модели, методы и алгоритмы решения задач исследования операций; **уметь**:
- строить математические модели, представлять их возможности и ограаничения;
- использовать формальные методы при решении задач исследования операций;
- решать практические задачи принятия решений с использованием методов исследования операций;

владеть:

- методикой построения математических моделей для задач организационного управления;
 - математическим аппаратом решения задач исследования операций;
- методами использования программно-информационных средств и приложений для построения математических моделей, анализа и решения задач по управлению целенаправленными процессами.

Структура учебной дисциплины

Дисциплина изучается в 7 семестре. Всего на изучение учебной дисциплины «Исследование операций» отведено:

- для очной формы получения высшего образования - 108 часов, в том числе 68 аудиторных часов, из них: лекций - 34 часа, лабораторных работ - 30 часа, управляемая самостоятельная работа (УСР) - 4 часа.

Трудоемкость учебной дисциплины составляет 3 зачетные единицы. Форма промежуточной аттестации – экзамен.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Раздел 1. Предмет и методология исследования операций.

Тема 1.1. Введение.

Основные определения. История дисциплины «Исследование операций». Этапы операционного исследования. Классификация математиечских моделей. Примеры математических моделей.

Раздел 2. Неопределённости в исследовании операций.

Тема 2.1. Принятие решений в условиях неопределённости.

Типы неопределённостей в исследовании операций. Способы преодоления неопределенностей. Сужение неопределённостей. Экспертное оценивание. Методы экспертных оценок. Моделирование сложных систем. Системный подход в операционном исследовании. Декомпозиция. Критерии оптимальности декомпозиции.

Раздел 3. Теория игр.

Тема 3.1. Основные понятия теории игр.

Определение игры как модели конфликтной ситуации. Классификация игр.

Тема 3.2. Антагонистические конечные игры.

Матричные игры. Верхнее и нижнее значение игры. Седловая точка. Разрешимость в чистых стратегиях. Бесконечные антагонистические игры. Смешанные стратегии. Теорема Фон-Неймана. Свойства оптимальных смешанных стратегий. Доминирование стратегий. Связь матричных игр с линейным программированием. Графоаналитический метод решения матричных игр. Приближенный метод решения матричных игр (метод Брауна-Робинсона). Игры с природой, критерии для определения оптимальности стратегий игрока.

Тема 3.3. Конечные бескоалиционные игры.

Бескоалиционные игры, биматричные игры. Определение равновесия по Нэшу. Теорема Нэша. Критерий оптимальности, поиск решения конечной бескоалиционной игры.

Тема 3.4. Конечные позиционные игры.

Определение позиционной игры. Информационные множества. Игра с полной информацией. Основная теорема позиционных игр.

Тема 3.5. Кооперативные игры.

Характеристическая функция. Дележ кооперативной игры. Стратегически эквивалентные игры. Редуцированная форма игры. С-ядро и H-M-решение кооперативной игры. Значение игры по Шепли.

Раздел 4. Сетевые модели

Тема 4.1. Основные понятия теории сетей.

Определение сети. Виды сетей. Представления сетей. Сетевой анализ.

Тема 4.2. Остовные деревья.

Задача о максимальном остовном дереве. Алгоритмы Крускала, Прима, Борувки.

Тема 4.3. Кратчайшие пути.

Постановка задачи о кратчайших путях. Алгоритмы Дейкстри, Форда-Беллмана, Флойда. Задача о кратчайшем пути со штрафами за повороты.

Тема 4.4. Стационарные потоки в сетях.

Определение стационарного потока. Максимальный поток и минимальный разрез. Теорема и алгоритм Форда-Фалкерсона. Задача о многополюсном максимальном потоке. Алгоритм Гомори-Ху. Задача о многополюсных путях с максимальными пропускными способностями, алгоритм решения. Потоки минимальной стоимости. Алгоритмы Басакера-Гоуна, Клейна.

Тема 4.5. Задача о назначении.

Классическая задача о назначении. Задача о назначении на узкие места. Максимальное парасочетание. Алгоритм Кёнига-Эгервари.

Тема 4.6. Задача коммивояжера.

Общая схема метода ветвей и границ. Алгоритм Литтла.

Тема 4.7. Методы управления проектами.

Сетевые графики и их параметры. Линейные диаграммы. Задача распределения ресурсов на сетях. Задачи сетевого планирования при взаимодействии ресурсов. Вероятностные сети.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ

Очная (дневная) форма получения высшего образования с применением дистанционных образовательных технологий (ДОТ)

		Количество аудиторных часов						
Номер раздела, темы	Название раздела, темы	Лекции	Практические занятия	Семинарские занятия	Лабораторные занятия	Иное	Количество часов УСР	Форма контроля
1	2	3	4	5	6	7	8	9
1	Предмет и методология исследования операций.	2						
1.1	Введение.	2						
2	Неопределённости в исследовании операций.	4			4			
2.1	Принятие решений в условиях неопределённости.	4			4			Контрольная работа №1
3	Теория игр.	12			10		2	
3.1	Основные понятия теории игр.	1						
3.2	Антагонистические конечные игры.	4			2		2	Устный опрос в начале лекции. Проверка лабораторных работ
3.3	Конечные бескоалиционные игры.	2			2			Устный опрос в начале лекции. Проверка лабораторных работ

3.4	Конечные позиционные игры.	2	2		Устный опрос в начале лекции. Проверка лабораторных работ
3.5	Кооперативные игры.	3	4		Контрольная работа №2
4	Сетевые модели.	16	16	2	
4.1	Основные понятия теории сетей.	1			
4.2	Остовные деревья.	1	1		Устный опрос в начале лекции. Проверка лабораторных работ
4.3	Кратчайшие пути.	2	2		Устный опрос в начале лекции. Проверка лабораторных работ
4.4	Стационарные потоки в сетях.	4	4		Контрольная работа №3
4.5	Задача о назначении.	2	3	2	Устный опрос в начале лекции. Проверка лабораторных работ
4.6	Задача коммивояжера.	3	2		Устный опрос в начале лекции. Проверка лабораторных работ
4.7	Методы управления проектами.	3	4		Контрольная работа №4

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Основная литература

- 1. Катаргин, Н. В. Сетевые модели в задачах экономики : учебник / Н. В. Катаргин, В. П. Невежин. Санкт-Петербург ; Москва ; Краснодар : Лань, 2020. 168 с. URL: https://e.lanbook.com/book/126936.
- 2. Мазалов, В. В. Математическая теория игр и приложения : учебное пособие [для вузов] / В. В. Мазалов. Изд. 6-е, стер. Санкт-Петербург ; Москва ; Краснодар : Лань, 2024. 496 с.
- 3. Хуторецкий, А. Б. Математические модели и методы исследования операций: учебное пособие для вузов / А. Б. Хуторецкий, А. А. Горюшкин Санкт-Петербург: Лань, 2024. 204 с.
- 4. Исследование операций в экономике: учебник для вузов / под редакцией Н. Ш. Кремера. 4-е изд., перераб. и доп. М.: Юрайт, 2024. 414 с.

Дополнительная литература

- 1. Таха, Хемди А. Исследование операций, 10-е издание / Хемди А. Таха М.: Диалектика (Вильямс), 2019 1056 с.
- 2. Костров, Б. В., Ручкин В. Н. Исследование операций: учебник / Б. В. Костров, В. Н. Ручкин М. : Курс, 2023 176 с.
- 3. Hillier Frederick S., Liberman Gerald J. Introduction To Operations Research eleventh edition / Frederick S. Hiller, Gerald J. Liberman N.Y.: McGraw-Hill Education, 2021 949 p.
- 4. Winston Wayne L. Operations Research: Application and Algorithms fourth edition / Wayne L. Winston N.Y.: Cengage Learning, 2022 1440 p.

Перечень рекомендуемых средств диагностики и методика формирования итоговой отметки

Для диагностики компетенций в рамках учебной дисциплины рекомендуется использовать следующие формы:

1. Письменная форма: контрольные работы.

В качестве рекомендуемых технических средств диагностики используется обучение, организованное на платформе Moodle (https://edufpmi.bsu.by).

Формой промежуточной аттестации по дисциплине учебным планом предусмотрен экзамен.

Для формирования итоговой отметки по учебной дисциплине используется модульно-рейтинговая система оценки знаний студента, дающая возможность проследить и оценить динамику процесса достижения целей обучения. Рейтинговая

система предусматривает использование весовых коэффициентов для текущей и промежуточной аттестации студентов по учебной дисциплине.

Формирование итоговой отметки В ходе проведения контрольных текущей мероприятий коэффициенты, аттестации (примерные весовые определяющие вклад текущей аттестации отметку при прохождении В промежуточной аттестации):

- ответы на опросы 10%;
- проверка лабораторных работ 20%;
- контрольные работы 70 %.

Итоговая отметка по дисциплине рассчитывается на основе итоговой отметки текущей аттестации (модульно-рейтинговой системы оценки знаний) 40% и экзаменационной отметки 60 %.

Примерный перечень заданий для управляемой самостоятельной работы студентов

Тема 3.2. Антагонистические конечные игры. (2 часа).

Точные методы решения антагонистических конечных игр. Приближённые методы решения антагонистических конечных игр.

Найти точное и приближённое решения антагонистической игры.

Форма контроля – устный опрос в начале лекции, проверка лабораторных работ.

Тема 4.5. Задача о назначении (2 часа).

Алгоритм основанный на алгортме Форда-Фалкерсонв. Алгоритм с использованием алгоритма Кёнига-Эгервари.

Привести два варианта решения задачи о назначении.

Форма контроля — устный опрос в начале лекции, проверка лабораторных работ.

Примерный перечень лабораторных занятий

- 1. Неопределённости цели в исследовании операций. Способы её преодоления.
- 2. Принятие решений в условиях неопределённости. Сужение неопределённостей.
 - 3. Антагонистические конечные игры.
 - 4. Конечные бескоалиционные игры.
 - 5. Конечные позиционные игры.
- 6. Кооперативные игры. Характеристическая функция. Дележ кооперативной игры. Редуцированная форма игры.
- 7. Кооперативные игры. С-ядро, H-M-решение кооперативной игры. Значение игры по Шепли.

- 8. Задача о максимальном остовном дереве. Алгоритмы Крускала, Прима, Борувки.
- 9. Кратчайшие пути. Алгоритмы Дейкстри, Форда-Беллмана, Флойда. Задача о кратчайшем пути со штрафами за повороты.
- 10. Максимальный поток и минимальный разрез. Теорема и алгоритм Форда-Фалкерсона.
- 11. Задача о многополюсном максимальном потоке. Алгоритм Гомори-Ху. Задача о многополюсных путях с максимальными пропускными способностями,
 - 12. Потоки минимальной стоимости. Алгоритмы Басакера-Гоуна, Клейна.
 - 13. Классическая задача о назначении. Задача о назначении на узкие места.
 - 14. Задача коммивояжера.
 - 15. Методы управления проектами

Описание инновационных подходов и методов к преподаванию учебной дисциплины

При организации образовательного процесса используются следующие методы:

-*метод группового обучения*, который представляет собой форму организации учебно-познавательной деятельности обучающихся, предполагающую функционирование разных типов малых групп, работающих как над общими, так и специфическими учебными заданиями.

В качестве технических средств для организации работы в рамках учебной дисциплины рекомендуется использовать Образовательный портал БГУ (https://edufpmi.bsu.by) – инструмент с эффективной функциональностью контроля, тренинга и самостоятельной работы.

- практико-ориентированный подход, который предполагает освоение содержания образования через решения практических задач; приобретение навыков эффективного выполнения разных видов профессиональной деятельности; ориентацию на генерирование идей, реализацию групповых студенческих проектов; использование процедур, способов оценивания, фиксирующих профессиональные компетенции.

Методические рекомендации по организации самостоятельной работы обучающихся

Для организации самостоятельной работы студентов по учебной дисциплине следует использовать современные информационные ресурсы: разместить на образовательном портале комплекс учебных и учебно-методических материалов (учебно-программные материалы, учебное издание для теоретического изучения дисциплины, методические указания к лабораторным занятиям, материалы

текущего контроля и текущей аттестации, позволяющие определить соответствие учебной деятельности обучающихся требованиям образовательных стандартов высшего образования и учебно-программной документации, в том числе вопросы для подготовки к зачету, задания, тесты, вопросы для самоконтроля и др., список рекомендуемой литературы, информационных ресурсов и др.).

Примерный перечень вопросов к экзамену

- 1. Предмет «Исследование операций».
- 2. Методология операционного исследования.
- 3. Неопределённость целей в задачах ИСО и способы её преодоления.
- 4. Сужение неопределённости. Множество Парето.
- 5. Метод экспертных оценок. Отбор экспертов.
- 6. Метод непосредственного ранжирования.
- 7. Метод парных сравнений.
- 8. Задачи теории игр. Общие понятия. Формальное определение игры.
- 9. Антагонистическая конечная игра. Верхнее и нижнее значение игры. Разрешимость в чистых стратегиях.
- 10. Антагонистическая бесконечная игра. Верхнее и нижнее значение игры. Седловая точка и оптимальная стратегия.
 - 11. Смешанные стратегии. Теорема Фон-Неймана (формулировка).
 - 12. Лемма об отделимости (формулировка и доказателство).
 - 13. Лемма об альтернативах (формулировка и доказательство).
 - 14. Теорема Фон-Неймана (формулировка и доказательство).
- 15. Свойства оптимальных смешанных стратегий и значения игры матричных игр.
 - 16. Матричные игры. Доминирование стратегий.
 - 17. Связь матричной игры с задачей линейного программирования.
 - 18. Графоаналитический метод решения матричных игр 2хп и mx2.
 - 19. Приближённый метод решения матричных игр.
 - 20. Игры с природой.
- 21. Конечные бескоалиционные игры. Ситуация равновесия. Теорема Нэша (формулировка).
- 22. Теорема о существовании чистой стратегии (формулировка и доказательство). Критерий ситуации равновесия (формулировка и доказательство). Теорема Брауна (формулировка).
 - 23. Теорема Неша (доказательство).
 - 24. Позиционные игры. Игра с полной информацией.
 - 25. Кооперативные игры. Характеристическая функция.
 - 26. Кооперативная игра в редуцированной форме.
 - 27. С-ядро и Н-М-решение кооперативной игры.

- 28. Задача о минимальном оствном дереве. Алгоритмы Крускала, Прима, Борувки.
 - 29. Задача о кратчайшем пути. Алгоритм Дейкстры.
 - 30. Задача о кратчайшем пути. Алгоритм Форда-Беллмана.
 - 31. Матричный алгоритм Флойда поиска кратчайших расстояний.
- 32. Задача о максимальном потоке. Теорема о максимальный потоке и минимальном разрезе.
 - 33. Алгоритм Форда-Фалкерсона поиска максимального потока.
 - 34. Многополюсная задача о максимальном потоке. Алгоритм Гомори-Ху.
- 35. Задача о многополюсной цепи с максимальной пропускной способностью.
 - 36. Задача о назначении. Алгоритм решения.
 - 37. Задача о назначении на узкие места.
- 38. Задача о максимальном паросочетании в двудольном графе. Алгоритм Кёнига-Эгервари построения ММНДК.
 - 39. Задача коммивояжёра. Алгоритм Литтла.
 - 40. Сетевые графики, способы их построения
- 41. Сетевой график «дуга-работа». Определение временных характеристик сетевых графиков.
- 42. Сетевой график «вершина-работа». Определение временных характеристик сетевых графиков.
 - 43. Линейные диаграммы.
 - 44. Задача управления проектами при наличии ограниченных ресурсов.

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ УО

Название учебной дисциплины, с которой требуется согласование	Название кафедры	Предложения об изменениях в содержании учебной программы учреждения высшего образования по учебной дисциплине	Решение, принятое кафедрой, разработавшей учебную программу (с указанием даты и номера протокола)
Учебная дисциплина не требует согласования			

Заведующий кафедрой

В.В. Краснопрошин

23.05.2024

ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ К УЧЕБНОЙ ПРОГРАММЕ ПО ИЗУЧАЕМОЙ УЧЕБНОЙ ДИСЦИПЛИНЕ

на	/ учебный год

№ п/п	Дополнения и изменения	Основание
Учебна	я программа пересмотрена и одобрена	
	(протокол же (протокол же	2 от 202_ г.)
Заведуі	ющий кафедрой	
(ученая с	степень, ученое звание)	(И.О.Фамилия)
УТВЕРЖ		
Декан ф	акультета	
(ученая с	тепень, ученое звание)	(И.О.Фамилия)