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Abstract. We present a new version the procedure for calculation helicity amplitudes with
massive particles. First, we introduce a massive 4-momentum into higher dimensional space,
where it can be treated as massless. Secondly, we apply the symmetry properties of gauge
theories and get quite simple matrix elements in terms of the field strength.

1. Introduction
Calculation of matrix elements for processes involving massless particles is proved to be effective
using (Weyl) spinors [1, 2]. Especially elegant results can be obtained for massless gauge theories,
such as QED and QCD [3]. In the case of massive fermions some successfull results were obtained
[4, 5, 6].

In the SANC [7] framework we develop alternative procedure form matrix elements with
massive particles. We believe that unconstrained parametrization of massless momentum with
a Weyl spinor in one of the ingredients for expressions to be simple. In order to generalize these
properties we have to embed massive 4-momentum into higher dimensional space where it can
be considered as massless. Formalism for spinors in d = 6 dimensions is well developed[8, 9] and
relations with familiar Dirac spinors can easily be established.

Another source of matrix element simplification is symmetry properties of gauge theories.
Common consideration shows that covariant form is most natural for symmetric object.
Polarization vector of gauge boson is not a covariant object but field strength bivector is. So we
expect matrix elements to look simpler when expressed in terms of field strength. Gauge-
invariant expressions can be obtained by fixing some gauge. Axial gauge is proved to be
convenient in massless case so we wish to generalize it for massive vectors.

2. Polarization vector and field strength
Field strength bivector is an antisymmetric tensor and can naturally be expressed as an element
of Clifford algebra of Dirac matirces by contracting with γ[µγν] = γµ ∧ γν .

Let’s consider photon with 4-momentum k2 = 0 and polarization vector ε. Maxwell bivector
(contracted with Dirac matrices) is

F ≡ Fµνγ
µγν = /k ∧ /ε
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Maxwell equation becomes /kF = 0. It is also evident that gauge transfomation ε → ε+Ck lives
bivector F unaffected.

Axial gauge can be defined by additional condition ε · g = 0 with some (massive) vector g.
Solving it together with ε · k = 0 we obtain polarization vector in axial gauge

/ε =
⧼/gF⧽1
g · k , ⧼A⧽1 ≡ Tr[Aγµ]γµ, /ε(g1)− /ε(g2) = −

Tr[/g1/g2F]

(g1 · k)(g2 · k)
/k, Tr =

1

4
Tr .

Changing vector g leads to gauge transformation.
As an example we obtain matrix element A = 2

√
2(A3 + A4 + A5) for process e+(p1) +

e−(p2) + γ(p3) + γ(p4) + γ(p5) → 0 by choosing g3 = g4 = g5 = p2

A = −
Tr[/p1/p2F3]

z13z23z24z25
v̄1

{
⧼F4/p2F5⧽1 − /p2⧼F4F5⧽0,4

}
u2 +

v̄1F3

{
⧼F4/p2F5⧽1 − /p2⧼F4F5⧽0,4

}
u2

z13z25z24

Where zij = 2pi · pj and ⧼A⧽0,4 ≡ Tr[A] + Tr[Aγ5]γ5.
It is also possible to calculate “amplitude” for e+(p1) + e−(p2) + Z(p3) + γ∗(p4) → 0 with

off-shell photon

A = −Tr[/P 1 /P 2F4]

Z14Z24
v̄1e3u2 +

v̄1F4/e3u2

Z14
+

v̄1/e3F4u2

Z24

Where P1 = p1+
p4
2
, P2 = p2+

p4
2
, F4 = /p4∧/e4, Z14 = 2P1 ·p4, Z24 = 2P2 ·p4 and P1+P2+p3 = 0.

3. Spinors in 6-dimensions
To make reations with 4-dimensional Dirac spinors as simple as possible we choose metric
signature like this gMN = diag[gµν , 1,−1]. According to [10] we have to introduce dotted Dirac
indexes, and corresponding Dirac spinor metric.

′
γMα

β̇ = {γµ, γ5,+1},
‵
γMα̇

β = {γµ, γ5,−1},
ϵαβ̇ = ϵβ̇α = ϵαβ̇ = ϵβ̇α =

[
ϵAB 0
0 ϵȦḂ

]

Note, that in d = 5 our choice
′
γ6α

β̇ = “1” allows undistinguish dotted and undotted Dirac
spinor indexes. In this case, for example, we can express (Levi-Civita) totally antisymmetric
spinor in terms of Dirac spinor metric ϵαβγδ = 3ϵ[αβϵγδ] = ϵαβϵγδ − ϵαγϵβδ + ϵαδϵβγ with
ϵ1234 = 1.

Spinors in d = 6 are 4× 2 matrices, because there are SU(2) little group degree of freedom.
We introduced indexless notation, and use spinor metric to upper and lower indexes.

|uo = uα
a =

(
uA

a

uȦa

)
=

(
|ua⟩
|ua]

)
, ju| = ua

α =
(
ua

A −uaȦ
)
=

(
⟨ua| −[ua|

)
Every massless (in 6-dimensional sense) can be parametrized by a spinor

′
p ≡ |uoju| = |uaojua|.

It is also usefull to introduce a dual spinors
‵
p = |uȧ⟧⟦uȧ|. They satisfy orthogonality properties

‵
p|uco ≡ 0 ⇒ ⟦uȧ|ubo = 0. It is easy to prove the relation between spinor products, which are
2× 2 matrices with little-group indexes and scalar product jp| ‵

q|po = jp|q⟧⟦q|po = 2
′
p · ‵

q.
Maxwell bivector can compactly be expressed in terms of spinors

′′
F a
ȧ =

√
2|kao⊗⟦kȧ|,

‵‵

F ȧ
a =

√
2|kȧ⟧⊗jka|
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As an example we present an amplitude for e+(p1) + e−(p2) + Z(p3) + γ(p4) → 0

A√
2
= − 1

j1|4⟧j1|2⟧
1

j4|2⟧⊗j1|e3|2o+ j1|e3|4o⊗
1

j2|4⟧ +
1

⟦4|1o⊗j4|e3|2o

In similar way amplitude for e+(p1) + e−(p2) + γ(p3) + γ(p4) → 0 can be obtained

A/2 = − 1

j4|1|3o⊗
(
j1|3⟧⊗⟦4|2o− j1|4⟧⊗⟦3|2o

)
+

1

⟦4|1o⟦4|3o⊗⟦3|4o⊗ 1

j2|4⟧ +
1

⟦3|1o⟦3|4o⊗⟦4|3o⊗ 1

j2|3⟧
As an illustration of the numerical results we present a plot for pseudorapitity distribution of

τ -lepton in process e+e− → τ+τ−γ , obtained with ReneSANCe Monte-Carlo generator and
compared with WHIZARD (dots) for all polarizations.
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Figure 1. Pseudorapitity distribution of τ -lepton in process e+e− → τ+τ−γ at
√
s = 500GeV,

obtained with ReneSANCe and WHIZARD (dots) for all polarizations of external particles.

4. Conclusions
Applying extended set of Clifford-algebra operations we obtained explicitly gauge-invariant form
of amplitudes for some processes. Expressions contain only field strength bivector and relations
to scalar QED and photon power expansion become transparent. We propose a generalized form
of axial-type gauge which allows massive gauge-fixing vectors. Simplification of “amplitude”
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with off-shell photons is also possible. Spinor formalism in d = 6 dimensions is applied to obtain
modular form of amplitude. It is implemented as C++17 library and allows pseudo-mass term
µγ5 in Dirac equation, which can be useful to deal with 1-loop integrands.
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