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In the one-photon exchange approximation, we analyze polarization effects in the elastic e⃗ p⃗ → ep and
ep⃗ → e⃗p processes in the case when the spin quantization axes of a target proton at rest and an incident or
scattered electron are parallel. To do this, in the kinematics of the SANE Collaboration experiment [A.
Liyanage et al., Phys. Rev. C 101, 035206 (2020)] using the J. Kelly [Phys. Rev. C 70, 068202 (2004)] and
I. Qattan et al. [Phys. Rev. C 91, 065203 (2015)] parametrizations for the Sachs form-factor ratio
R≡ μpGE=GM, a numerical analysis was carried out of the dependence of the longitudinal polarization
degree transferred to the scattered electron in the ep⃗ → e⃗p process and double-spin asymmetry in the
e⃗ p⃗ → ep process on the square of the momentum transferred to the proton, as well as on the scattering
angle of the electron. It is established that the difference in the longitudinal polarization degree of the
scattered electron in the ep⃗ → e⃗p process in the cases of conservation and violation of the scaling of the
Sachs form factors can reach 70%. This fact can be used to set up polarization experiments of a new type to
measure the ratio R. For double-spin asymmetry in the e⃗ p⃗ → ep process, the corresponding difference
does not exceed 2.32%. This fact means that it is not sensitive to the effects of the Sachs form-factor scaling
violation and could be used as a test for the R ≈ 1 equality.

DOI: 10.1103/PhysRevD.110.096017

I. INTRODUCTION

Experiments on the study of electric GE and magnetic
GM proton form factors, the so-called Sachs form factors
(SFFs), have been performed since the mid-1950s in the
elastic process of electron-proton scattering [1]. In the case
of unpolarized electrons and protons, all experimental data
on the behavior of the SFFs were obtained with the help of
the Rosenbluth technique (RT) based on the Rosenbluth
formula for the differential cross section for the ep → ep
process in the rest frame of the initial proton [2]—that is,
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: ð1Þ

Here, τp ¼ Q2=4m2; Q2 ¼ 4E1E2 sin2ðθe=2Þ is the square
of the 4-momentum transferred to the proton;m is the mass
of the proton; E1, E2 are the energies of the initial and final
electrons; θe is the electron scattering angle; ε ¼ ½1þ
2ð1þ τpÞ tan2ðθe=2Þ�−1 is the degree of linear (transverse)
polarization of the virtual photon [3–6]; and α ¼ 1=137 is
the fine structure constant. Expression (1) was obtained in
the one-photon exchange (OPE) approximation, and the
electron mass was set to zero.
With the help of the RT, the dipole dependence of the

SFFs on the momentum transferred to the proton square
Q2 in the region Q2 ≤ 6 GeV2 was established (see
Ref. [7] for an exhaustive review). As it turned out, these
measurements indicate approximate form-factor scaling—
i.e., μpGE=GM ≈ 1, where μp ¼ 2.79 is the magnetic
moment of the proton.
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Akhiezer and Rekalo [4] proposed a method for meas-
uring the R≡ μpGE=GM ratio based on the phenomenon of
polarization transfer from the initial electron to the final
proton in the e⃗p → ep⃗ process (later, this method was
generalized in Ref. [8]). Precision JLab experiments [9–11],
using this method, found a fairly rapid decrease in the ratio
of R with an increase inQ2, which indicates the violation of
the dipole dependence over the transferred momentum
square Q2. In the range 0.4 GeV2 ≤ Q2 ≤ 5.6 GeV2, as
it turned out, this decrease is linear. Next, more accurate
measurements of the ratio R carried out in [12–16] in a wide
area in Q2 up to 8.5 GeV2, using both the Akhiezer-Rekalo
(AR) method [4] and the RT [16], only confirmed the
discrepancy of the results.
In the SANE Collaboration experiment [17], the values

of R have been measured for the elastic e⃗ p⃗ → ep process
by the third method [18] using double-spin asymmetry
for target spin orientation aligned nearly perpendicular to
the beam momentum direction in the case when the
electron beam and the proton target are partially polarized.
The degree of polarization of the proton target was
Pt ¼ ð70� 5Þ%. The experiment was performed at two
electron beam energies E1, 4.725 and 5.895 GeV, and
two Q2 values, 2.06 GeV2 and 5.66 GeV2. The extracted
values of R in [17] are consistent with the results in
Refs. [9–15].
Currently, the most precise measurements of the proton

FFs at low momentum transfer, and of its charge and
magnetic radii, were performed by the A1 Collaboration at
MAMI, Mainz [19–21]. Cross sections were measured at
1422 kinematic settings, covering a Q2 range from 0.004 to
1.0 GeV2 with an average point-to-point systematic error of
0.37% [19–21]. With this large dataset, the authors extracted
GE and GM by a direct fit of form-factor models to cross-
section data, rather than the traditional Rosenbluth separa-
tion technique. The results of the fits reconcile with a classic
Rosenbluth separation within error estimations.
Thus, while the Rosenbluth data are compatible with the

scaling relation prediction, polarized experiments yield
data with a linear, downward trend. The most commonly
proposed explanation for this discrepancy are “hard” two-
photon exchange (TPE) contributions beyond the standard
radiative corrections to OPE [22–24]. Note that the recent
TPE experiments [25–29] show little evidence for signifi-
cant contributions beyond OPE up to Q2 ≈ 2.3 GeV2 [30].
To determine whether “hard” TPE contributions could
explain the form-factor discrepancy, one needs new mea-
surements at higher Q2.
The presence of a polarized proton target with a high

degree of polarization motivates the study of polarization
effects (including double-spin correlations) in the processes
such as ep⃗ → ep⃗, ep⃗ → e⃗p, e⃗ p⃗ → ep in order to find
possibilities for setting up polarization experiments of a
new type for measuring the elastic proton form factors.

In Refs. [31–36], in the OPE approximation, polarization
effects in the elastic ep⃗ → ep⃗ process were investigated in
the case when the spins of the initial and of the detected
recoil proton are parallel—i.e., when a proton is scattered in
the direction of the spin quantization axis of the rest proton
target. To do this, in the kinematics of the SANE
Collaboration experiment [17] on measuring double-spin
asymmetry in the e⃗ p⃗ → ep process, using the Kelly [37]
and Qattan [38] parametrizations for the R ratio, a numeri-
cal analysis was carried out of the dependence of the
longitudinal polarization degree of the scattered proton on
the square of the momentum transferred to the proton, as
well as on the scattering angles of the electron and proton.
In this case, a noticeable sensitivity of the polarization
transferred to the proton to the type of dependence of the
ratio R on Q2 was established, and it was also shown that
the violation of the scaling of the SFFs leads to a significant
increase in the magnitude of the polarization transfer to the
proton, as compared to the case of the dipole dependence.
Thus, in Refs. [31–36], the fourth method for measuring the
ratio of R was proposed, based on the transfer of polari-
zation from the initial proton to the final one in the ep⃗ →
ep⃗ process in the case where their spins are parallel. This
method also works in the TPE approximation and allows us
to measure the squares of the modules of generalized
SFFs [33].
Note that Akhiezer and Rekalo (see [5], pp. 211–215)

also performed a general calculation of the ep⃗ → ep⃗ cross
section in the Breit system for partially polarized initial and
final protons. However, they analyzed this cross section
in [5] by analogy with [4] and overlooked a more interesting
case, which was discussed in Refs. [31–36].
In our recent short paper [39], the fifth method of

measuring the ratio R was proposed, based on the transfer
of polarization from the initial proton to the final electron in
the elastic ep⃗ → e⃗p process in the case where the spin
quantization axes of the resting proton target and the
scattered electron are parallel—i.e., when the electron is
scattered in the direction of the spin quantization axis of the
resting proton target.
In Refs. [34–36,39], we utilize two commonly used

parametrizations of the SFFs. First, Kelly parametri-
zation [37] (and similar ones [40–42]) is based on a
mix of cross section and polarization data, but without the
TPE corrections. Second, Qattan parametrization [38] (see
also [43]) includes phenomenological TPE corrections
extracted from the difference between Rosenbluth and
polarization measurements. Although there exist more
modern and sophisticated fits to proton data [44,45], we
restricted our calculations to these two, as it shows
negligible differences in our results from different types
of parametrizations.
The aim of this article is to give a more detailed view of

the results of the work [39], as well as to investigate the
double-spin asymmetry in the e⃗ p⃗ → ep process in the case
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of parallel spins of the initial electron and proton. To do
this, in the kinematics of the SANE Collaboration experi-
ment [17] using the Kelly [37] and Qattan [38] para-
metrizations for the SFF ratio R, a numerical analysis was
carried out of the dependence of the longitudinal polari-
zation degree transferred to the scattered electron in the
ep⃗ → e⃗p process and the double-spin asymmetry in the
e⃗ p⃗ → ep process on the square of the momentum trans-
ferred to the proton, as well as on the scattering angle of the
electron.

II. HELICITY AND DIAGONAL SPIN BASES

The spin 4-vector s ¼ ðs0; sÞ of the fermion with 4-
momentum p (p2 ¼ m2) satisfying the conditions of
orthogonality and normalization is given by

s ¼ ðs0; sÞ; s0 ¼
cp
m

; s ¼ cþ ðcpÞp
mðp0 þmÞ ; ð2Þ

where c is the spin quantization axis (c2 ¼ 1).
The expressions in Eq. (2) allow us to determine the spin

4-vector s ¼ ðs0; sÞ by a given 4-momentum p ¼ ðp0; pÞ
and 3-vector c. On the contrary, if the 4-vector s is known,
then the spin quantization axis c is given by

c ¼ s −
s0

p0 þm
p; ð3Þ

i.e., the vectors c and s at a given p uniquely define
each other.
For the calculation of polarization effects in high-energy

physics processes, one usually utilizes helicity basis,
introduced by Jacob and Wick [46], in which the spin
quantization axis c is directed along the momentum of the
particle

c ¼ n ¼ p=jpj;

while the spin 4-vector s (2) reads

s ¼ ðs0; sÞ ¼ ðjvj; v0nÞ;

where v0 and v are the time and space components of the
4-velocity vector v ¼ p=m (v2 ¼ 1).
The popularity of the helicity basis is primarily due to the

simplicity of the physical interpretation of the helicity
definition (projection of the spin in the direction of the
particle momentum), and its emphasis on the center-of-
mass system. At the same time, studying the helicities of
moving particles is analogous to the study of the spins of
particles at rest [47,48]. However, there are several impor-
tant factors which prevent helicity from playing the
dominant role in describing the spin projection of particles.
One is that helicity is not a particle characteristic that is
invariant under the Lorentz transformation [47–50]. In

interpreting the dynamics of spin interaction, the ampli-
tudes of scattering processes with and without changing the
sign of the particle helicity are often referred to as
amplitudes with and without a spin flip. However, since
the particle momentum is changed by the interaction, it is
clear that such a classification is very arbitrary. Both types
of amplitudes actually describe a process with a change in
the particle spin state.
In general, for a system of two particles with different

4-momenta q1 ¼ ðq10; q1Þ (before interaction) and q2 ¼
ðq20; q2Þ (after interaction), the possibility of the quantiza-
tion of spins in one common direction, including the case
where particles have different masses, is determined by the
three-dimensional vector given by [47]

a ¼ q2=q20 − q1=q10: ð4Þ

Since the common spin quantization axis [Eq. (4)] defines
the spin basis apart from the helicity basis and is the
difference of two three-dimensional vectors, the geometric
image of which is the diagonal of a parallelogram, it is
natural to call it the diagonal spin basis (DSB). For the first
time, in a four-dimensional covariant form, the DSB was
constructed in Ref. [51] in the process

eðp1Þ þ pðq1; sp1
Þ → eðp2Þ þ pðq2; sp2

Þ: ð5Þ

In it, the spin 4-vectors of the initial and final protons sp1

and sp2
are expressed in terms of their 4-momenta q1 and q2

(q21 ¼ q22 ¼ m2) [51]:

sp1
¼ m2q2 − ðq1q2Þq1

m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq1q2Þ2 −m4

p ;

sp2
¼ ðq1q2Þq2 −m2q1

m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq1q2Þ2 −m4

p : ð6Þ

In the laboratory frame (LF), where the initial proton
rests, q1 ¼ ðm; 0Þ, the spin 4-vectors [Eq. (6)] read

sp1
¼ ð0;n2Þ; sp2

¼ ðjv2j; v20n2Þ; ð7Þ

where n2 ¼ q2=jq2j, v2 ¼ ðv20;v2Þ ¼ q2=m is the velocity
vector of the final proton, v22 ¼ 1.
Using the explicit form of the spin 4-vectors in Eq. (7)

and formulas (3) or (4), it is easy to verify that the spin
quantization axes of the initial and final proton in the LF
coincide with the direction of the final proton momentum:

c ¼ cp1
¼ cp2

¼ n2 ¼ q2=jq2j: ð8Þ

In the ultrarelativistic limit, when the masses of protons
can be neglected—i.e. at q10; q20 ≫ m—the spin 4-vectors
sp1

and sp2
[Eq. (6)] read
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sp1
¼ −

q1
m

; sp2
¼ q2

m
: ð9Þ

Let us turn to the consideration of the electron-proton
scattering ep⃗ → e⃗p process in the case where the initial
proton and the final electron are polarized:

eðp1Þ þ pðq1; sp1
Þ → eðp2; se2Þ þ pðq2Þ; ð10Þ

where p1, p2 are the 4-momenta of the initial and final
electrons (p2

1 ¼ p2
2 ¼ m2

0).
For the process under consideration [Eq. (10)], we define

the common spin quantization axis a and the spin 4-vectors
of the initial proton and the final electron, sp1

and se2 , as
follows:

a ¼ p2=p20 − q1=q10; ð11Þ

sp1
¼ m2p2 − ðq1p2Þq1

m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq1p2Þ2 −m2m2

0

p ;

se2 ¼
ðq1p2Þp2 −m2

0q1
m0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðq1p2Þ2 −m2m2
0

p : ð12Þ

In the LF, the spin 4-vectors [Eq. (12)] read

sp1
¼ ð0; ne2Þ; se2 ¼ ðjve2 j; ve20ne2Þ; ð13Þ

where ne2 ¼ p2=jp2j, ve2 ¼ ðve20 ;ve2Þ ¼ p2=m0 is the
velocity of the final electron, and v2e2 ¼ 1.
Using the explicit form of the spin 4-vectors in Eq. (13)

and formulas (3) or (11), it is easy to verify that the spin
quantization axes of the initial proton cp1

and the final
electron ce2 in the LF coincide with the direction of the final
electron momentum:

c ¼ cp1
¼ ce2 ¼ ne2 ¼ p2=jp2j: ð14Þ

In the ultrarelativistic limit, when the electron mass can
be neglected—i.e., at p10; p20 ≫ m0—the spin 4-vectors
[Eq. (12)] read

sp1
¼ m2p2 − ðq1p2Þq1

mðq1p2Þ
; se2 ¼

p2

m0

: ð15Þ

Similarly, in the case where the initial electron and
proton are polarized in the ep scattering process,

eðp1; se1Þ þ pðq1; sp1
Þ → eðp2Þ þ pðq2Þ; ð16Þ

the common spin quantization axis a and spin 4-vectors of
the initial electron and the proton se1 and sp1

are defined as
follows:

a ¼ p1=p10 − q1=q10; ð17Þ

se1 ¼
ðq1p1Þp1 −m2

0q1
m0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq1p1Þ2 −m2m2

0

p ;

sp1
¼ m2p1 − ðq1p1Þq1

m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðq1p1Þ2 −m2m2

0

p : ð18Þ

Again, in the LF, the spin 4-vectors [Eq. (18)] read

sp1
¼ ð0; ne1Þ; se1 ¼ ðjve1 j; ve10ne1Þ; ð19Þ

where ne1 ¼ p1=jp1j, ve1 ¼ ðve10 ;ve1Þ ¼ p1=m0 is the
velocity of the initial electron, and v2e1 ¼ 1.
Using the explicit form of the spin 4-vectors in Eq. (19)

and formulas (3) or (17), it is easy to verify that the spin
quantization axes of the initial proton cp1

and electron ce1 in
the LF coincide with the direction of the initial electron
momentum:

c ¼ ce1 ¼ cp1
¼ ne1 ¼ p1=jp1j: ð20Þ

In the ultrarelativistic limit, when the electron mass can
be neglected—i.e., at p10; p20 ≫ m0—the spin 4-vectors
[Eq. (18)] read

se1 ¼
p1

m0

; sp1
¼ m2p1 − ðq1p1Þq1

mðq1p1Þ
: ð21Þ

Thus, in this section, three DSBs corresponding to the
ep⃗ → ep⃗, ep⃗ → e⃗p, and e⃗ p⃗ → ep processes are built, of
which the last two are considered here for the first time.
The fundamental fact that the Lorentz little group

common to a system of two particles with different
momenta is realized in the DSB leads to a number of
remarkable consequences. First, in this basis, particles
before and after interaction in the scattering channel have
common spin operators [51,52], which allows one to
covariantly separate interactions with and without changing
of the spin states of the particles involved in the reaction,
making it possible to trace the dynamics of the spin
interaction. Second, in the DSB, the mathematical structure
of the amplitudes is maximally simplified owing to the
coincidence of the particle spin operators, the separation of
Wigner rotations from the amplitudes [51,52], and the
decrease in the number of independent scalar products of
4-vectors that characterize the reaction. Third, in the DSB,
the spin states of massless particles coincide up to the sign
with the helicity states; see Eq. (9).

III. KINEMATICS AND VARIABLES USED

The differential cross sections of the processes (5), (10),
and (16) calculated in the DSB can in principle contain only
dot products of the particles’ 4-momenta pipj, piqj, qiqj
ði; j ¼ 1; 2Þ involved in reactions. A further significant
simplification of expressions can be achieved by moving
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from the 4-vectors pi, qi to the 4-vectors p� ¼
p2 � p1; q� ¼ q2 � q1. These satisfy the orthogonal con-
ditions p�p∓ ¼ q�q∓ ¼ p�q∓ ¼ 0 and the following
simple relations:

p2þ þ p2
− ¼ 4m2

0; q2þ þ q2− ¼ 4m2;

q2þ ¼ 4m2ð1þ τpÞ; τp ¼ −q2−=4m2: ð22Þ

In terms of p�, q� the 4-vectors of pi, qj are

p1 ¼ ðpþ − p−Þ=2; p2 ¼ ðpþ þ p−Þ=2;
q1 ¼ ðqþ − q−Þ=2; q2 ¼ ðqþ þ q−Þ=2:

Let us introduce the orthonormal vector basis (tetrad) bA
(A ¼ 0; 1; 2; 3):

b0 ¼
qþffiffiffiffiffiffi
q2þ

p ; b3 ¼
q−ffiffiffiffiffiffiffiffiffi
−q2−

p ;

ðb2Þμ ¼ εμνκσqν1q
κ
2r

σ=ρ; ðb1Þμ ¼ εμνκσbν0b
κ
3b

σ
2; ð23Þ

where εμνκσ is the Levi-Civita tensor (ε1230 ¼ 1), r is the 4-
momentum of the particle involved in the reaction which is
different from q1 and q2, and ρ is determined from the
normalization conditions

b20 ¼ −b21 ¼ −b22 ¼ −b23 ¼ 1:

The completeness relation is valid for the tetrad of the 4-
vectors bA [Eq. (23)]:

b0μb0ν − b1μb1ν − b2μb2ν − b3μb3ν ¼ gμν; ð24Þ

where gμν is the metric tensor in the Minkowski space,
which is naturally divided into the sum of the longitudinal
and transverse parts:

gμν ¼ gkμν þ g⊥μν;

gkμν ¼ b0μb0ν − b3μb3ν;

g⊥μν ¼ −b1μb1ν − b2μb2ν:

For the transverse part of the metric tensor, we have

g⊥μν ¼ gμν − gkμν:

In terms of ðq�Þμ, ðq�Þν, the tensor g⊥μν has the form

g⊥μν ¼ gμν −
ðqþÞμðqþÞν

q2þ
þ ðq−Þμðq−Þν

−q2−
: ð25Þ

For calculations, we also use the Mandelstam variables

s¼ ðp1þq1Þ2; t¼ ðq2−q1Þ2; u¼ ðq2 −p1Þ2 ð26Þ

with the standard connection equation

sþ tþ u ¼ 2m2
0 þ 2m2:

By reversing the relation in Eq. (26), for scalar products in
terms of s, t, u, we have

2p1q1 ¼ 2p2q2 ¼ s −m2
0 −m2;

2p1q2 ¼ 2p2q1 ¼ m2
0 þm2 − u;

2p1p2 ¼ 2m2
0 − t; pþqþ ¼ s − u;

2q1q2 ¼ 2m2 − t; q2þ ¼ 4m2 − t: ð27Þ

A. Ultrarelativistic limit

In the ultrarelativistic limit, when the mass of an electron
can be neglected, for the Mandelstam variables in the LF,
we have

s ¼ m2 þ 2mE1;

−t ¼ Q2 ¼ 4E1E2sin2ðθe=2Þ;
u ¼ m2 − 2mE2;

where θe is the angle between the vectors p1 and p2,
and cosðθeÞ ¼ p1p2=jp1jjp2j.
The energies of the final electron E2 and the proton E2p

are related in the LF with Q2 ¼ −q2− as follows:

E2 ¼ E1 −Q2=2m; E2p ¼ mþQ2=2m: ð28Þ

For the dot products q2þ, pþqþ, and q2−, we have

q2þ ¼ 4m2þ 2mE−; pþqþ ¼ s−u¼ 2mEþ;

q2− ¼−2mE−; E2p ¼mþE−; E� ¼E1�E2: ð29Þ

The dependences of E2 andQ2 on the electron scattering
angle θe in the LF are

E2ðθeÞ ¼
E1

1þ ð2E1=mÞsin2ðθe=2Þ
; ð30Þ

Q2ðθeÞ ¼
4E2

1sin
2ðθe=2Þ

1þ ð2E1=mÞsin2ðθe=2Þ
: ð31Þ

The dependence of E2p and Q2 on the proton scattering
angle θp has the form

E2pðθpÞ ¼ m
ðE1 þmÞ2 þ E2

1cos
2ðθpÞ

ðE1 þmÞ2 − E2
1cos

2ðθpÞ
; ð32Þ

Q2ðθpÞ ¼
4m2E2

1cos
2ðθpÞ

ðE1 þmÞ2 − E2
1cos

2ðθpÞ
; ð33Þ
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where θp is the angle between the vectors p1 and q2,
and cosðθpÞ ¼ p1q2=jp1jjq2j.
The inverse relations between θe, θp and E2, E2p can be

written as

θe ¼ arccos

�
1 −

Q2

2E1E2

�
; ð34Þ

θp ¼ arccos

�
E1 þm
E1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
τp

1þ τp

r �
: ð35Þ

In the elastic ep → ep process, the electron scattering
angle θe changes from 0° to 180°, while Q2 changes in the
range of 0 ≤ Q2 ≤ Q2

max (0 ≤ τp ≤ τmax), where

Q2
max ¼

4ME2
1

ðM þ 2E1Þ
; τmax ¼

E2
1

MðM þ 2E1Þ
: ð36Þ

Let us write the following useful relation:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τmax

1þ τmax

r
¼ E1

M þ E1

: ð37Þ

According to Eq. (31), at θe ¼ 0 we have Q2 ¼ 0
and τp ¼ 0. However, from Eq. (35), it follows that in
this case θp ¼ 90°. In the case of electron backscattering
(θe ¼ 180°), when τp ¼ τmax, it follows from Eqs. (35) and
(37) that θp ¼ 0°. Thus, the electron scattering by an angle
ranging from 0° to 180° (0° ≤ θe ≤ 180°) leads to a change
in the proton scattering angle from 90° to 0°.
The results of calculations of the dependence of the

scattering angles of the electron θe and proton θp on the
square of the momentum transferred to the proton Q2 at
electron beam energies E1 ¼ 4.725 GeV and 5.895 GeV in
the SANE Collaboration experiment [17] are plotted in
Fig. 1. They correspond to the lines labeled θe4, θp4 and
θe5, θp5.
The intersection points of the lines θe4 and θp4 (θe5 and

θp5) in Fig. 1 correspond to the equality θe ¼ θp for some
values Q2 ¼ Q2

ðepÞ. At the same time, Q2
ðepÞ ¼ 3.70 GeV2

for E1 ¼ 4.725 GeV, and Q2
ðepÞ ¼ 4.772 GeV2 for E1 ¼

5.895 GeV. For the corresponding angles, we have θep ¼
30.91° (0.54 rad) and θep ¼ 28.45° (0.50 rad).
The data on the electron and proton scattering angles

(in radians) at electron beam energies E1 ¼ 4.725 and
5.895 GeVand Q2 ¼ 2.06 and 5.66 GeV2 are represented
in Table I, which contains also the values ofQ2

max [Eq. (36)]
for the maximally possible Q2 values at E1 ¼ 4.725 and
5.895 GeV.

IV. POLARIZATION OF A VIRTUAL PHOTON
IN THE ep → ep PROCESS

The ε value entering into the expression for the
Rosenbluth cross section [Eq. (1)] with the range of
variation 0 ≤ ε ≤ 1 in modern literature, as a rule, is
identified not with the degree of linear (transverse) polari-
zation, but with the degree of longitudinal polarization of
the virtual photon. Sometimes it is also referred to as the
polarization parameter, or simply the virtual photon
polarization.
For example, in Ref. [53], ε in the massless case was

interpreted as a degree of the longitudinal polarization in
the OPE approximation. Similar statements have been
made in a number of other works [9,12,14,16,22].
The correct understanding of the physical meaning of the

value ε is quite rare [54–56], but recently the number of
such works has gradually increased—see, for example,
Refs. [57–59].
The most common expression in the literature for ε,

given on the first page, actually contains the dependence on
the electron scattering angle θe in the LF. Expressions for ε
that make it possible to calculate the dependences of the
quantities of interest on, e.g., Q2 or the proton scattering
angle θp, are given by

FIG. 1. Q2 dependence of the scattering angles of the electron
θe and the proton θp (in degrees) at electron beam energies in the
experiment [17]. The lines θe4, θp4 (θe5, θp5) correspond to E1 ¼
4.725 (5.895) GeV.

TABLE I. Electron and proton scattering angles θe and θp
(in radians) in the kinematics of the experiment [17].

E1 (GeV) Q2 (GeV2) θe (rad) θp (rad) Q2
max ðGeVÞ2

5.895 2.06 0.27 0.79 10.247
5.895 5.66 0.59 0.43 10.247
4.725 2.06 0.35 0.76 8.066
4.725 5.66 0.86 0.35 8.066
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ε−1 ¼ 1þ ðE1 − E2Þ2 þ 2ðE1 − E2Þm
2E1E2 − ðE1 − E2Þm

¼ E2
1 þ E2

2 þ ðE1 − E2Þm
2E1E2 − ðE1 − E2Þm

; ð38Þ

where E1 and E2 are the energies of the initial and final
electrons, respectively. Note that Eq. (28) should be used
for E2; it depends explicitly only on Q2. In turn, the Q2

dependence on the angles θe or θp is determined by
Eqs. (31) or (33).
The Q2 dependence of the degree of the linear polari-

zation of the virtual photon, ε [Eq. (38)], at electron beam
energies in the SANE Collaboration experiment [17] is
represented by graphs in Fig. 2.
Figure 3 shows the dependence of the degree of the linear

polarization of the virtual photon, ε [Eq. (38)], on the
scattering angles of the electron θe [Fig. 3(a)] and proton θp
[Fig. 3(b)] for the electron beam energies E1 ¼ 4.725 and
5.895 GeV in the experiment [17].
It follows from Fig. 2 that ε is a function of Q2 and

decreases from 1 to 0. It follows from Fig. 3(a) that in the
case of an electron scattered forward (θe ¼ 0°) when
Q2 ¼ 0, ε ¼ 1. For a backscattered electron (θe ¼ 180°)
when Q2 ¼ Q2

max, ε ¼ 0.
The Q2

max values for the energies E1 ¼ 4.725 and
5.895 GeV are listed in Table I; they amount to 8.066
and 10.247 GeV2, respectively. Specifically at these points,
the lines in Fig. 2 intersect the abscissa axis.

V. POLARIZATION EFFECTS
IN THE ep⃗ → e⃗p PROCESS

A. Differential cross section of the ep⃗ → e⃗p process

In the OPE approximation, the matrix elements of the
process ep → ep are the product of the electron ðJeÞ and

proton currents ðJpÞ

Mep→ep ¼ 4παTep=q2; ð39Þ

Tep ¼ ðJeÞμðJpÞμ: ð40Þ

The lepton ðJeÞμ and proton ðJpÞμ currents read

ðJeÞμ ¼ ūðp2Þγμuðp1Þ;
ðJpÞμ ¼ ūðq2ÞΓμðq2Þuðq1Þ;

Γμðq2Þ ¼ F1γμ þ
F2

4m
ðq̂γμ − γμq̂Þ:

Here, uðpiÞ and uðqiÞ are the bispinors of electrons and
protons with the 4-momenta pi and qi, respectively, where
p2
i ¼ m2

0 and q
2
i ¼ m2, having the properties ūðpiÞuðpiÞ ¼

2m0 and ūðqiÞuðqiÞ ¼ 2m (i ¼ 1; 2); F1 and F2 are the
Dirac and Pauli proton form factors, respectively; q ¼
q− ¼ q2 − q1 is the 4-momentum transferred to the proton;
and q̂ ¼ ðqÞμγμ, where γμ are the Dirac matrices.

FIG. 2. Q2 dependence of the degree of the linear polarization
of the virtual photon, ε [Eq. (38)], for the electron beam energies
used in the experiment [17].

(a)

(b)

FIG. 3. Angular dependence of the degree of the linear
polarization of the virtual photon, ε [Eq. (38)], on the scattering
angles of (a) the electron θe and (b) the proton θp expressed in
degrees for the electron beam energies in the experiment [17].
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It is well known that the SFFs GE and GM could be
expressed in terms of the Dirac and Pauli proton form
factors:

GE ¼ F1 − τpF2; GM ¼ F1 þ F2:

The differential cross section of the process ep → ep
reads

dσep→ep

dt
¼ πα2

λs

jTepj2
t2

; ð41Þ

where λs ¼ ðs − ðmþm0Þ2Þðs − ðm −m0Þ2Þ is Källén’s
function.
In the standard approach [49,50], the calculation of the

squares of the amplitude modules jTepj2 is reduced to the
convolution of the lepton (Lμν) and hadron (Hμν) tensors:

jTepj2 ¼ HμνLμν;

where

Lμν ¼ Trðτe2γμτe1γνÞ; ð42Þ

Hμν ¼ 2Trðτp2
Γμτp1

Γ̄νÞ: ð43Þ

Here, the symbol “Tr” denotes the operation to calculate the
trace from Dirac’s operators, while τei and τpi

(i ¼ 1; 2) are
the polarization density matrices of the initial and final
states of electrons and protons (λp1

and λe2 are the degrees
of polarization of the initial proton and the final electron,
and γ5 is the Dirac matrix):

τe1 ¼ ðp̂1 þm0Þ=2;
τe2 ¼ ðp̂2 þm0Þð1 − λe2γ5ŝe2Þ=2;
τp1

¼ ðq̂1 þmÞð1 − λp1
γ5ŝp1

Þ=2;
τp2

¼ ðq̂2 þmÞ=2: ð44Þ

The lepton tensor Lμν [Eq. (42)] in terms of the 4-vectors
p� has the form

2Lμν ¼pμ
þpνþ−pμ

−pν
−þp2

−gμνþ2im0λe2ε
μνρσðp−Þρðse2Þσ:

In the ultrarelativistic limit, when se2 ¼ p2=m0, it takes
the form

2Lμν ¼ pμ
þpνþ − pμ

−pν
− þ p2

−gμν þ iλe2ε
μνρσðp−ÞρðpþÞσ:

The explicit form of the tensor Hμν [Eq. (43)] is rather
cumbersome; for this reason, we omit it.

The expression for jTepj2 can be written as

2jTepj2 ¼
4m2

q2þ
jTj2:

Since q2þ ¼ 4m2ð1þ τpÞ, the differential cross section of
the process (10) calculated in an arbitrary reference frame
in the DSB (12) takes the form

dσep⃗→e⃗p

dt
¼ πα2

2λsð1þ τpÞ
jTj2
t2

; ð45Þ

jTj2 ¼ I0 þ λp1
λe2I1;

I0 ¼ G2
EY1 þ τpG2

MY2;

I1 ¼ τpðGEGMY3 þG2
MY4Þ; ð46Þ

where λp1
and λe2 are the degrees of polarization of the

initial proton and the final electron; the functions Yi
(i ¼ 1;…4) are given by

Y1 ¼ ðpþqþÞ2 þ q2þq2−;

Y2 ¼ ðpþqþÞ2 − q2þðq2− þ 4m2
0Þ;

−Y3 ¼ 2κ1m2ððpþqþÞ2 þ q2þðq2− − 4m2
0ÞÞz21;

Y4 ¼ 2ðm2pþqþ − κ1q2þÞðκ1pþqþ −m2
0q

2þÞz21;
z1 ¼ ðκ21 −m2m2

0Þ−1=2; κ1 ¼ q1p2: ð47Þ

In the case of arbitrary spin 4-vectors sp1
and se2 , the

expressions for Y3 and Y4 in the cross section (45) are
given by

Y3 ¼ 8m0mðsp1
Þμðg⊥Þμνðse2Þνq2þ;

Y4 ¼ 8m0mðqþsp1
Þðqþse2Þ: ð48Þ

Note, first, that the polarized part of the cross section (45)
includes the term with Y3 containing the product of the
SFFs, GEGM, and according to Eq. (48), it is determined by
the transverse part of the metric tensor ðg⊥Þμν [Eq. (25)].
Second, in the cross section of the process ep⃗ → ep⃗ in DSB
[Eq. (6)], there is no similar structure; see Refs. [34–36].
In the ultrarelativistic limit, when the mass of an electron

can be neglected, for the functions Yi [Eq. (47)] in the LF,
we obtain expressions that depend only on the energy of the
initial and final electrons:

Y1 ¼ 8m2ð2E1E2 −mE−Þ;
Y2 ¼ 8m2ðE2

1 þ E2
2 þmE−Þ;

Y3 ¼ −ð2m=E2ÞY1;

Y4 ¼ 8m2EþE−ðm − E2Þ=E2: ð49Þ
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B. Polarization of the final electron
in the ep⃗ → e⃗p process

The expression for the square of the amplitude modulus
jTj2 [Eq. (46)] can be written as

jTj2 ¼ I0 þ λp1
λe2I1 ¼ I0ð1þ λe2λ

f
e2Þ; ð50Þ

where λfe2 is the degree of longitudinal polarization trans-
ferred from the initial proton to the final electron in the
ep⃗ → e⃗p process:

λfe2 ¼ λp1

I1
I0

¼ λp1

τpðGEGMY3 þ G2
MY4Þ

G2
EY1 þ τpG2

MY2

:

Dividing the numerator and denominator in the last
expression by Y1G2

M and introducing the experimentally
measured ratio R≡ μpGE=GM, we get

λfe2 ¼ λp1

μpτpððY3=Y1ÞRþ μpðY4=Y1ÞÞ
R2 þ μ2pτpðY2=Y1Þ

: ð51Þ

Note that for the ratio Y2=Y1 in the denominator of Eq. (51)
in the LF, the equality Y2=Y1 ¼ 1=ε is valid, where ε is the
degree of linear polarization of the virtual photon (38).
Inverting relation (51), we obtain a quadratic equation

with respect to R:

α0R2 − α1Rþ α0α3 − α2 ¼ 0; ð52Þ

with the coefficients

α0 ¼ λfe2=λp1
; α1 ¼ τpμpY3=Y1;

α2 ¼ τpμ
2
pY4=Y1; α3 ¼ τpμ

2
pY2=Y1:

Solutions to Eq. (52) read

R ¼ α1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α21 − 4α0ðα0α3 − α2Þ

p
2α0

:

They allow us to extract the ratio R from the results of an
experiment to measure the polarization transferred to the
electron λfe2 in the ep⃗ → e⃗p process.

C. Results of numerical calculations
of polarization effects

Equation (49) was used to numerically calculate the Q2

dependence of the longitudinal polarization degree of the
scattered electron λfe2 [Eq. (51)], as well as the dependence
on the scattering angles of the electron and proton at
electron beam energies (E1 ¼ 4.725 and 5.895 GeV) and
the polarization degree of the proton target at rest
(λp1

¼ Pt ¼ 0.70) in the experiment [17], while conserving
the scaling of the SFFs in the case of a dipole dependence

R ¼ Rd (Rd ¼ 1), and in the case of its violation. In the
latter case, the parametrization R ¼ Rj,

Rj ¼ ð1þ 0.1430Q2 − 0.0086Q4 þ 0.0072Q6Þ−1 ð53Þ

from Ref. [38] was used, and also the Kelly parametrization
(R ¼ Rk) from the Ref. [37] formulas which we omit.
The calculation results are presented by graphs in Figs. 4

and 5. Note that in these figures, there are no lines
corresponding to the parametrization [37], since calcula-
tions using Rj and Rk give almost identical results.
The Q2 dependence of the longitudinal polarization

degree of the scattered electron λfe2 [Eq. (51)] is plotted
in Fig. 4, on which the lines Pd4, Pd5 (dashed) and Pj4,
Pj5 (solid) are constructed for R ¼ Rd and R ¼ Rj

[Eq. (53)]. At the same time, the red lines Pd4, Pj4 and
the blue lines Pd5, Pj5 correspond to the energy of the
electron beam E1 ¼ 4.725 and 5.895 GeV. For all lines in
Fig. 4, the degree of polarization of the proton target at
rest Pt ¼ 0.70.
As can be seen from the graphs in Fig. 4, the function

λfe2ðQ2Þ [Eq. (51)] takes negative values for most of the al-
lowed values Q2 and has a minimum for some of them. We
will specify them: Pd4ð4.976Þ ¼ −0.352, Pj4ð4.586Þ ¼
−0.294, Pd5ð6.648Þ¼−0.380, and Pj5ð6.254Þ¼−0.314.
We also give the values for Q2, at which the lines in Fig. 4
intersect with the abscissa axis (begin to take positive
values): Pj4ð7.174Þ ¼ 0, Pd4ð7.340Þ ¼ 0, 5ð9.333Þ ¼ 0,
and Pd5ð9.492Þ ¼ 0. Thus, in a smaller part of the allowed
values adjacent toQ2

max and amounting to approximately 9%
of Q2

max, the function λfe2ðQ2Þ takes positive values. At the
boundary of the spectrum at Q2 ¼ Q2

max, the polarization

FIG. 4. Q2 dependence of the longitudinal polarization degree
of the scattered electron λfe2 [Eq. (51)] at electron beam energies
in the experiment [17]. The lines Pd4, Pd5 (dashed) and Pj4,
Pj5 (solid) correspond to the ratios R ¼ Rd and R ¼ Rj

[Eq. (53)]. The lines Pd4, Pj4 (Pd5, Pj5) correspond to the
energies E1 ¼ 4.725 (5.895) GeV.
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transferred to the electron is equal to the polarization of the
proton target, λfe2ðQ2

maxÞ ¼ Pt ¼ 0.70.
The results of calculations of the angular dependence of

the polarization transferred to the electron λfe2 [Eq. (51)] in
the ep⃗ → e⃗p process at electron beam energies E1 ¼
4.725 GeV and E1 ¼ 5.895 GeV in the experiment [17]
as functions of the scattering angles of the electron (θe) and
proton (θp) are represented by graphs in Fig. 5. The degree
of polarization of the proton target for all lines was taken to

be the same and equal to Pt ¼ 0.70. Figures 5(a) and 5(b)
represent the dependence on the scattering angles of the
electron θe and proton θp, respectively.
Obviously, the behavior of the lines in Fig. 5 for the

angular dependence is similar to the behavior of the lines
for the Q2 dependence in Fig. 4.
Using the Kelly [37] and Qattan [38] parametrizations,

the relative difference Δdj between the polarization effects
in the process of ep⃗ → e⃗p was calculated in the cases of
conservation and violation of the scaling of the SFFs, as
well as in the effects between these parametrizations Δjk:

Δdj ¼
���� Pd − Pj

Pd

����; Δjk ¼
���� Pj − Pk

Pj

����; ð54Þ

where Pd, Pj, and Pk are the polarizations calculated by

formula (51) for λfe2 when using the corresponding para-
metrizations Rd, Rj, and Rk. The results of calculations of
Δdj at electron beam energies of 4.725 and 5.895 GeV are
shown in Fig. 6.
It follows from the graphs in Fig. 6 that the relative

difference between the polarization transferred from the
initial proton to the final electron in the ep⃗ → e⃗p process in
the cases of conservation and violation of the scaling of the

(a)

(b)

FIG. 5. Angular dependence of the degree of the transferred
polarization to the electron polarization λfe2 [Eq. (51)] at electron
beam energies used in the experiment [17] on the scattering angle
(a) of the electron θe and (b) of the proton θp, expressed in
degrees. The marking of lines Pd4, Pd5, Pj4, Pj5 is the same as
in Fig. 4.

FIG. 6. Q2 dependence of the relative difference Δdj [Eq. (54)]
at electron beam energies E1 ¼ 4.725 GeV (red line) and E1 ¼
5.895 GeV (blue line). For all lines, the degree of polarization of
the proton target was taken to be the same, Pt ¼ 0.70.

TABLE II. The degree of longitudinal polarization of the scattered electron λfe2 [Eq. (51)] at E1 andQ2 used in the
experiment [17]. The values in the columns for Pd, Pj, and Pk correspond to dipole dependence and the Qattan [38]
and Kelly [37] parametrizations [Eq. (53)]. The corresponding electron and proton scattering angles (in degrees) are
given in columns for θe and θp.

E1, GeV Q2, GeV2 θeð°Þ θpð°Þ Pd Pj Pk Δdj, % Δjk, %

5.895 2.06 15.51 45.23 −0.170 −0.163 −0.163 4.1 0.0
5.895 5.66 33.57 24.48 −0.363 −0.309 −0.308 14.9 0.3
4.725 2.06 19.97 43.27 −0.207 −0.197 −0.197 4.8 0.0
4.725 5.66 49.50 19.77 −0.336 −0.263 −0.262 21.7 0.6
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SFFs can reach 70%, which can be used to set up a
polarization experiment by measuring the ratio R.
Numerical values of the polarization transferred to the

final electron in the ep⃗ → e⃗p process for the three
considered parametrizations of the ratio R at E1 and Q2

used in the experiment [17] are represented in Table II. In it,
the columns of values Pd, Pj, and Pk correspond to the
dipole dependence Rd, the parametrizations Rj [Eq. (53)]
from Ref. [38], and Rk [37]; the columns Δdj, Δjk

correspond to the relative difference [Eq. (54)] (expressed
in percent) at electron beam energies of 4.725 and
5.895 GeV and two values of Q2 equal to 2.06 and
5.66 GeV2. It follows from Table II that the relative
difference between Pj5 and Pd5 at Q2 ¼ 2.06 GeV2 is
4.1%, and between Pj4 and Pd4 it is 4.8%. At
Q2 ¼ 5.66 GeV2, these differences increase and become
equal to 14.9% and 21.7%, respectively. Note that the
relative difference Δjk between Pj and Pk for all E1 andQ2

in Table II is less than 1%.

VI. POLARIZATION EFFECTS
IN THE e⃗ p⃗ → ep PROCESS

In the OPE approximation, the differential cross section
of the process (16), calculated in an arbitrary reference
frame in DSB [Eq. (18)], reads

dσe⃗ p⃗→ep

dt
¼ πα2

λsð1þ τpÞ
jTj2
t2

; ð55Þ

jTj2 ¼ I0 þ λe1λp1
I1;

I0 ¼ G2
EY1 þ τpG2

MY2;

I1 ¼ τpðGEGMY3 þ G2
MY4Þ; ð56Þ

where λe1 and λp1
are the degrees of polarization of the

initial electron and proton, and the functions Yi (i ¼ 1;…4)
read

Y1 ¼ ðpþqþÞ2 þ q2þq2−;

Y2 ¼ ðpþqþÞ2 − q2þðq2− þ 4m2
0Þ;

−Y3 ¼ 2κ2m2ððpþqþÞ2 þ q2þðq2− − 4m2
0ÞÞz22;

Y4 ¼ 2ðm2pþqþ − κ2q2þÞðκ2pþqþ −m2
0q

2þÞz22;
z2 ¼ ðκ22 −m2m2

0Þ−1=2; κ2 ¼ q1p1: ð57Þ

In the case of arbitrary spin 4-vectors se1 and sp1
, the

expressions for Y3 and Y4 in the cross section (55) have
the form

Y3 ¼ 8m0mðsp1
Þμðg⊥Þμνðse1Þνq2þ;

Y4 ¼ 8m0mðqþsp1
Þðqþse1Þ: ð58Þ

Note, first, that the polarized part of the cross section (55)
includes the term with Y3 containing the product of the
SFFs, GEGM, and according to Eq. (58), is determined by
the transverse part of the metric tensor ðg⊥Þμν [Eq. (25)].
Second, there is no similar structure in the cross section
of the ep⃗ → ep⃗ process in the DSB [Eq. (6)]; see
Refs. [34–36].
In the ultrarelativistic limit, when the mass of an electron

can be neglected, for the functions Yi [Eq. (57)] in the LF,
we obtain expressions that depend only on the energy of the
initial and final electrons:

Y1 ¼ 8m2ð2E1E2 −mE−Þ;
Y2 ¼ 8m2ðE2

1 þ E2
2 þmE−Þ;

−Y3 ¼ ð2m=E1ÞY1;

−Y4 ¼ 8m2EþE−ðmþ E1Þ=E1: ð59Þ

The polarization asymmetry in the process (16) is deter-
mined by the square of the amplitude modulus (56) as
follows [55,56]:

A ¼ jTj2ðλe1 ¼ −1Þ − jTj2ðλe1 ¼ þ1Þ
jTj2ðλe1 ¼ −1Þ þ jTj2ðλe1 ¼ þ1Þ :

As a result, we have

A ¼ −λp1

τpðGEGMY3 þ G2
MY4Þ

G2
EY1 þ τpG2

MY2

:

By dividing the numerator and denominator in the last
expression into Y1G2

M and introducing the experimentally
measured ratio R≡ μpGE=GM, we get

A ¼ −λp1

μpτpððY3=Y1ÞRþ μpðY4=Y1ÞÞ
R2 þ μ2pτpðY2=Y1Þ

: ð60Þ

Note that Eq. (60) for polarization asymmetry in the e⃗ p⃗ →
ep process and Eq. (51) for electron transferred polarization
λfe2 in the ep⃗ → e⃗p process coincide up to the sign. For this
reason, the quadratic equation for extracting the ratio R
coincides with the explicit form of Eq. (52) and has
coefficients of the same shape, except for one: α0 ¼
−Aexp=λp1

, where Aexp is the experimentally measured
polarization asymmetry.
The results of numerical calculations of the Q2 depend-

ence of the polarization asymmetry A [Eq. (60)] in the
e⃗ p⃗ → ep process at electron beam energies E1 ¼ 4.725
and 5.895 GeV are represented by graphs in Fig. 7, from
which it follows that this dependence for each of the
energies of the electron beam is almost linear. With the
increase of Q2 from 0 to Q2

max, it changes from 0 to Pt ¼
0.70 at the boundaries of the spectrum at Q2 ¼ Q2

max. The
effects of scaling violations are small in the entire range of
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acceptable values of Q2; they do not exceed 1.79% at E1 ¼
4.725 GeV or 2.32% at E1 ¼ 5.895 GeV. For this reason,
the measurement of polarization asymmetry in the e⃗ p⃗ →
ep process can be used as a test to verify the conservation of
the SFF scaling.
Note that the double-spin asymmetry in the elastic

process e⃗ p⃗ → ep in the case when the spin quantization
axes of a resting proton target and an incident electron
beam are parallel was first measured in the experiment [55],
as a result of which it was first established that the SFF ratio
R is positive.

VII. CONCLUSION

In this paper, in the one-photon exchange approximation,
we analyze polarization effects in the elastic e⃗ p⃗ → ep and
ep⃗ → e⃗p processes in the case when the spin quantization
axes of the target proton at rest and the incident or scattered
electron are parallel. To do this, in the kinematics of the
SANE Collaboration experiment [17] using the Kelly [37]
and Qattan [38] parametrizations for the Sachs form-factor
ratio R≡ μpGE=GM, a numerical analysis was carried out

of the dependence of the longitudinal polarization degree
transferred to the scattered electron in the ep⃗ → e⃗p process
and the double-spin asymmetry in the e⃗ p⃗ → ep process on
the square of the momentum transferred to the proton, as
well as on the scattering angle of the electron. As it turned
out, the Kelly [37] and Qattan [38] parametrizations give
almost identical results.
As a result of calculations, it was established that the

relative difference in the longitudinal polarization degree of
the final electron in the ep⃗ → e⃗p process for the case of
conservation and violation of the SFF scaling can reach
70%, which can be used to conduct a polarization experi-
ment of a new type of measurement of the SFF ratio R.
For the double-spin asymmetry in the e⃗ p⃗ → ep process,

this difference is rather small and does not exceed 1.79% for
the electron beam energy E1 ¼ 4.725 GeV or 2.32% for
E1 ¼ 5.895 GeV. For this reason, the measurement of
polarization asymmetry in the e⃗ p⃗ → ep process can be
used as a test to verify the conservation of the SFF scaling.
At present, the experiment on measuring the degree of

longitudinal polarization transferred to the final electron in
the process ep⃗ → e⃗p seems to be quite realistic, since a
proton target with a high degree of polarization Pt ¼ 70�
5% has been already created and is used in the experiment
[17]. For this reason, it would be most appropriate to
conduct the proposed experiment at the setup used in
Ref. [17] at the same proton polarization degree,
Pt ¼ 0.70, with electron beam energies E1 ¼ 4.725 and
5.895 GeV.
The difference between the proposed experiment and the

one in [17] consists in the fact that an incident electron
beam must be unpolarized, and the detected scattered
electron must move strictly along the direction of the spin
quantization axis of a resting proton target. In the proposed
experiment, it is necessary to measure only the longitudinal
polarization degree of the scattered electron, which is an
advantage compared to the AR method [4] used in JLab
polarization experiments.
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