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A pulsating ratchet with a spatially periodic double-well potential profile undergoing shift f luctuations for
half a period is considered. The motion direction in such a ratchet is determined by the probability of over-
coming which of the barriers surrounding the shallow potential well is greater. At relatively high temperatures,
in accordance with the Arrhenius law, the probabilities of overcoming the barriers are determined by their
heights, and at temperatures close to absolute zero, when the ratchet moves according to the tunnel mecha-
nism, the barrier shapes are also important. Therefore, for narrow high and low wide barriers, the overcoming
mechanism may turn out to be different and, moreover, dependent on temperature. As a result, a tempera-
ture-induced change in the direction of the ratchet motion is possible. A simple interpolation theory is pre-
sented to illustrate this effect. Simple criteria are formulated for the shape of the potential relief, using which
one can experimentally observe motion reversal.
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Among various properties of nanoscale systems in
which a directed nanoparticle motion can be a result
of the ratchet effect, one of the most impressive is the
possibility to control the motion direction by changing
some parameter of the system, for example, the ambi-
ent temperature or the frequency of internal or exter-
nal f luctuations [1–4] (see also review [5] and the ref-
erences therein). The mechanisms of obtaining the
directed motion due to non-equilibrium fluctuations
and asymmetry of the periodic potential profile of a
nanoparticle differ significantly for the two main
classes of ratchets, called ratchets with f luctuating
force (rocking ratchets) and ratchets with a f luctuating
(pulsating) periodic potential energy or simply pulsat-
ing (or f lashing) ratchets [2, 3]. In the first of them,
nonequilibrium fluctuations of the nanoparticle
potential energy appear under the action of an external
variable (f luctuating) force with a zero mean value,
and in the second, are induced by f luctuations of the
internal parameters of this potential profile itself. Dif-
ferent methods of introducing f luctuations into the
system lead to different dependences of the particle
current (average ratchet velocity) on the coefficients of
spatial and temporal asymmetry of the potential
energy of nanoparticles [6], as well as to different char-
acter of its dependence on the f luctuation frequency

[7, 8]. The most studied is the first ratchet class, for
which new properties were mainly discovered [3, 9].

Rocking ratchets are known to be easier imple-
mented experimentally [5], e.g., by using an external
electromagnetic field as the governing f luctuations.
That is why the possibility of motion controlling by
creating competition between the spatial and temporal
asymmetry of the particle potential energy was first
demonstrated for f luctuating-force ratchets [10, 11]
and only after almost 10 years for pulsating ratchets
[12, 13]. Accounting for quantum effects in the mech-
anisms of functioning of microscopic ratchets obvi-
ously goes in the same sequence.

It was shown in the pioneering work [1] that, a
fluctuating-force ratchet, characterized at sufficiently
high temperatures by some motion direction, can alter
the motion direction at low temperatures, when the
tunneling motion mechanism prevails over the classi-
cal one. This theoretical result was confirmed experi-
mentally [14] (for details, see [15]). For pulsating
ratchets, the effect of the reversal of the motion direc-
tion has been unknown so far.

This work discovers the possibility of the motion
reversal due to the tunnel effect for pulsating ratchets.
The model of a highly efficient Brownian motor with
a periodic double-well potential profile f luctuating for
369
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Fig. 1. (Color online) Half-period shifted double-well
potential profiles of a pulsating ratchet, which are shifted
by half a period relative to each other (upper and lower
profiles). Shallow and deep potential wells are denoted by
A and B. Wide low and narrow high barriers are denoted by
α and β. The rate constants of transitions through the bar-
riers are indicated by the corresponding barrier symbols
and well indices, the sequence of which indicates the tran-
sition direction. Arrows to the right and to the left (red and
blue) indicate the motion directions of the ratchet, which
operates due to the thermal activation or tunneling pro-
cesses, respectively.
half a period [16, 17] was chosen as the basic model
and then extended to take into account the tunneling
effect. The motion direction in such a ratchet is deter-
mined by which of the barriers surrounding the shal-
low potential well is more likely to overcome it.

In Fig. 1, a shallow potential well is bounded by a
high and narrow barrier on the left and by a low and
wide one on the right. At high temperatures, the prob-
ability of overcoming a barrier, according to the
Arrhenius law, is determined only by its height. There-
fore, the right barrier is more easily overcome, and the
particle is more likely to end up in the right deep
potential well. Dichotomous f luctuations of the
potential profile  by half of its spatial period, ,
mean that if, in one of the states of the dichotomous
process, the potential relief is described by the func-
tion , then, in the other dichotomous state, it will
undergo the shift by  with complete preservation of
its shape, and be described by the function

. As a result of such f luctuations, the parti-
cle located in the deep well by the end of the profile
lifetime will be thrown vertically into a shallow well of
the shifted profile. Then the process is repeated in the

( )V x /2L

( )V x
/2L

±( /2)V x L
shifted profile. Due to the energy acquired by the par-
ticle during the potential profile shifts, an average
rightward directed motion arises (see the red arrows to
the right in Fig. 1), which is the essence of the ratchet
effect.

At temperatures near the absolute zero, the thermal
activation motion of the ratchet freezes and tunneling
begins to dominate, for which, both the height and
width of potential barriers become important. With
proper selection of the potential profile parameters,
the probability of tunneling through the narrow high
barrier will be greater than through the wide low one.
Therefore, the described operating mechanism of the
pulsating ratchet is realizable at low temperatures too,
down to absolute zero, the motion direction reverse
with the temperature decrease is being the fundamen-
tal difference here (see the blue arrows to the left in
Fig. 1).

The tunneling mechanism for reversing the motion
direction of a pulsating ratchet was not previously
known and is the main content of this work. It differs
from that given in [1] for a f luctuating force ratchet in
that a small f luctuating force itself led to the necessary
distortions in the shape of a single barrier on the
period, while at least two barriers on the period with a
certain ratio of their heights and widths are required to
reverse the motion of a pulsating ratchet. Below we
give a quantitative analysis of the discussed effect
based on a rigorous result of the kinetic description of
ratchets of the pulsating type [17, 18], using the rate
constants for overcoming potential barriers. Both for
high and for extremely low temperatures, these con-
stants can be represented by simple analytical relations
(the Arrhenius law and the Gamow formula, respec-
tively [19, 20]), which are applicable to discover the
conditions for the motion reversal effect. For interme-
diate temperatures, a simple interpolation-based
description is presented, which uses the crossover
temperature that is the temperature which separates
the regions of the dominance of the thermally acti-
vated and tunneling mechanisms for overcoming
potential barriers [21–23]. The purpose of this simpli-
fied description in the intermediate temperature range
is to give a reader an understanding of the key features
of the temperature dependence of the average velocity
(including the motion reversal). A rigorous descrip-
tion of the temperature dependence of the transition
rate constants [24] is beyond the scope of this article,
which aims to demonstrate only the possibility of the
motion reversal effect for pulsating ratchets.

Analytical solutions of the Smoluchowski equation
describing the characteristics of a classical over-
damped pulsating ratchet with a periodic asymmetric
potential shifted by half a period are obtained in [16].
At relatively high temperatures which correspond to
the thermal energy not exceeding the energy barriers,
the motion of a Brownian particle can be considered as
hopping and the kinetic description can be applied.
JETP LETTERS  Vol. 118  No. 5  2023
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Such a description for the considered ratchet was car-
ried out in [17] assuming a stochastic dichotomous
process of potential profile f luctuations (shifts), and in
[18] for deterministic f luctuations (a deterministic
dichotomous process) with each profile is being char-
acterized by a given lifetime,  or . For the stochas-
tic dichotomous process, these lifetimes should be
replaced by the average frequencies of transitions
between the profiles,  and , the sum of which
defines an important f luctuation characteristic—the
inverse correlation time, Γ. In the case of the symmet-
ric dichotomous process, , the value of Γ is
related to the process period (average period),

 as .
Within the kinetic approach, dichotomous shifts of

a double-well potential profile by half a period are
described by the antisymmetric model [18]. This
model is characterized by the given set of the rate con-
stants of transitions ,  and ,  through
each potential barrier α and β in both directions
(Fig. 1), as well as by the equal values of  and . In
the absence of a load force, which is usually consid-
ered when calculating the energy characteristics of
ratchets, the rate constants corresponding to the
reverse transitions are subject to the detailed balance
relation [25]

(1)

where  is the Boltzmann constant, T is the absolute
temperature, and  is the difference between the
energies of zero-point oscillations in the potential
wells A and B, which is approximately equal to the dif-
ference between the energy minima of these wells if
they have close curvatures. The use of the relations (1)
significantly simplifies the general expressions
obtained in [18] and allows us to arrive at a simple
result for the particle current, J (the average ratchet
velocity  is related to the current as , where
L is the spatial period of the potential profile):

(2)

Here, the function  of the inverse correlation
time Γ is defined by the following expressions for the
deterministic and stochastic dichotomous process:

(3)

Expression (2) has a clear physical interpretation.
At  (that is, when the barriers β and α bound
the shallow potential well on the left and right, respec-
tively, as shown in Fig. 1), the sign of the current J is
determined by the sign of the difference .
This means that the ratchet motion is in the direction
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from the less deep well to that neighboring barrier,
which is more likely to be overcome. If either barriers

 and  are identical ) or the potential
wells A and B are identical ), the ratchet effect
does not occur, since the potential profile is described
by a symmetric periodic function [26]. Comparison of
the wells and barriers of the initial potential profile and
the one shifted by half a period (Fig. 1) leads to an
important observation: Directed motion occurs only
with simultaneous f luctuations of the parameters of
potential barriers and wells of this pulsating ratchet
[27, 28].

The explicit expressions for the rate constants of
transitions,  and , through the right and left
barriers are determined by the type of the processes
which one takes into account. To optimize the repre-
sentations of similar expressions for barriers α and β
we will use γ to notate the rate constant of overcoming
an arbitrary barrier and represent the temperature
dependence of this constant in the form:

(4)

Here, the pre-exponential factor , which means the
frequency of collisions of the particle with the poten-
tial barrier, can, with the exponential accuracy, be
considered independent of temperature, so that the
entire temperature dependence is contained in the
exponent, the function .

At relatively high temperatures, the Arrhenius law
is valid, for which . At temperatures
tending to absolute zero, the function  must fol-
low the Gamow formula

(5)

where  is the Planck constant, m is the particle mass,
and E is the particle energy, which sets the boundaries
of the potential barrier, a and b. The temperature cri-
terion for the boundary separating the temperature
region in which tunnel transitions predominate over
Arrhenius ones for a parabolic barrier has the form
[21–23]:

(6)

where  is the coordinate of the barrier maximum.
Including dissipation, characterized by the friction
coefficient ζ, into the description leads to the replace-
ment in Eq. (6) of the “barrier” frequency  by the
factor [1, 19]
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Fig. 2. (Color online) The inverse-temperature depen-
dence of the current (logarithmic scale), calculated by
Eq. (2). The solid lines in the regions of high and extremely
low temperatures correspond to the Arrhenius transition
rate constants and those calculated by the Gamow for-
mula (5) for parabolic barriers. The upper and lower lines
in the region of the maxima (orange and blue) correspond
to deterministic and stochastic dichotomous f luctuations,
respectively. The dotted line represents the schematic
behavior of the current in the region of intermediate tem-
peratures, where the motion reversal occurs. The following
parameter values have been used in calculations:

 K,  K,  К, 
140 K, ΔE/kB = 500 K, k0 = 1 kHz, Γ = 0.1 kHz (line 1),
Γ = 1 kHz (line 2).

α =/ 1000BU k α = 50*T β =/ 2500BU k β =*T
Thus, in a wide temperature range satisfying
, the Arrhenius law is valid and the

sign of the current J is determined by the sign of the
difference in the heights of the barriers surrounding
the shallow potential well:

(8)
Since in the region of extremely low temperatures,

, the Gamow formula (5) can be used, then in
this region,

(9)
With introducing the potential-barrier-width

parameter , the value  can be written as

, where κ is a numerical factor
depending on the barrier shape. For a rectangular bar-
rier, κ is equal to 2, for a parabolic one,  and

, and for a triangular one, .
Then the relation (9) can be represented as

, which is valid for
barriers of various shapes.

Comparing Eqs. (8) and (9), we get that the condi-
tions for the motion reversal under the transition from
the thermally activated to the tunneling mechanism of
overcoming the barriers in the pulsating ratchet with a
half-period shifted potential can be represented in the
following two equivalent forms:

(10)

These conditions mean that the motion reversal
occurs when the ratio (which is less than unity) of the
heights of the barriers surrounding the shallow poten-
tial well will exceed the ratio of either the correspond-
ing boundary temperatures (6) or the square of the
inverse ratio of the widths of these barriers.

Let us consider the temperature dependence (2) of
the current in the case of the thermally activated
mechanism of overcoming the potential barriers.
Using the Arrhenius law for the transition rate con-
stants leads to the dependences of the current on the
inverse temperature, represented by the solid lines on
the left side of Fig. 2 and in the inset. Nonmonotonic-
ity at high temperatures is the result of the stochastic
resonance, which manifests itself in nonlinear sys-
tems, when the system response has a resonance-like
behavior depending on the noise level (temperature)
[29].

The manifestation of the stochastic resonance in
the temperature dependences of the characteristics of
rotational polar ratchet systems (for which the differ-
ences between the two ratchet classes are erased)
under the action of an alternating electric field was
studied in detail in [28]. A characteristic feature of the
stochastic resonance is an increase in the temperature
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of the maximum response of the system with an
increase in the frequency of an external field. In our
case, this frequency is the inverse correlation time Γ.
In the inset of Fig. 2, line 2 corresponds to the value of
Γ which is 10 times greater than the value of Γ for
line 1. Then, in the inverse temperature dependence of
the current, the maximum shifts to the left so that the
temperature of the maximum of line 2 is approxi-
mately twice the analogous temperature of line 1. This
indicates that we indeed deal with the stochastic reso-
nance.

Only in a narrow temperature range near the max-
imum of the stochastic resonance one can observe the
splitting of the temperature dependences of the cur-
rent into the curves which describe deterministic and
stochastic dichotomous f luctuations of the potential
profile shifts for half a period. In the rest of the tem-
perature range, these dependences are degenerate.

This behavior is easily explained by the form of the
dependence  (3) for the deterministic and sto-
chastic dichotomous process. At a fixed value of Γ, in
the high temperature region, , the function 
is approximately equal to 1 for both processes and the
current is proportional to Γ. At low temperatures,

, the function  is approximately equal to
 for both processes, and the current ceases to

depend on Γ. Therefore, lines 1 and 2 merge at low
temperatures, differ greatly at high temperatures, since
they correspond to different values of Γ, and in the
narrow region of the stochastic resonance, ,

ϕ Γ( )

Σ Γ@ ϕ Γ( )

Σ Γ! ϕ Γ( )
Σ Γ/

Σ ≈ Γ
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where the functions  for the stochastic and deter-
ministic processes differ, the degeneracy is removed
within each pair.

Note that the applicability range of the kinetic
approach used in this work does not allow consider-
ation of the f luctuation frequency values, Γ, exceeding
the characteristic frequencies of intrawell motion (the
pre-exponential factor  in (4)). In the frequency
range , the approximation of the hopping
motion is no longer admissible, and a rigorous consid-
eration of solutions to the Smoluchowski equation
with continuous potentials leads to the disappearance
of the ratchet effect as , as it should be [2] (the
presence of potential jumps allows the presence of the
ratchet effect in the overdamped motion mode [16]).
Nevertheless, at low temperatures, when , the
use of the kinetic approximation is quite acceptable
due to the fact that the probabilities of overcoming the
barriers  are exponentially small. There-
fore,  and, in the region of low tempera-
tures, the frequency of f luctuations only needs to fall
into the interval . We also note that the
phenomenon of the stochastic resonance is also inher-
ent in f luctuating force ratchets (rocking ratchets)
[28]. Nevertheless, in [1], which studied precisely this
class of ratchets, stochastic resonance was not noted,
since only the adiabatic (low frequency) regime of
motion was considered.

The solid line in Fig. 2 in the region of extremely
low temperatures corresponds to the negative ratchet
tunneling current calculated by Eq. (2) with the tran-
sition rate constants (4), in which ,
where the temperature  was determined by Eq. (6)
for parabolic barriers. The parameter values were cho-
sen such that the condition (10) of the current sign
reversal with the change in temperature was satisfied.

In order to schematically describe the characteris-
tic behavior of the temperature dependence of the cur-
rent in the region of the sign change, we took a some-
what rough representation, which is nevertheless often
used, of the total rate constants of overcoming poten-
tial barriers as the sum of the Arrhenius and tunneling
contributions (see Eq. (9.1) and the discussion of the
simple quantum theory of transition states in [19]).
The reason for the use of such a representation is that
it correctly reproduces the values of the transition rate
constants in the regions of high and low temperatures:
At high temperatures, the smallness of the tunneling
contribution compared to the Arrhenius one justifies
it, while, at low temperatures, the exponentially fast
vanishing of it. The dotted line in Fig. 2 represents the
result of such a description. The current sign reversal
(the ratchet stopping point appearance) occurs at a
temperature  K which is within the interval

 and close to the value  K.
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Note that for a comprehensive description of the
temperature dependence of the current in the region of
the sign change as well as for determining the tempera-
ture of the ratchet stopping point, one should take into
account that the particle tunneling rate constant
depends on particle mass, the parameters of the barrier
to be overcome, the properties of the medium, and
temperature. Several mechanisms are known for the
exponential dependence of the rate constant on tem-
perature (4). For example, for the electron transfer in
a polar medium, the temperature dependence is deter-
mined by the energy of its reorganization; for the tun-
neling of atoms and ions, the main role is played by the
intermolecular vibrations that change the magnitude
and shape of a potential barrier, as well as the reorga-
nization of the medium [23, 24, 30–34]. The energy
dissipation in the process of tunneling at zero and arbi-
trary temperatures also plays a significant role [19,
35–39].

In this work, to analyze the temperature depen-
dence of the current (including the analysis of the pos-
sibilities for its reversal) in a highly efficient pulsating
ratchet with a periodic double-well potential profile
fluctuating for half a period, Eq. (2) is proposed. This
formula, subject to the detailed balance condition (the
absence of load forces or concentration gradients), is a
simplification of the result known for the antisymmet-
ric ratchet model with dichotomous switching of two
states with two reaction channels [18]. The value and
attraction of Eq. (2) is in its structure, the product of
several factors, each of which reflects various import-
ant properties of the ratchet in question.

In Eq. (2) for the current, the f luctuation fre-
quency-dependent factor , defined by Eq. (3),
firstly, distinguishes a pulsating ratchet from a f luctu-
ating-force one in that it gives the proportionality of
the current to the frequency Γ in the adiabatic mode of
the motion, secondly, it demonstrates the existence of
the stochastic resonance outside the adiabatic mode,
and thirdly, it describes the difference between the
currents induced by a stochastic dichotomous process
and the deterministic one, which occurs only in a nar-
row temperature range near the maximum of the sto-
chastic resonance.

The remaining factors in Eq. (2) reflect the sym-
metry of the model under consideration, and also con-
tain rate constants for overcoming potential barriers,
the explicit form of which makes it possible to include
into the description both classical thermal activation
and quantum tunneling processes. The potential pro-
file asymmetry is provided by the difference between
the depths of the potential wells, , and the velocity
rate constants  and , so that the sign of the cur-
rent is determined by the signs of  and .
For classical and quantum processes, we have
sgn  and sgn  =

, respectively, where  and

Γϕ Γ( )

ΔE
αAB βAB

ΔE α − βAB AB( )

β αα − β −AB AB( ) = sgn( )U U α − βAB AB( )

β β α αΔ − Δsgn( )x U x U γU
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 are the heights and widths of the right  and
left  barriers surrounding the shallow potential
well . Therefore, under the conditions (10),
the motion reversal is realized which is schematically
shown in Fig. 2 by the dotted line.

Note that, in contrast to a f luctuating-force
ratchet, the analytical description of tunneling of
which turned out to be possible only in the adiabatic
(low frequency) regime [1], the analysis of the motion
reversal of the pulsating ratchet carried out in this arti-
cle is free from this limitation. It also revealed the sto-
chastic resonance and the difference of its characteris-
tics for deterministic and stochastic f luctuations of the
potential reliefs. To observe experimentally the pre-
dicted motion reversal of a pulsating ratchet of the
described type, it is required to create a periodic
potential relief, with a certain asymmetric shape, f luc-
tuating for half a period. The source of such a relief, for
example, in organic pulsating electron ratchets [40]
might be finger electrodes fabricated by the focused-
ion-beam-assisted deposition. In this case, its half-
period f luctuations can be realized by switching the
potentials applied to these electrodes.
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