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NUMERICAL STUDY OF THE CONTACT ANGLE INFLUENCE ON
EQUILIBRIUM FERROFLUID SHAPES
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The problem of forming equilibrium ferrofluid free surfaces, realized under the action of the
magnetic field of a vertical line conductor and gravity, is considered. A ferrofluid drop is in
contact with the vertical conductor and the horizontal plane on which it is located. The goal is
to investigate the influence of contact angles of ferrofluid surface with solid boundaries of the
conductor and the plane on equilibrium shapes of the free surface using numerical modelling. The
mathematical model contains ordinary differential equations for the parametric representation
of an axisymmetric free surface for a known magnetic field, generated by the conductor with
a given current. The computational algorithm is constructed on a non-uniform adaptive mesh,
based on a finite-difference approximation, in the form of recurrence relations. A comparative
analysis of the equilibrium surface shapes is carried out for acute and obtuse contact angles.
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В работе рассматривается задача о равновесных формах свободной поверхности маг-
нитной жидкости, которые образуются под воздействием магнитного поля вертикального
проводника с током и силы тяжести. Капля магнитной жидкости располагается на горизон-
тальной плоскости вокруг вертикального проводника. Целью работы является исследование
влияния углов контакта свободной поверхности жидкости с проводником и горизонтальной
плоскостью на равновесные формы свободной поверхности с использованием численного
моделирования. Математическая модель задачи содержит обыкновенные дифференциаль-
ные уравнения для параметрического описания осесимметричной свободной поверхности
для известного магнитного поля, создаваемого проводником с током. Вычислительный ал-
горитм, основанный на конечно-разностной аппроксимации, построен на неравномерной
адаптивной сетке в виде рекуррентных соотношений. В работе представлен сравнительный
анализ равновесных форм свободной поверхности для острых и тупых углов контакта.

Ключевые слова: магнитная жидкость; проводник с током; свободная поверхность;
угол контакта; конечно-разностный метод; адаптивная сетка.

1 Introduction

Ferrofluid is a synthesized soft material that is sensitive to external magnetic field, which results in
special behavior of ferrofluid interfaces with other materials, see e.g. in [1]. The problem of forming
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equilibrium ferrofluid free surfaces, realized under the action of the magnetic field of a vertical
line conductor and gravity, is considered. This is a classical problem of ferrohydrodynamics, see
[1]. A ferrofluid drop is in contact with the vertical conductor and the horizontal plane on which
it is located. These contacts are characterized by two different contact angles α1 and α2, see
Fig. 1. The goal of the present study is to investigate the influence of the contact angles of
ferrofluid surface with solid boundaries of the conductor and the plane on equilibrium shapes of
the free surface using numerical modelling.

A most of experimental, theoretical and numerical studies of equilibrium shapes around a
conductor consider a situation with acute contact angles 0 < α1, α2 ≤ π/2 for any conductor
current, see e.g. [2–7]. Numerical studies in [6, 8, 9] investigate the possibility of hysteresis of
the free-surface shape with obtuse contact angles π/2 < α1, α2 < π during cyclic quasi-static
increase and decrease of current. In the present study, different geometric configurations with
α1, α2 ∈ {π/4, 3π/4} are considered, where other ferrofluid parameters are fixed.

The mathematical model of the problem under study is presented in Section 2. The model is
constructed, following the ideas in [2, 5, 7], where special attention is paid to taking into account
acute and obtuse contact angles of different values. The model contains ordinary differential
equations for the parametric representation of an axisymmetric free surface for a known magnetic
field, generated by the conductor with a given current, assuming a uniform distribution of
particles within the ferrofluid. In contrast, the mathematical models in [5, 7] take into account
particle diffusion processes. The computational algorithm of the problem under study is presented
in Section 3. It is constructed similarly to [5] with a modification related to a non-uniform mesh. A
comparative analysis of the equilibrium surface shapes is carried out in Section 4 for four different
geometric configurations with fixed contact angles a) α1 = α2 = π/4, b) α1 = π/4, α2 = 3π/4,
c) α1 = 3π/4, α2 = π/4, d) α1 = α2 = 3π/4, moreover the volume of the ferrofluid is fixed.

Future studies may investigate the situation of varying contact angles with respect to the
intensity of the magnetic field, generated by the conductor. This behavior of ferrofluid was
experimentally observed in [3, 4] for the problem under study.

2 Mathematical model
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Рис. 1: Problem statement in the meridional plane.

Let us consider the problem under study in the cylindrical coordinate system (r, z), see
Fig. 1. The ferrofluid is located on a horizontal plane at z = 0 around a vertical conductor.
The ferrofluid has a free surface Γ, which touches the conductor at a contact angle α1 and the
horizontal plane at a contact angle α2. The conductor has the shape of a cylinder with radius R0,
its axis coincides with the Oz axis. The magnetic field, induced by current I in the conductor,
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is azumuthal. The corresponding magnetic field intensity outside of the conductor is described
by the formula H = I/(2πr) , see e.g. in [1]. The ferrofluid is affected not only by the magnetic
force but also by the force of gravity, which is directed opposite to the Oz axis, see Fig. 1. The
equilibrium free surface Γ of the ferrofluid is formed due to magnetic, gravitational and capillary
forces.

The mathematical model is constructed, following the ideas in [2, 5, 7]. It takes into account
the condition of pressure jump on the free surface of ferrofluid, the known magnetic field H =
I/(2πr) and the property Hn = 0 on Γ. The mathematical model has the form of a boundary
value problem for the unknown dimensionless functions r = r(s), z = z(s):

r′′ = −z′F (r, z, z′, L), z′′ = r′F (r, z, z′, L), 0 < s < 1,

r(0) = 1/L, r′(0) = sinα1, z
′(0) = − cosα1, (1)

r′(1) = cosα2, z(1) = 0, z′(1) = − sinα2,

where

F (r, z, z′, L) = BozL2 − Bomφ(r)−
z′

r
+ C, L =

(
V

I1

)1/3

,

C =
2

r2(1)− r2(0)

(
−r(1) sinα2 + r(0) cosα1 +BomI2 −

BoV

2πL

)
,

I1 = 2π

∫ 1

0
zrr′ds, I2 =

∫ 1

0
rr′φ(r)ds, φ(r) = L ln

(
rL

A∗ sinh
A∗

rL

)
for the dimensionless parameters

Bo =
ρgR2

0

σ
, Bom = µ0

MSH∗R0

σ
, A∗ =

I

2πH∗R0
, V =

U

R3
0

.

Here ρ is the density of the ferrofluid, g is the gravity acceleration, σ is the surface tension
coefficient, µ0 is the magnetic permeability of vacuum, MS is the saturation magnetisation of
the ferrofluid, H∗ = kT/µ0m, k is the Boltzmann constant, T is the absolute temperature, m is
the magnetic moment of a ferroparticle, U is the volume of the fluid.

Following the approach in [10], we introduce a new unknown function β = β(s) such that
z′ = sinβ, r′ = cosβ. Increasing the number of unknowns in the model from two to three allows
us to lower the order of the differential equations in (1) from two to one. We construct the
following reformulation of the mathematical model (1), taking into account acute and obtuse
contact angles:

β′ = Φ(β, r, z, L),

r′ = cosβ, r(0) = 1/L, (2)
z′ = sinβ, z(1) = 0,

with the boundary conditions for β:
β(0) = α1 − π/2 for 0 < α1 ≤ π/2, β(0) = π/2− α1 for π/2 < α1 < π and β(1) = −α2. Here

Φ(β, r, z, L) = BozL2 − Bomφ(r)−
sinβ

r
+ C, I1 = 2π

∫ 1

0
zr cosβds, I2 =

∫ 1

0
r cos(β)φ(r)ds.

The equilibrium shape of the free surface Γ is defined as the solution (r(s), z(s)) of the
mathematical model (2) for given values of the dimensionless parameters: α1 and α2 (contact
angles), Bo (Bond number), Bom (magnetic Bond number), A∗ (dimensionless current intensity),
V (dimensionless fluid volume).
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3 Computational algorithm

To construct a non-uniform adaptive mesh with respect to the variable s, we apply a
transformation s = s(t), t ∈ [0, 1] in the following form s(t) = −a+ 2(a+ 1)/(1 + (1 + 2/a)1−t)
for a given parameter a > 0, see [11]. This transformation does not change the endpoints:
s(0) = 0, s(1) = 1, and concentrates mesh nodes {si = s(ti), ti = ih, h = 1/N, i = 0, N} closer
to the endpoint s0, when the parameter a tends to 0. To find the value of the parameter a in
computations, the condition is used that the product of the curvature at a fixed point of the
free surface (r(0), z(0)) by s1 is equal to the product of the curvature of the circle by h, for the
solution of which Newton’s method is applied. The adaptivity of the mesh in computations is
realized by changing the curvature value at point (r(0), z(0)). As the height of the ferrofluid drop
increases, the curvature at point (r(0), z(0)) also increases, causing the value of s1 to become
smaller and the mesh to become more concentrated near s = 0. The idea of such mesh adaptivity
was suggested and applied in [10,12].

Let us construct a discretization of the mathematical model (2) on the non-uniform mesh
{si, i = 0, N} for unknown qualities βi, ri, zi, i = 0, N , based on a finite-difference approximation.
In addition, we linearize the obtained discrete equations by constructing an iterative process with
the introduction of a relaxation parameter τ > 0 to control the convergence of the iterations for
n = 0, 1, 2, .... The final scheme (3)–(5) is constructed as recurrence relations at each iteration,
extending the approach [5] to non-uniform meshes. First, we compute βi at the (n+1)-th iteration,
starting from i = N and successively reaching i = 0:

βn+1
N = −α2,

βn+1
i = βn+1

i+1 − hs′(ti+1/2)Φ
n
i+1/2 + (1− τ)(βni − βni+1 + hs′(ti+1/2)Φ

n
i+1/2), (3)

βn+1
0 = α1 − π/2 for 0 < α1 ≤ π/2 or βn+1

0 = π/2− α1 for π/2 < α1 < π.

Here ti+1/2 = (i+ 1/2)h, Φn
i+1/2 = Φ(βni+1/2, r

n
i+1/2, z

n
i+1/2, L

n), βi+1/2 = (βi + βi+1)/2. We then
compute rn+1

i , starting from i = 0, and zn+1
i , starting from i = N , using the values for βn+1

i

from (3):

rn+1
0 = 1/Ln, rn+1

i = rn+1
i−1 + hs′(ti−1/2) cosβ

n+1
i−1/2, i = 1, 2, ..., N ; (4)

zn+1
N = 0, zn+1

i = zn+1
i+1 − hs′(ti+1/2) sinβ

n+1
i+1/2, i = N − 1, N − 2, ..., 0. (5)

At the end of the (n + 1)-th iteration, we compute Ln+1 and Φn+1
i+1/2, 0, N − 1 for use in the

next iteration. To find these values, we approximate the integrals I1 and I2 by the trapezoidal
quadrature formula, using all necessary data from the (n+ 1)-th iteration.

4 Numerical results

The equilibrium shapes Γ are computed for four geometric configurations with a fixed ferrofluid
volume U = 400 and for different contact angles: a) α1 = α2 = π/4, b) α1 = π/4, α2 = 3π/4,
c) α1 = 3π/4, α2 = π/4, d) α1 = α2 = 3π/4. The ferrofluid parameters are taken similarly
to computations in [5] and correspond to experimental data in [2]: Bo = 1, Bom = 6, where the
dimensionless current intensity A∗ varies in the range from 0 to 6. Computations are performed on
non-uniform adaptive meshes for N = 1000. The adaptivity parameter a ≈ 0.006 corresponds to
the most elongated shape of the equilibrium free surface with mesh sizes monotonically changing
along the surface from s1− s0 = 0.04h to sN − sN−1 = 3h. The iterative scheme (3) was realized
for the relaxation parameter τ = 0.0001. The numerically resolved free-surface shapes and their
geometric characteristics z0 and rN , denoting the height of the ferrofluid drop and the radius of
its base, respectively, are shown in Fig. 2 and Fig. 3 for different contact angles.

Fig. 2 presents equilibrium axisymmetric ferrofluid shapes for three values of current
intensities A∗ ∈ {0, 3, 6}. Fig. 2 shows that ferrofluids with an acute contact angle α1 with the
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conductor elongate along the conductor more strongly than ferrofluids with an obtuse contact
angle α1. Namely, the maximum value of z0/R0 is greater than 16 for α1 = π/4, see Fig. 2a,
Fig. 2b in comparison with Fig. 2c, Fig. 2d, where the maximum z0/R0 ≈ 12 for α1 = 3π/4.
A similar effect is observed for the contact angle α2 with the horizontal plane. Ferrofluids with
an acute contact angle α2 with the horizontal plane spread along the plane more strongly than
ferrofluids with an obtuse contact angle α2, see rN/R0 for α2 = π/4 in Fig. 2a, Fig. 2c and for
α2 = 3π/4 in Fig. 2b, Fig. 2d. We note also that elongated shapes with obtuse contact angle
α1, see solid lines in Fig. 2c and Fig. 2d, require a larger length-scale near the conductor to
demonstrate that the contact angle α1 is obtuse.
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Рис. 2: Computed equilibrium ferrofluid shapes for different contact angles: a) α1 = α2 = π/4, b)
α1 = π/4, α2 = 3π/4, c) α1 = 3π/4, α2 = π/4, d) α1 = α2 = 3π/4, and at different dimensionless
current intensities: A∗ = 0 (dotted lines), A∗ = 3 (dashed lines), A∗ = 6 (solid lines).

Fig. 3 demonstrates the position of the contact point z0/R0 with the conductor and the
contact point rN/R0 with the horizontal plane at different current intensities A∗. We observe
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that with the grows of the values of A∗, the values of z0/R0 monotonically increase, i.e. the contact
line with the conductor rises higher, see Fig. 3 (left), and the values of rN/R0 monotonically
decrease, i.e. the contact line with the plane moves closer to the conductor, see Fig. 3 (right).
Fig. 3 (left) shows that the dynamics of the equilibrium shapes near the conductor mainly depends
on the contact angle α1 at high current intensities, whereas the dynamics near the horizontal
plane mainly depends on the contact angle α2, see Fig. 3 (right). Moreover, Fig. 3 confirms the
observations, discussed for Fig. 2, that acute contact angles result in more elongated shapes along
solid walls than obtuse contact angles. Namely, Fig. 3 shows that the curves for α1 and α2 equal
to π/4 lie above the curves for the contact angles equal to 3π/4. We note that the numerical
results, shown in Fig. 3 for the geometric configuration a) α1 = α2 = π/4, are numerically
consistent with the results of computations, presented in [5, Fig. 3]. The numerical results in [5]
were obtained on a uniform mesh, whereas the current study uses non-uniform adaptive meshes.
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Рис. 3: Dependence of the dimensionless contact points of the free-surface z0/R0 (left) and rN/R0

(right) on the dimensionless current intensity A∗ for equilibirum shapes with different contact
angles: a) α1 = α2 = π/4, b) α1 = π/4, α2 = 3π/4, c) α1 = 3π/4, α2 = π/4, d) α1 = α2 = 3π/4.
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