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The relativistic Foldy-Wouthuysen transformation is used for an advanced description of planar
graphene electrons in external fields and free (2+1)-space. It is shown that the initial Dirac equation
should by based on the usual (4× 4) Dirac matrices but not on the reduction of matrix dimensions
and the use of (2 × 2) Pauli matrices. The latter approach does not agree with the experiment.
The spin of graphene electrons is not the one-value spin and takes the values ±1/2. The exact
Foldy-Wouthuysen Hamiltonian of a graphene electron in uniform and nonuniform magnetic fields
is derived. The exact energy spectrum agreeing with the experiment and exact Foldy-Wouthuysen
wave eigenfunctions are obtained. These eigenfunctions describe multiwave (structured) states in
(2+1)-space. It is proven that the Hermite-Gauss beams exist even in the free space. In the
multiwave Hermite-Gauss states, graphene electrons acquire nonzero effective masses dependent on
a quantum number and move with group velocities which are less than the Fermi velocity. Graphene
electrons in a static electric field also can exist in the multiwave Hermite-Gauss states defining non-
spreading coherent beams. These beams can be accelerated and decelerated.

Keywords: Dirac equation in (2+1)-space; relativistic Foldy-Wouthuysen transformation; Landau levels for
graphene electrons; multiwave states in graphene

I. INTRODUCTION

The graphene is an allotrope of carbon consisting of
a single layer of atoms arranged in a hexagonal lattice
nanostructure [1]. It possesses many extraordinary prop-
erties. In particular, current carriers in the graphene
(electrons) are massless. Since the graphene has a 2-
dimensional structure, graphene electrons exist in (2+1)-
space. Certainly, they are described by the Dirac equa-
tion in this space. A solution of this equation defines all
fundamental properties of the graphene electron. In the
present study, we consider the planar graphene electron.

Unlike all previous studies of the graphene electron,
we use the relativistic Foldy-Wouthuysen (FW) transfor-
mation of the initial Dirac equation developed in Refs.
[2, 3]. As a result, we fulfill the exact description of
the graphene electron in a magnetic field and the high-
precision description in an electric field. The relativistic
FW transformation can also be used for a particle in
nonstationary fields [4]. The FW representation in rel-
ativistic quantum mechanics (QM) is equivalent to the
Schrödinger representation in nonrelativistic QM and op-
erators in these representations (but not in the Dirac one)
are quantum-mechanical counterparts of corresponding
classical variables (see Ref. [5]). The solution for the
magnetic field is similar to the Landau result [6, 7] and
gives one the exact FW wave eigenfunctions and the ex-
act energy spectrum agreeing with experimental data [8–
10].

An analysis of paraxial multiwave states of graphene
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electrons in the free (2+1)-space and a static uniform
electric field demonstrates the existence of Hermite-
Gauss (HG) states and the possibility to accelerate and
decelerate the electrons without a lost of coherence. We
also describe extraordinary properties of graphene elec-
trons in the HG states, namely, acquiring nonzero effec-
tive masses dependent on a quantum number and mov-
ing with group velocities which are less than the carrier
velocity. The latter velocity is equal to the Fermi one
vF ≈ 1× 106 m/s.
The classical description of spin in (2+1)-space fulfilled

in Sec. II shows that the spin is a real and important
physical parameter. We consider relativistic FW trans-
formations in Sec. III. The exact solutions for a graphene
electron in a magnetic field are obtained in Sec. IV. In
Secs. V and VI, we analyze multiwave (structured) HG
states and extraordinary properties of graphene electrons
in the free space and a static electric field. Section VII
summarizes the results obtained.
We assume that ~ = 1, c = 1 but include ~ and c into

some formulas when this inclusion clarifies the problem.
In the considered case, the role of c plays the Fermi ve-
locity vF . As a result, we usually suppose that vF = 1.
While the graphene electrons are massless, we take into
account the existence of massive chiral quasiparticles in
the bilayer graphene (see Ref. [11] and references therein)
and keep the mass in many formulas.

II. CLASSICAL DESCRIPTION OF SPIN IN
(2+1)-SPACE

There is a wonderful similarity between classical and
quantum-mechanical Hamiltonians and equations of spin
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motion in (3+1)-space. This similarity becomes evident
when the FW representation [12] is used (see Ref. [5] and
references therein). It is very natural to suppose that
such a similarity remains valid in (2+1)-space. There-
fore, a classical analysis of spin in (2+1)-space plays an
important role.
In this case, the antisymmetric tensor of electromag-

netic field takes the form (µ, ν = 0, 1, 2)

Fµν = ∂µAν − ∂νAµ =





0 E1 E2

−E1 0 −B
−E2 B 0



 , (1)

where Aµ = (A0, A1, A2) = (A0,−A) is the field po-
tential and E = (E1, E2) and B are the electric and
magnetic fields. The difference between upper and lower
indices is only for the field potential (A1 = −A1, A

2 =
−A2).
Vector products of two components of any vectors cor-

respond to third components in the (3+1)-dimensional
space: C × D = C1D2 − C2D1. Certainly, this scalar

quantity can have any sign. To avoid any misleading,
we will often write such a vector product in the form
(C ×D)3 demonstrating that this is a scalar.
Taking into account the Lorentz transformations of

electromagnetic fields also shows that B can have any
sign.
The (2+1)-OAM tensor is given by

Lµν =
∑

(xµpν − xνpµ). (2)

The spatial components of this tensor read

L12 = −L21 = L, (3)

where L is the OAM which can have any sign and can be
equal to zero. The summation takes place for an ensem-
ble of particles.
In classical physics and QM in (3+1)-space, the con-

ventional spin is defined in the particle rest frame. The
total angular momentum is the sum of the orbital angu-
lar momentum (OAM) and the rest-frame spin. While
the total angular momentum can also be defined as the
sum of the OAM and the laboratory-frame spin, this def-
inition needs the use of noncommutative geometry (see
Ref. [5] and references therein).
The conventional classical (rest-frame) spin in (3+1)-

space is defined as the internal OAM of a compound par-
ticle in its rest frame. The same definition of spin can
be used in (2+1)-space. In this case, the classical spin
depends on a hidden internal motion in the compound
particle. The OAM relative to any axis is conditioned
by the distance to this axis and the momentum of com-
pound particle as a whole. For the compound particle,
there is no summation in Eq. (2).
Since the OAM can have any sign or be equal to zero,

the spin also has this property. As a result, the spin in
QM of a Dirac particle can be equal to ±1/2. Therefore,
the spin coupling with the magnetic field, sB, can be

nonzero and can has any sign even for a fixed sign of B.
QM in the FW representation always agrees with classical
physics and this agreement has rigorous substantiation
[5]. Classical and quantum-mechanical equations of spin
motion are similar. The spin is an additional degree of
freedom. The main distinguishing feature of spin in QM
is its quantization.
All these spin properties take place when the spin

is defined as the internal OAM in the particle rest
frame. However, mathematical physics states that the
spin in (2+1)-space has different meaning. The quantum-
mechanical analysis shows [13] that the spin of a specific
particle can have only one value, positive or negative.
Signs of the spin differ for particles and antiparticles [13].
Such a spin plays the role of the flavor in high energy
physics [13] or can be regarded as the pseudospin when
it indicates the sublattice [11].
Nevertheless, this situation can be realized only for a

particle in a pure (2+1)-space. In contrast, any graphene
sheet is immersed in the (3+1)-space and interacts with
photons and external fields in this space. In the lat-
ter case, the (pseudo)vector of total angular momentum
should be conserved. It will be shown in the next section
that the one-value graphene spin is inappropriate when
a graphene sheet is considered in the (3+1) laboratory
frame.
The analysis fulfilled shows that the spin in the (2+1)-

space immersed in the (3+1)-space is a real and impor-
tant physical parameter which cannot be reduced to the
one-value spin.

III. INITIAL DIRAC EQUATION AND
RELATIVISTIC FOLDY-WOUTHUYSEN
TRANSFORMATION IN (2+1)-SPACE

The relativistic FW transformations in (2+1)- and
(3+1)-spaces are identical. Therefore, we use in the
present study the relativistic method first developed in
Ref. [2] and presented in the final form in Ref. [3]. In the
general case, this method uses an expansion of the final
result in a series in increasing powers of ~ and gives one
exact expressions for leading terms in the FW Hamil-
tonian proportional to the zero and first powers of the
Planck constant and for such terms proportional to ~

2

which describe contact interactions.
A great advantage of the FW representation [12] is the

simple form of operators corresponding to classical ob-
servables. In this representation, the Hamiltonian and
all operators are even, i.e., block-diagonal (diagonal in
two spinors). The passage to the classical limit usu-
ally reduces to a replacement of operators in quantum-
mechanical Hamiltonians and equations of motion with
the corresponding classical quantities. The possibility of
such a replacement, explicitly or implicitly used in prac-
tically all works devoted to the FW transformation, has
been rigorously proved for the stationary case in Ref.
[14].
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The initial Hamiltonian operator can be split into even
and odd operators commuting and anticommuting with
the Dirac operator β, respectively:

H = βM+E+O, βM = Mβ, βE = Eβ, βO = −Oβ.
(4)

The even operators M and E and the odd operator O
are diagonal and off-diagonal in two spinors, respectively.
For a Dirac particle, the M operator usually reduces to
the particle rest energy mc2:

HD = βmc2 + E +O. (5)

When

[M,O] = 0, [E ,O] = 0, [M, E ] = 0 (6)

and the initial Hamiltonian is independent of time, the
relativistic FW transformation is exact [2, 3, 15]. In this
case, the operators of the FW transformation and the
inverse transformation read

UFW =
ǫ+M + βO
√

2ǫ(ǫ+M)
, U−1

FW =
ǫ+M− βO
√

2ǫ(ǫ+M)
,

ǫ =
√

M2 +O2.

(7)

We should mention that the operator
√
ǫ is even and

diagonal and is defined by

√
ǫ ≡

√

diag(ǫii) = diag (
√
ǫii) .

The exact FW Hamiltonian is given by

HFW = βǫ + E . (8)

When the commutation relations (6) are not satisfied,
the transformation operator UFW can also be used, but
the obtained approximate relativistic FW Hamiltonian is
different [2, 3, 15]. In the general case, it has the form
[3, 15]

HFW = βǫ+ E +
1

4

{

1

2ǫ2 + {ǫ,M} ,
(

β [O, [O,M]]

−[O, [O,F ]]

)

}

, ǫ =
√

M2 +O2, F = E − i~
∂

∂t
.

(9)
In this equation, external fields can be nonstationary.
The (2+1) Dirac equation has the same form as the

usual one but the space is reduced:

iγµ(∂µ + ieAµ)ψ = mψ, µ = 0, 1, 2. (10)

For graphene electron,m = 0. The Dirac matrices satisfy
the usual relation

γµγν + γνγµ = 2gµν , gµν = diag{1,−1,−1},

where gµν is the metric tensor in the (2+1) Minkowski
space. All vectors have two components, e.g., p =

−i~
(

∂

∂x1
,
∂

∂x2

)

, and p0 = H. The Dirac equation (10)

takes the form

[γ0(p0 − eA0)− γ ·π +m]ψ = 0, π = p− eA, (11)

where π and p are the kinetic and canonical (generalized)
momenta. As a result, the initial equation for the Dirac
Hamiltonian reads

HDψ = (α·π+βm+eA0)ψ, α = γ0γ, β ≡ γ0. (12)

For this equation,

E = eA0, O = α · π.

For electrons, e = −|e|.
There are different forms of the Dirac matrices in

(2+1)-space. The conventional approach used, e.g., in
gravity (see Refs. [16, 17]) and electromagnetism [18]
consists in the reduction of the matrix dimensions:

β = γ0 = σ3, γ1 = iσ1, γ2 = iσ2, (13)

where σi (i = 1, 2, 3) are the 2× 2 Pauli matrices. How-
ever, the following analysis shows that this reduction is
unnecessary and inappropriate for the considered prob-
lem.
It is sufficient to consider the planar graphene electron

in a magnetic field. For the reduced spin matrices (13),
the exact relativistic FW Hamiltonian takes the form

HFW = σ3
√

m2 + π2 − eσ3B. (14)

Since this Hamiltonian is diagonal, states with positive
and negative total energies are separated. Lower and
upper components of the two-component wave function
vanish for positive-energy and negative-energy states, re-
spectively. As a result, Eq. (14) can be presented as
follows:

HFW =

(

√

m2 + π2 − eB 0

0 −
√

m2 + π2 + eB

)

.

(15)
Equations (14) and (15) clearly show that the Dirac

equation with the reduced matrices (13) does not de-
scribe the true spin. It follows from these equations
that, in particular, a spin-1/2 particle in positive-energy
states has only one spin value. The spin characterized
by Eqs. (14) and (15) is not an additional degree of free-
dom. We can show that these properties contradict to
a consideration of the graphene sheet in the (3+1) lab-
oratory frame. In this frame, (2+1) OAM becomes a
(pseudo)vector normal to the graphene sheet and con-
tributes to the total angular momentum. However, the
use of the one-value (2+1) spin meets insurmountable dif-
ficulties. It is well know that any massless particle in the
(3+1)-space has two helicity states (h = s · p/p = ±1/2
for a Dirac fermion). Therefore, the spin of any massless
particle has two basic states. Certainly, this conclusion
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covers (2+1) graphene electrons in the (3+1) laboratory
frame. While the above-mentioned states describe the
polarization in the plane of the sheet, in the (3+1)-space
appropriate coherent superpositions of them define two
other independent states characterizing two opposite spin
directions orthogonal to the sheet.
This consideration demonstrates that the (2+1)

graphene electron in the (3+1) laboratory always has two
independent spin states with s = ±1/2. Equations (14)
and (15) show that the spin contributes to the energy
of the particle and this contribution is important. As a
result, we can conclude that the conventional approach
consisting in the reduction of the matrix dimensions is
inapplicable to graphene electrons.
Instead, one can use the original 4× 4 Dirac matrices

[19]. We apply this approach in the present study. When
the original Dirac matrices are utilized, the relativistic
FW Hamiltonian has the form

HFW = βǫ + eA0 +
e

8

{

1

ǫ(ǫ+m)
,Σ3(π ×E

−E × π)3

}

, ǫ =
√

m2 + π2 − eΣ3B.
(16)

In this equation, only the field potentials and their first
derivatives are taken into account. The applied method
gives exact expressions for such terms [3]. Here and be-
low, we use the standard form of the Dirac matrices [20].
The total energy can be positive and negative.
Equation (16) explicitly shows that the rudimentary

spin in (2+1)-space is an important characteristic of the
particle polarization but not an one-value (pseudo)spin.
The eigenvalues S3 = ±1 of the operator Σ3 are scalar
values but not projections of any vector. The spin is an
additional degree of freedom and its value can be positive
or negative. Thus, the use of the original 4 × 4 Dirac
matrices conserves the agreement between QM in (2+1)-
and (3+1)-spaces. This fundamental conclusion can be
extended on Dirac particles in (2+1)-gravity, when the
(2+1)-space originates from the (3+1)-space [21].
We should also mention that spin interactions of

anyons with an electromagnetic field have been consid-
ered in Ref. [22].

IV. GRAPHENE ELECTRON IN ELECTRIC
AND MAGNETIC FIELDS

A. Exact solutions for a graphene electron in a
magnetic field

When the original 4 × 4 Dirac matrices are used, the
FW Hamiltonian for a graphene electron in a static mag-
netic field is exact and reads

HFW = β
√

m2 + π2 − eΣ3B. (17)

We underline that the magnetic field can be nonuniform.
A similar situation takes place for a Dirac particle [2, 23–

25] and a spin-1 particle with the normal (g = 2) mag-
netic moment [26] in (3+1)-space. The corresponding
FW Hamiltonians are also exact. The similarity of the
FW Hamiltonians in (2+1)- and (3+1)-spaces substan-
tially simplifies finding the exact energy spectrum and
exact wave eigenfunctions for the Hamiltonian (17).
Fortunately, exact solutions for a graphene electron

(m = 0, e = −|e|) in a uniform magnetic field can be
obtained from the Landau solutions for (3+1)-space. We
suppose that B > 0. There are two appropriate gauges
[7]. For the symmetric gauge Aφ = Br/2, Ar = 0, the
squared Eq. (17) takes the form

−∇2 + ieB
∂

∂φ
+
e2B2r2

4
− 2eszB = E

2,

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂φ2
,

(18)

where E is the energy.
The energy spectrum is defined by the well-known

eigenvalues of the operator π2 [7] and is gived by (e =
−|e|)

E = ±
√

(2n+ 1 + |ℓ|+ ℓ+ 2sz) |e|B. (19)

Here sz = ±1/2, n = 0, 1, 2, . . . , and ℓ (more precisely,
~ℓ) is the OAM which is a scalar (but not a pseudovec-
tor) in (2+1)-space. sz is an expectation value of the
corresponding spin operator (+1/2 or −1/2) and ℓ is in-
teger. The positive and negative signs define states with
positive and negative total energies (graphene electrons
and holes, respectively). The corresponding wave eigen-
functions are also defined by the Landau solution for the
symmetric gauge [7] (see also Refs. [25, 27]). They are
based on the Laguerre polynomials and are given by

ΦFW = A exp (iℓφ),

∫

Φ†
FWΦFW rdrdφ = 1,

A =
Cnℓ

wm

(√
2r

wm

)|ℓ|

L|ℓ|
n

(

2r2

w2
m

)

exp

(

− r2

w2
m

)

η,

Cnℓ =

√

2n!

π(n+ |ℓ|)! , wm =
2

√

|e|B
,

(20)

where the real function A defines the amplitude of the
beam, and L|ℓ|

n is the generalized Laguerre polynomial.
The wave function ΦFW is the upper spinor for the FW
bispinor wave function in positive-energy states: ΨFW =
(

ΦFW

0

)

. If negative-energy states are disregarded, the

spin function η is an eigenfunction of the Dirac operator
Σz (cf. Ref. [25]):

Σzη
± = ±η±, η+ =







1
0
0
0






, η− =







0
1
0
0






.

Another gauge is also possible [6, 7]: Ax = −By, Ay =
0. For this gauge, the energy eigenvalues can be obtained
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from the following equation:

−∇2 + 2ieBy
∂

∂x
+ e2B2y2 − 2eszB = E

2,

∇2 =
∂2

∂x2
+

∂2

∂y2
.

(21)

The energy spectrum is given by

E = ±
√

(2N + 1 + 2sz) |e|B, (22)

where N = 0, 1, 2, . . . . Evidently, Eqs. (19) and (22)
define the same set of energy levels. We underline the
importance of the spin. The energy levels (19) and (22)
can be presented as follows:

E = ±
√

2n|e|B, n = 0, 1, 2, . . . (23)

The unit in Eqs. (19) and (22) is caused by the
oscillator-like form of initial equations for E2. The energy
of the lowest level of oscillator is positive. Therefore, the
zero energy level is occupied only when sz = −1/2 and
is nondegenerate. All other energy levels are degenerate
and can be occupied by electrons with any (positive or
negative) spin. The same situation takes place for mas-
sive electrons in (3+1)-space (see relativistic formulas in
Refs. [27–29]). For positively charged particles, as fol-
lows from Eq. (17), the zero energy level is occupied
when sz = +1/2.
The Zeeman splitting for graphene electrons signifi-

cantly differs from that for atoms. As follows from Eqs.
(19), (22), and (23), the energies of Zeeman levels are pro-

portional to
√
B. Magnetic moments of graphene elec-

trons cannot be introduced because these energies cannot
be presented in the form µB. Levels with the same quan-
tum numbers n, l but opposite signs of spin are neigh-
bouring.
Equations (19), (22), and (23) perfectly agree with

experimental data [8–10]. In fact, all energy levels are
shifted by the value of the Dirac energy ED [9]. The
equation (22) is a final result in all theoretical papers
(see Refs. [30, 31] and references therein). Neverthe-
less, derivations in these papers were based on the use
of the reduced Dirac matrices (13) in initial Eq. (12).
One of preferences of the FW transformation is a clear
interpretation of obtained results [2, 5]. Equations (14)
and (15) which are easily obtained with this transforma-
tion unambiguously show that the energy spectrum of
electrons (e = −|e|) does not contain the positive-energy

level E =
√

2|e|B, n = 1. In this case, there is a gap
between positive-energy levels with n = 0 and n = 2.
Therefore, the quantum-mechanical approach based on
the reduction of the matrix dimensions disagrees with
experimental data.
In all previous studies, supersymmetric QM was used.

The validity of this approach has been confirmed in many
papers (see, e.g., Refs. [18, 31, 32]). Supersymmetric
nature of the (2+1) Dirac Hamiltonian in the presence
of electric and magnetic fields has been reported in Refs.

[31, 33–35]. If supersymmetric QM is appropriately used,
it also leads to correct results for the considered problem.
In our notation, the squared supersymmetric Hamilto-
nian obtained in Ref. [18] reads

H2 = π2 − eσ3B. (24)

Here the charge e missed in Ref. [18] is added andm = 0.
The extraction of the square root results in

H = σ3
√

π2 − eσ3B. (25)

The necessity of the matrix σ3 outside the square root fol-
lows from the Hamiltonian for free particles. Evidently,
Eq. (25) is equivalent to Eq. (14) for m = 0. However,
Eq. (25) was not written down in precedent papers. We
suppose that the confusion with the energy spectrum has
happened due to the emphasis on the zero energy level
and lack of attention to other energy levels in the litera-
ture.
We can conclude that the generally accepted energy

spectrum for a graphene electron in a uniform magnetic
field corresponds to the initial equation with the usual
(4×4) Dirac matrices and is incompatible with its conven-
tional replacement by the Pauli ones. While supersym-
metric QM is correct, the FW transformation method al-
lows one to obtain needed results more straigthforwardly
and easily. A distinctive feature of the FW representa-
tion is its equivalence to the Schrödinger one in nonrel-
ativistic QM. FW wave functions have the probabilistic
interpretation and operators in the FW representation
are counterparts of corresponding classical variables [5].
The eigenfunctions of Eq. (21) can be simply taken

from Refs. [6, 7] (with the rejection of z coordinate and
the addition of the spin wave function):

ΦFW = exp (ipxx)ψ(y)η,

∫

ψ†ψdy = 1,

ψ(y) = CN exp

[

−2(y − y0)
2

w2
m

]

HN

[

2(y − y0)

wm

]

,

CN =
1

π1/4w
1/2
m

√
2N−1N !

, y0 = − px
eB

,

(26)

where HN is the Hermite polynomial. We note that
the exact solutions (20) and (26) define multiwave states
formed by infinite continuums of partial de Broglie waves
but not by single de Broglie waves having definite mo-
menta.

B. Graphene electron in crossed electric and
magnetic fields

An important problem is a description of a graphene
electron in crossed uniform electric and magnetic fields.
In this case, the contraction or collapse of Landau levels
takes place [33–39]. Similar effects occur in a uniform
electric field and a pseudo-mangetic field induced by a
strain [40–42] and in uniform magnetic and radial electric
fields [43].
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In the present study, we restrict ourselves to a discus-
sion of quantum-mechanical equations of motion in the
FW representation. We consider a comprehensive inves-
tigation of the problem as an outlook.
In the analyzed case, A0 = Ey and E = Eey. The

FW Hamiltonian (16) takes the form

HFW = βǫ+ eEy +
evF
8

{

1

ǫ2
,Σ3(π ×E

−E × π)3

}

, ǫ =
√

v2Fπ
2 − eΣ3B.

(27)

We suppose that the energy is measured in electron volts.
If and only if the electric field is not strong (|eE| ≪ ǫ2),

we can neglect the spin term. In this case, the operator
equations of motion in the FW representation are given
by

v ≡ dr

dt
=
i

~
[HFW , r] = βv2F

π

ǫ
,

F ≡ dπ

dt
=
i

~
[HFW ,π] = eE + eβv2F

π

ǫ
×B

= e(E + v ×B).

(28)

To clear the consideration, we have written the equation
for the force F in the (3+1) laboratory frame.
The absolute value of the electron velocity is almost

equal to vF . When E is significantly less than vFB, the
energy spectrum remains discrete. However, the wave
eigenfunctions are distorted and the energy levels are
shifted. The stationary states remain multiwave because
they are formed by infinite continuums of partial waves.
When E/(vFB) > 1, the average velocity along the y
axis becomes nonzero and electrons (e = −|e|) move an-
tiparallel to this axis. In this case, there are not discrete
energy levels and the energy spectrum collapses.
The presented consideration cannot replace a detailed

quantum-mechanical analysis. However, it shows an ap-
plicability of the relativistic FW transformation to the
description of a graphene electron in crossed uniform elec-
tric and magnetic fields.

V. MULTIWAVE HERMITE-GAUSS STATES
AND EXTRAORDINARY PROPERTIES OF

GRAPHENE ELECTRONS IN THE FREE SPACE

Fortunately, multiwave HG states of graphene elec-
trons in the free (2+1)-space can also be deduced from
the corresponding HG states of particles in the free
(3+1)-space. The latter states are well known. They
are defined by the wave functions localized in x and y di-
mensions (see Refs. [44–46]): ΦFW = ψn(x, z)ψm(y, z).
These functions are derived in the paraxial approxima-
tion (|pz | >> |p⊥|) and are the solutions of the paraxial
equation. In the relativistic QM in the FW representa-
tion, this equation has the form [47]

(

∇2
⊥ + 2ik

∂

∂z

)

ΦFW = 0, ∇2
⊥ =

∂2

∂x2
+

∂2

∂y2
, (29)

where ~k = p =
√

p2
⊥ + p2z and ~ is omitted. Equation

(29) has been obtained for (3+1)-space. In this equation,
an appropriate shift of the squared particle momentum
has been made [27, 48]. It is similar to a shift of the zero
energy level in Schrödinger QM.
Wave functions in optics are similar to FW ones. The

functions ψn(x, z) and ψm(y, z) are normalized to unit:

∫

ψ†
n(x, z)ψn(x, z)dx = 1,

∫

ψ†
m(y, z)ψm(y, z)dy = 1.

However, a HG wave in the free (3+1)-space can be local-
ized in x direction and unlocalized in y one. Such a beam
can also exist in the free (2+1)-space. In this space, the
paraxial equation takes the form

(

∂2

∂x2
+ 2ik

∂

∂y

)

ΦFW = 0. (30)

The corresponding wave function reads

ΦFW = exp (ipyy)ψN (x, y)η,
∫

ψ†
N (x, y)ψN (x, y)dx = 1,

ψN (x, y) = CNHN

[√
2x

w(y)

]

exp

[

− x2

w2(y)
− ik

x2

2R(y)

+i

(

N +
1

2

)

ΦG(y)

]

, CN =
21/4

π1/4w1/2(y)
√
2NN !

,

w(y) = w0

√

1 +
4y2

k2w4
0

, R(y) = y +
k2w4

0

4y
,

ΦG(y) = arctan

[

kw2(y)

2R(y)

]

= arctan

(

2y

kw2
0

)

,

(31)
where k is the wave number of the beam, w0 is the mini-
mum beam width, R(y) is the radius of curvature of the
wave front, and ΦG(y) is the Gouy phase.
Equation (31) describes multiwave (structured) HG

beams being infinite continuums of partial de Broglie
waves in the free (2+1)-space. These beams do not
spread. As well as the corresponding beams in the free
(3+1)-space [47], such beams possess extraordinary prop-
erties. First of all, current carriers (electrons and holes)
in multiwave states move slower than the same carriers
in structureless ones. QM gives the simple explanation
of the similar effect in the free (3+1)-space [47].
All beam parameters are defined by expectation values

or eigenvalues of related operators. In the considered
case, the group velocity operator depends on a hidden
motion along the x axis. As follows from Eq. (17) at
B = 0,

v =
∂HFW

∂p
=
vFp

p
, v = vF . (32)

We use the term “hidden motion” for a motion which
does not contribute to expectation values of operators
defining some components of the velocity and momentum
but affects expectation values of squares of both these
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operators and eigenvalues of the energy operator. In the
considered case, 〈vx〉 = 0, 〈vy〉 6= 0. However, the abso-
lute value of the total momentum, p, is equal to E/vF and
is the same for all partial waves. The paraxial approx-

imation leads to py =
√

p2 − p2x ≈ p

(

1− p2x
2p2

)

. Thus,

the beam moves as a whole with the averaged group ve-
locity (cf. Ref. [47])

〈v〉 = v2F
〈py〉ey

E
≈ vFey

(

1− v2F 〈p2x〉
2E2

)

. (33)

This effect is similar to the subluminality of structured
light (see Ref. [47] and references therein).
Graphene electrons in the HG states also acquire

nonzero effective masses dependent on a quantum num-
ber. In the laboratory frame, a graphene electron can
be considered as a centroid with the constant laboratory
frame energy E and the velocity |〈v〉| < vF defined by
Eq. (33). Certainly, the centroid has also the nonzero
effective mass (cf. Ref. [47])

M =

√

E2 − v2F 〈p2y〉
v2F

=
〈p2x〉1/2
vF

. (34)

In principle, these unusual effects can be observed.
Certainly, this is a rather nontrivial task. For a gen-
eration of HG beams in (2+1)-space, one can adapt ex-
isting methods developed for a generation of HG beams
of photons and electrons in (3+1)-space [49–51]. As fol-
lows from Eq. (33), the difference 〈v〉 − vFey strongly
depends on the electron energy. Therefore, this difference
can be substantially increased if the HG beam is deceler-
ated by a (quasi)unuform electric field collinear to the y
axis. This field does not lead to a beam spread (see Sec.
VI). We suppose that the decrease of the beam velocity
by 5-10% makes the effect observable.

VI. MULTIWAVE STATES OF GRAPHENE
ELECTRONS IN A STATIC ELECTRIC FIELD

The following analysis shows that graphene electrons
in a static electric field can be in multiwave states.
We can suppose that the static and nonuniform elec-
tric field is negligible far from the field source and a
graphene electron is in a multiwave HG state in this
area. Such a graphene beam is accelerated or deceler-
ated by the electric field. Far from the field source, the
potential energy vanishes. Importantly, the total energy
of each partial beam remains unchanged. As a result,
the beam remains coherent and non-spreading. If the
potential energy in any fixed point with the radius vec-
tor R0 is equal to U0 = eA0(R0), it becomes equal to
U = eA0(R) = e[A0(R0) − E(R0) · r] (r = R −R0) in
a nearby point with the radius vector R. The simplest
situation takes place when the electric field is collinear

to the beam direction (y axis). In this case, px is not af-
fected by the electric field. The paraxial approximation
results in

ǫ = p =
√

p2x + p2y ≈ py +
p2x
2p
. (35)

For graphene electrons, the Fermi velocity is equivalent
to c for photons and is here omitted. We suppose that
py > 0 and r = (x, y). Since px is small, the last term
in Eq. (16) can be neglected. As a result, the energy in
positive-energy states is given by

E = p+ U0 − Eyy. (36)

When y = 0, p = p0 = E − U0. In the general case,
p = p0 + Eyy. Therefore, Eq. (35) takes the form

2(p0 + Eyy)
2 ≈ 2(p0 + Eyy)py + p2x. (37)

Since Ey = const, the operator expressions ypy and pyy
[py = −i∂/(∂y)] are equivalent for the next transforma-
tion. This equation can be presented in the form

p2x + 2(p0 + Eyy)py − 4p0Eyy − 2E2
yy

2 ≈ 2p20. (38)

When we denote k0 = p0/~ and omit ~, the operator
form of Eq. (38) reads

[

− ∂2

∂x2
− 2i(k0 + Eyy)

∂

∂y
− 2(2k0 + Eyy)Eyy

]

ΦFW

≈ 2k20ΦFW .
(39)

The substitution ΦFW = exp (ik0y)Ψ brings the corre-
sponding paraxial equation

[

∂2

∂x2
+ 2i(k0 + Eyy)

∂

∂y
+ 2(2k0 + Eyy)Eyy

]

Ψ = 0.

(40)
A comparative analysis of Eqs. (30) and (40) shows

that wave functions of graphene electrons in the free
(2+1)-space and a static electric field are similar and have
the form (31) in both cases. However, in the latter case
the parameters w(y), R(y), and ΦG(y) are not defined by
Eq. (31) and differently depend on y.
Thus, graphene electrons in a static electric field can

be in multiwave states which characterize non-spreading
coherent beams. As a result, a static electric field can ac-
celerate and decelerate HG beams of graphene electrons.

VII. SUMMARY

The relativistic FW transformation has been used for
an advanced description of free and interacting planar
graphene electrons. It has been proven that the initial
Dirac equation in (2+1)-space should be based on 4 × 4
Dirac matrices but not on the reduction of matrix di-
mensions and the use of 2 × 2 Pauli matrices. The lat-
ter approach does not agree with the experiment. New
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properties of graphene electrons in free (2+1)-space and
external fields have been found. The exact FW Hamilto-
nian of a graphene electron in uniform and nonuniform
magnetic field has been derived. It has been shown that
spin effects are rather important and the spin takes the
values ±1/2. The exact energy spectrum agreeing with
experimental data [8, 9] and exact FW wave eigenfunc-
tions have been obtained. These eigenfunctions describe
multiwave states in (2+1)-space. It has been proven that
HG beams exist even in the free space. Two extraordi-
nary properties of graphene electrons in the HG states are
acquiring nonzero effective masses dependent on a quan-
tum number and moving with group velocities which are

less than the carrier velocity. In a static electric field,
graphene electrons also can be in multiwave HG states
defining non-spreading coherent beams. This means that
HG beams of graphene electrons can be accelerated and
decelerated.
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[39] İ. B. Ateş, Ş. Kuru, J. Negro, Graphene Dirac fermions
in symmetric electric and magnetic fields: the case of an
electric square well, Phys. Scr. 98, 015816 (2023).

[40] A.-L. Phan, D.-N. Le, V.-H. Le, P. Roy, Electronic spec-
trum in 2D Dirac materials under strain, Physica E 121,
114084 (2020).

[41] D.-N. Le, V.-H. Le, and P. Roy, Graphene under uniax-
ial inhomogeneous strain and an external electric field:

Landau levels, electronic, magnetic and optical proper-
ties, Eur. Phys. J. B 93, 158 (2020).

[42] D.-N. Le, V.-H. Le, and P. Roy, Modulation of Lan-
dau levels and de Haas-van Alphen oscillation in magne-
tized graphene by uniaxial tensile strain/ stress, J. Magn.
Magn. Mater. 522, 167473 (2021).
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