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Abstract

This paper analyzes the feedback of the rotational energy extraction from a Kerr
black hole (BH) by the ‘ballistic method’, i.e. the test particle decay in the BH
ergosphere pioneered by Roger Penrose. The focus is on the negative energy
counterrotating particles (which can be massive or massless) going in towards
the horizon, and the feedback on the BH irreducible mass is assessed. Generally,
the change in irreducible mass is a function of the conserved quantities of the
particle. For an extreme Kerr BH and in the limit ;1 /M — 0, all the reduced
transformable energy goes into the irreducible mass (i.e. AM;,/|E;| — 00),
resulting in high irreversibility. The amount of extracted energy from the BH
using test particles is much lower than the change of transformable energy.
For non-extreme Kerr BHs, the effective potential of particle motion on the
equatorial plane in Kerr spacetime is analyzed, and it is demonstrated that the
Penrose process can only be undergone by BHs with a dimensionless spin
@ > 1/+/2 if the decay point coincides with the turning point. Based on that,
the lower limit of the change in irreducible mass is provided as a function
of the dimensionless spin of the BH. The significance of the increase in the
irreducible mass of the BH during the energy extraction process is generally
and concisely illustrated by introducing the concept of transformable energy
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of the BH. The feedback from the Penrose process on the irreducible mass
demonstrates the irreversibility of energy extraction and highlights that the
total amount of energy that can be extracted from a BH is less than previously
anticipated.

Keywords: classical general relativity, black hole, Penrose process,
irreducible mass

1. Introduction

Longstanding issues include the mechanisms by which the extreme environments of BHs sup-
ply and transfer energy. The energy extraction from ergosphere of a Kerr black hole (BH) has
attracted considerable attention in the current literature (e.g. [1, 2], and references therein).
This paper provides a quantitative analysis of the feedback from the Penrose process on the
irreducible mass, demonstrating the irreversibility of energy extraction and its impact on the
total amount of energy that can be extracted from a BH. This subject is of academic and
purely theoretical interest because the irreducible mass is linked to BH area or BH entropy.
Additionally, it may have astrophysical implications concerning energy supply in extreme
environments.

The Einstein equation is the cornerstone of modern gravitational physics, but it is non-
linear, making it difficult to solve. Nevertheless, Roy Kerr obtained an exact mathematical
solution [3], which plays a central role in describing rotating objects in General Relativity.
Subsequently, the discovery of the separability of the Hamilton—Jacobi equations for geodesics
in the Kerr spacetime in terms of four conserved quantities allowed for the accurate analysis
of the movement of test particles [4]. Moreover, the introduction of the effective potential [35,
6] further simplified the analysis of the physical trajectories of test particles with conserved
energy and angular momentum on the equatorial plane. These contributions form the basis of
Kerr BH physics formulation.

A practical application of these formalisms has led to the introduction of the concept of
the ergosphere (see, e.g. [7]) and has paved the way for deriving the mass-energy formula of
a Kerr BH. The research conducted by [8, 9] introduced the concept of irreducible mass Mj,,
and provided the mass-energy formula for a Kerr BH, given by

- rr 4 M2 ’

irr

(1.1

where J?/(4M: ) < 1. Thus, the mass of a Kerr BH depends on two parameters: J and Miy.
Additionally, [10] established the relationship between the irreducible mass and the surface
area of the BH, as expressed in

A=167M.. (1.2)

Both the irreducible mass and surface area always increase during irreversible transformations.
Furthermore, the surface area is linearly related to the entropy of the BH [11]. The work of
Ruffini et al [12—15] related irreducible mass to extractable energy, but still did not properly
consider the feedback effect brought by the growth of irreducible mass. In view of this, this
paper deals with this issue in general and concisely.

Up to now, numerous methods and their corresponding extended research for extracting
energy from BHs have been proposed [2, 15-22]. Especially, the challenge of using the Kerr
BH as an energy source for astrophysical systems and it affect on irreduceble mass has been
addressed in context of test magnetic field around a Kerr BH, with examples in the special
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cases of GRBs and AGNs [23]. However, despite the ballistic Penrose process being the most
fundamental one, the study of its influence on BHs has not been well-developed. Penrose
and Floyd [24] pioneered the idea that ballistic particle fission can be used as a process of
Kerr BH energy extraction. It was soon demonstrated that the Penrose process satisfies some
constraints. In particular, Ward [25] provides the energy limit of the Penrose process, demon-
strating that one cannot obtain significantly greater energies than those achievable through a
similar breakup process in the absence of a BH. This paper introduces a new constraint on
the decay position of the Penrose process, particularly when the decay point coincides with
the turning point. Additionally, what remained incomplete at the time was the consideration
of feedback regarding the irreducible mass resulting from the capture of a counterrotating test
particle by the BH horizon. Both Penrose and Floyd [24] and Chandrasekhar [26] have men-
tioned that the Penrose process leads to an increase in the surface area of a BH, but a precise
quantitative description is currently absent. For this reason, we re-examine this fundamental
issue followed by location constraints in this paper. Meanwhile, the irreducible mass always
increases for a BH in classical theory [9, 10]. Thus, it is fundamental to have a more direct
exemplification of how to interact with this fundamental quantity, M.

In this paper, the main focus is on ballistic Penrose processes, where we establish and illus-
trate significant restrictions on the relationship between the released energy of a BH and the
increase in the BH’s irreducible mass. The paper is organized as follows: In section 2, the
concept of transformable energy is presented to analyze various physical processes related to
BHs in a unified and concise manner. Especially, it highlights the impact of the increase in the
irreducible mass of the BH during the energy extraction process. This is a general discussion
that is not based on a specific process. Section 3 provides the basic equations associated with
the ballistic Penrose process, and establishes the constraints on the decay position when the
decay point coincides with the turning point. Building upon this, we prove that the energy
extracted from BH is less than the added irreducible mass for infalling particles both mass
and massless in the extreme BH case in section 4. In section 5 we are not limited to extreme
BHs, but for the general case. The lower limit of the change in irreducible mass as a function
of the BH spin is provided. Lastly, the main conclusions are summarized in section 6. Unless
otherwise specified, geometrical units (G = ¢ = 1) are used in this study.

2. Transformable energy

Contrasting irreducible mass, we define the transformable energy of a BH as:

2.1

which is referred to as rotational energy in some works [27]. For the extreme Kerr BH, the
a = 1, and the transformable energy is 29.2893%M. Near the extreme value, the transformable
energy decreases sharply with the decrease of spin. We are interested in the change in trans-
formable energy because it can indicate how the ‘reservoir’ of BH energy shrinks or expands.
Differentiating equation (2.1), it yields:

AEyans = AM — AM,. (2.2)

Namely, the change of transformable energy depends not only on the change of BH mass
but also on the increased amount of irreducible mass of BH. The symbol ‘A’ denotes the

3



Class. Quantum Grav. 41 (2024) 135019 S-R Zhang and M Prakapenia

3
~— ‘U";,‘ L I
F Eextracted = —AM
® My <
-F. .. .
) transformable,f
Etransformable, 0
.Mirr,f‘
~M rr Ij.
0

Figure 1. Schematic diagram of the changes in quantities of the BH during energy
extraction processes. The initial state quantities of the BH are denoted by the blue color,
while the final state quantities are represented by red. The green symbol indicates the
amount of change in the mass of the BH, and the yellow symbol represents the amount
of change in the irreducible mass. The process of energy extraction from the BH leads
to a decrease in its mass. Simultaneously, the irreducible mass increases, both resulting
in the reduction of transformable energy.

difference between the final and the initial physical quantities. For the infinitesimal process
(i.e. test particles limit), the discrete symbol ‘A’ is substituted with the differential symbol
‘d’. The quantity AM;, can only have a positive value, whereas AM can take on positive,
zero, and negative values, corresponding to normal BH accretion [28], the Pollock process
[29, 30], and BH energy extraction, respectively.

For the energy extraction process, M decreases, but Mj, increases, so the transformable
energy shrinks (see the further discussion and examples in the following section). Numerous
studies also refer to equation (2.1) as extractable energy [12], and some argue that all trans-
formable energy can be extracted [31]. However, this notion is fundamentally flawed as it
disregards the feedback of the energy extraction process on the irreducible mass. As depic-
ted in figure 1, only —AM represents the extracted energy according to the conservation of



Class. Quantum Grav. 41 (2024) 135019 S-R Zhang and M Prakapenia

energy, while the remaining portion (of the transformable energy change) is converted into
irreducible mass. This implies that less energy can be extracted from a BH than previously
expected. Therefore, this naturally leads us to investigate the quantitative increase in irredu-
cible mass for specific energy extraction processes, particularly focusing on the fundamental
Penrose process.

3. Basic equations and location constraints for Penrose processes

The preceding discussion provides a general overview. We now shift our focus to a specific
yet fundamental energy extraction process known as the ballistic Penrose process.

We present the basic assumptions. We consider the classical ballistic Penrose process,
namely the decay of an in-going massive particle ‘0’ in the ergosphere of a Kerr BH (usu-
ally with initial kinetic energy zero at infinite distance), into two particles ‘1’ and ‘2’ with
masses

Hos 1, p2t po > pr + 2, 3.1

where p can be zero as described in the appendix B. After decay, the particle ‘1’ counterrotates
with the BH and is in a negative energy state as measured from an infinite distance. Meanwhile,
particle ‘2’ returns to infinity with mass energy of E,, which is larger than that of the ingoing
particle, Ey, potentially resulting in the extraction of rotational energy from the BH. Following
the work of Ruffini and Wheeler [32], we assume that the test-particle approximation holds
and decay happens at a turning point. Furthermore, the motion of test particles in the equatorial
plane is considered, thus the motion is governed by an effective potential.

The effective potential is described in detail in the appendix A. For massive particles, for
example, the effective potential is given by

o 2ape \/?[&2 + 7= 2)] (P + [+ (24 7))
wo Pt (r+2) ’ 32)

that allows analyzing the physical trajectories on the equatorial plane of test particles with
conserved energy E. The allowed regions for a particle of E are the regions with V< E,
and the turning points occur where V = FE [33]. The above equation introduces dimension-
less quantities for the BH, & = J/M?, and for a massive test particle, £ = E/ 1, py = ps /(M)
and 7= r/M. Here, M and J are the BH mass and angular momentum, y and p,, are the test-
particle rest mass and angular momentum, and r is the radial coordinate. In this study, only the
positive sign solution in equation (3.2) is considered, deferring discussion of the negative sign
solution for future analysis. For the positive sign solution and particle motion outside the event
horizon (# > #+ = 1 + /1 — a2), an important property is revealed by the effective potential:
. ap

%
E> ———M—.
242y1-a?

If precisely on the event horizon, the inequality above becomes equality, but this can never
occur for the Penrose process because if a particle decays on the event horizon, no particle can
escape. Therefore, only inequality will be utilized in the subsequent analysis.

There are some notes in the above assumptions. Since the minimum energy of a particle
is achieved when p, = pg = 0 [33], we analyze the decay of a particle at the turning point.
Moreover, the equations (see in the appendix B) are simplified when decay occurs at the turning

(3.3)
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point; otherwise, the situation becomes more intricate due to the increase in free parameters.
For the same reason, this process occurs on the equatorial plane, where the ergosphere reaches
its maximum width, and where the effective potential for particle motion exists. Additionally,
the sum of the two masses in equation (3.1), p; + 2, cannot be equal to the initial particle
mass i in this process. If the masses remain equal, the solution of trajectories of p; and u;
always coincide, and they do not separate, meaning that these two particles never have a relative
velocity. From a physical perspective, mass loss is necessary to generate kinetic energy in the
center of the mass frame, allowing the two particles to have a relative velocity and separate.

Now, we utilize the equations to describe the scenario in which test particle ‘1’ and particle
‘2’ are created through the decay of particle ‘0’ at a turning point in the ergosphere of a Kerr
BH.

The equations controlling the decaying processes are described in detail in the appendix B.
In generally, by setting values of 7, E; and p4; that fulfill

Frrp<ir<2 (3.4a)
E <0 <O-E>&pi (3.4b)
SR N N T |
and masses that satisfy equation (3.1), one can always find the corresponding positive values
of geodesic conserved dimensionless quantities £, Do E,, and De2 from the set of equations:

pro =0, (3.5q)
toEo = Ey + 2B, (3.5b)
HoPg0 = Pg1 + 12D g2, (3.5¢)
[oPro = pr1 + f2pra.- (3.5d)

Equation (3.5a) guarantees that the particle ‘0’ decays at the turning point, equations (3.5b)—
(3.5d) represents the conservation of energy, angular momentum, and radial momentum. For
massive particle ‘1’, £y and pg; can expressed as dimensionless quantities £y = ulE] and
Po1 = D1

When particle ‘1’ with negative energy and negative angular momentum falls into the BH,
it reduces the mass and angular momentum of the BH according to

AM = E, (3.6)
and

AJ = py1, 3.7)
respectively. The energy extracted from the BH by particle ‘2’ can be expressed as

Eextracted = Eaj12 — Eo o (3.8)
According to the conservation of energy principle (i.e. equation (3.5b)), it can obtain

Eextracted = —E1 = —AM. (3.9)

By solving equation (3.5) with a chosen set of parameters and utilizing the effective poten-
tial, examples of Penrose processes can be conveniently demonstrated. Usually, the parameters
are chosen so that particle ‘0’ drops from rest at infinity. But it should be noted that the spe-
cific energy of particle ‘0 (Ey) can be equal to, larger than, or smaller than 1. Some specific
examples can be found in section 5.

When the Penrose process occurs and the decay point coincides with the turning point on
the equatorial plane, the decay position of the Penrose process can be constrained.

6
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Figure 2. The effective potential of the massive test particle motion on the equatorial
plane of Kerr space-time. A BH with spin @ = 0.9 is chosen. This figure shows the
case of particles with positive angular momentum (p4 > 0) outside the event horizon
(7 > 74). The effective potential has a peak near the event horizon.

As depicted in the panels corresponding to particle ‘0’ and particle ‘2’ in figures 7 and 9, the
presence of a turning point is evident when the effective potential exhibits a peak outside (or
at) the event horizon. Otherwise, the effective potential monotonically decreases outside the
horizon as 7 decreases. In this case, the particles at the turning point cannot escape outward.
Additionally, for particle ‘2’ to escape to infinity, the peak value of the effective potential
should exceed 1. The position of this peak, denoted as 7k, can be determined by

i—fr/(?peak) =0. (3.10)
Both particle ‘0’ and particle ‘2’ can only move at positions where 7 > 7pcax, indicating that the
decay point occurs outside of 7peak. Any decay point inside of #peqx is considered non-physical
(refer to the example in the section 5). Figure 2 also illustrates the effective potential of the
massive particle as a function of 7 and p,. Without loss of generality, a = 0.9 is selected in
figure 2 as an example. It is observed that 7yc decreases monotonically with an increase in
D¢, and as py tends to infinity, rpea approaches Fpeak, min, i.€.

?‘pea.k,min = lim ;‘peak' (311)
Pp—r00

The value of 7peak, min 18 solely dependent on the spin, as depicted in figure 3. It is evident that
when a < Lz’ Fpeak, min > 2, Which lies beyond the outer radius of the ergosphere of a Kerr

BH. This implies that when a < %, the decay point cannot reside within the ergosphere, thus

7
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Figure 3. The value of 7peakmin is defined in equation (3.11) as a function of the dimen-
sionless spin of the BH (blue curve). The orange dashed line indicates the outer radius
of the ergosphere.

rendering the Penrose process impossible. Consequently, we will focus solely on the scenario

where a > % from now on.

4. Feedback on irreducible mass for extreme Kerr BH

Up until now, what has remained incomplete is the consideration of the feedback on the irredu-
cible mass resulting from the capture of the counterrotating test particle by the BH horizon. In
other words, it involves estimating the amount of rotational energy lost by the Kerr BH through
the occurrence of this energy extraction process. We initiate the discussion by examining the
case of an extreme Kerr BH in this section.

The general formula of change of irreducible mass after a Kerr BH absorbed a test particle
is in appendix C. For the extreme Kerr BH (a = 1), the change in irreducible mass after the
absorption of test particle ‘1 with negative energy E| = E, w1 and negative angular momentum

Dé, = Dg1Myp is given by:

AMy, = \/(M+E1u1)2+ \/<M+Elu1>4 — (M2 + oM )2 /N2 — M/V2. (4.1)

The aim is to compare this quantity with the energy extracted from a BH. Thus, the following
conditions can be checked:

AMin- >| El ‘ L. (42)
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Table 1. The change of BH angular momentum, the change of BH mass, the change of
irreducible mass, their ratio, and the change of transformable energy at different 1; /M.
We keep 7= 1.5, E, = —1.7935, Pe1 = —10, and the ratio is maintained as pq : i1 :
o =2.4428:0.1:0.4.

WM AJ=pu[M?]  AM = E\[M] AMin[M)] T AEans[M]

1072 —0.1 —1.7935x 1072 0.1026 5.7181 —0.1205

1073 —0.01 —1.7935 x 10~ 0.0376 20.9904 —0.0394

107%  —1073 —1.7935x107%  1.2638x 107%  704.6711 —1.2656 x 1073
10757 —107° —1.7935x 1077 4.0041 x 1072 2.2326 x 10®®  —4.0041 x 10~%
0 0 0 0 00 0

We introduce the quantity:
X = ’UJI/M7 4.3)

and rewrite inequality ( 4.2) as:

\/<1 +E1x1)2+ \/(1 +E1x1)4 — (1 +ppx1) V2= 1/V2 > |EyJxy 4D

for x; < 1 one can make power expansion in the left-hand side of (4.4) and get:

1 — . A )
5\/)(1 2E1 —P¢, + gxl (2\@E1 + ﬁp¢l> > |E1 |)C1, (45)
or:
I v 1 ) ) )
V2B —bo [V + 5 (2\/551 + \/ip(b]) > |E. 4.6)

It is clear that for small x; this inequality tends to the inequality E, > D, /2. Thus, the follow-
ing theorem is obtained:

if 1] < M then AMi, > |Ey|p1, “4.7)

or: for any given El < 0and py, <0, there exist y; < M such that AM;, > |E1 | 1. Even more,
for any given E,; <0and D, <0, there exist 41 < M such that AM;, > h|E1 |p21, where h is a
any positive number.

When gy — 0, although the above proof represents the limit for massless particles, a more
rigorous proof for massless particles is additionally adopted. The proof process for massless
particles is similar to that of mass particles, but it should be noted that the energy and angular
momentum of massless particles cannot use dimensionless quantities.

In table 1 we present some numerical examples corresponding to different 1 /M ratios.
Note that we regard g, 141, and pp as test particles. We adopt the test particle approxima-
tion for particles with mass satisfying 11/M < 10~2. Therefore, as long as the ratio of pq, i1,
and p;, are kept fixed, their dimensionless solutions from equations (3.5) are the same. From
these examples, it follows that the absolute value of AE,,s becomes smaller and smaller and
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tends to 0 as p1 /M decreases, |AEyans|/|E1| becomes larger and larger and tends to infinity,
standing equation (4.7). In the natural and reasonable range where 111 /M < 1, the conditions
AMiy/|E;| > 1 and | AEyans| > |E/ | always hold. For the sake of rationality, in the subsequent
analysis, we focus exclusively on the scenario where the mass of the test particle is signific-
antly smaller than the mass of the BH, particularly in the case where 11 /M — 0. For massless
particles, the corresponding situation is considered where | £t |[— 0 and | 2% |— 0.

In short, for the Penrose process in an extreme Kerr BH, whether it involves a massive
particle or a massless particle falling into the BH, the amount of extracted energy from a Kerr
BH is much lower than the change in irreducible mass, resulting in high irreversibility and a
significant shrinkage of transformable energy.

5. Feedback on irreducible mass for general Kerr BH

Even in discussions regarding general Kerr BHs, the condition of a > % continues to be con-
sidered, as specified in the restrictions outlined in the last part of section 3.

As shown in appendix C, the change in the irreducible mass of a general Kerr BH after
absorbing the test particle ‘1’ is given by:

\/ . 2 . 4 R )
AMiy = <M+E1/L1) + \/(M—&-Elm) — (aM? 4 py,Muy)* /2

M\ 1+V1-a2 V2. (5.1)
Similar to the example of an extreme BH, we aim to verify the following condition:

AMi > B Eq |, (5.2)
here, & is currently an arbitrary positive constant, but its corresponding relationship with a will

be established in the subsequent analysis.
The quantity x; = p; /M can be introduced, and inequality (5.2) can be rewritten as:

\/(1 —|—E1x1)2 + \/(1 —|—E1x1>4 (@t pon1) V2= 1+ V1 —@/V2 > hlEy|x

(5.3)

for x; < 1 one can make power expansion in the left-hand side of equation (5.3) and get:

N 2 —ap g
2E, + —1 N
VIE v +0(2) > hE |, (5.4)

22V 1 +V1—a?

or

1+ op
Vi@ (3 apq 2 :
Ve E1A>x1+0x > h|Ey|x. (5.5)
z+2\/71a2< 2+2V1-a2 (51) > hlEn|
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Figure 4. The region given by equations (5.5) and (5.6). The blue line gives the boundary
of equation (5.5), and the orange line gives the boundary of equation (5.6). @ = 0.9 has
been chosen here. When a = 1, the regions given by equation (5.5) and equation (5.6)
coincide, and the red solid line indicates their boundary.

While the inequality (3.3) is currently valid for any position outside the horizon, thus, we are
able to demonstrate:
- 2E1—apg
2E; + 1
VIE x> 0. (5.6)
2V2V 1+ V1-a

However, we are unable to prove the equation (5.4) as we did in the last section.

Set a=0.9 and given h =1, the regions given by inequalities (5.5) and (5.6) are shown
in figure 4. The blue line represents the boundary of inequality (5.5), and the orange line
represents the boundary of inequality (5.6), corresponding to the event horizon where the
inequality (5.6) becomes equality. That is, region I satisfies AM;, > |E;|, while region II
has AM;,; < |E|. Indeed, an extreme Kerr BH offers a fortunate case where the condition
AM;,; > |E;]| can be reduced to E > De1/2, resulting in the coincidence of the two boundary
lines, as depicted in the red line. However, the same advantageous feature is not present for
a non-extreme Kerr BH. The region where AM;,, > |E;| becomes significantly constrained.
Nevertheless, further limitations on the irreducible mass feedback can be explored according
to the location constraints of the Penrose process.

The main objective of the following analysis is to find the lower limit of irreducible mass
feedback (as a function of BH spin) in the Penrose process.

We begin with the extension of figure 4, transforming it into a 3D depiction. First, we
note that the effective potential given by equation (3.2) depends on the radius, whereas
equation (5.5) does not contain radius. The boundary of equation (5.5) is

1 N
1+\/ﬁ <El_ ap ¢ >:h|E1|
v 2\ 2@

1

(5.7)
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Figure 5. The effective potential surface (shown in orange), and the plane represent-
ing the increase in irreducible mass equal to the decrease in BH mass, i.e. equation (5.7)
(shown in blue). The left panel illustrates the case of a massive particle, with the corres-
ponding effective potential surface described by equation (3.2), while the right panel
depicts the scenario of a massless particle, with the corresponding effective potential
surface described by equation (A.9). The figure is drawn within the energy ergosphere
(7t < # < 2), and for particles with negative angular momentum (p, < 0), a BH spin of
a=0.9 is selected.

from which one can express E; as a function of Ds. This function can be plotted as a plane.
The intersection curve between this plane and the effective potential surface corresponds to the
values of 7, denoted as 7. This 3D depiction and its intersection are shown in figure 5. For
massive particles, 7 is a function of p4, while for massless particles, 7.y is a constant related
to a. Selecting the radius 7 at the event horizon (r = r) on figure 5 will give the boundary
lines on figure 4. The region where particles can move is situated above the effective potential
surface (orange surface), coinciding with the orange surface when particles reach the turning
point. The region above the blue plane signifies AM;,, > |E;|, while the area below the blue
plane indicates AM;, < |E;|.

The 7it(py) corresponding to the intersection curve in figure 5 can be solved using the
combined equations (3.2) and (5.7). For negative py4 values, 7 is a monotonically increasing
function as py4 decreases. When py, = 0, 7eric = 74, and when pg approaches negative infinity,
Perit approaches 7eritmax- In the case of massless particles, 7 remains a constant value inde-
pendent of py and precisely matches the 7itmax value of massive particles. 7eritmax is solely
dependent on the values of a and &. For a specific value such as @ = 0.9 and & = 1, the corres-
ponding Ferie max 18 1.53. In short, any position that violates AM;,, < |E;| cannot exceed Ferit max»
i.e. the condition AM;,, < |E;| can only occur within a limited region where 7 is smaller than
Perit.max» particularly in proximity to the horizon.

On the other hand, recalling the limit value ?peak,min(&) that was determined in section 3, we
equate these two limits, i.e.

;‘peak,min (&) = ?‘crit,max (aa h) . (58)

By doing so, h(a) can be solved as the lower limit of the increase in irreducible mass, providing
the constraint on the irreducible mass feedback. This is because any physically valid solution
for the decay point lies outside 7peak min, €quated to Ferigmax. Consequently, AMy > h|E;| holds
for any physically valid solution (above the blue plane in the example of 4 = 1). The function
of h with respect to a is numerically solved, as illustrated in figure 6. Therefore, the restric-
tion on the growth of irreducible mass in the Penrose process is derived as AM;, > h|AM)|.

12
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Figure 6. Restrictions on irreducible mass feedback for different spin of the BH, i.e
the lower limit of increased irreducible mass as function of dimensionless spin from
equation (5.8). The assumptions needed for this constraint are that these particles are
test particles, and particle ‘0’ decays at the turning point (while there is no need for
particles ‘1’ and ‘2’ to be at the turning points).

As a approaches %, h tends to infinity; however, in this case, the Penrose process can only
occur at the outer boundary of the ergosphere. When a is less than 0.926 88, & is greater than
1, indicating that the Penrose process is highly irreversible for values of below 0.926 88. As a
approaches 1, h approaches 0. However, it is important to note that when a equals 1, the restric-
tions obtained in this section are invalid, and the discussion in section 4 should be referred to.

In summary, for the Penrose process occurring in a general Kerr BH, when the decay point
coincides with the turning point, we can not only constrain the decay position (as shown in
figure 3), but also impose a restriction on the irreducible mass feedback, AM;, > h|AM)|,
where & is a function of a as depicted in the figure 6. Based on this differential relation-
ship, it can be further calculated that a maximum of 11.6117% M of energy can be extracted,
rather than 29.2893% M. It is noteworthy that the above proof remains applicable in the case
where particle ‘1’ is a massless particle, as 7eigmax Serves as the critical radius for massless
particles.

We have already given the general restrictions on irreducible mass feedback of the Penrose
process. Now, we present several illustrative examples to improve understanding of the Penrose
process in general Kerr BH and its impact on the irreducible mass.

The first case is for a = 0.9 and decay point of 77 = 1.75. The schematic diagram and corres-
ponding parameters are presented in figure 7, and the corresponding irreducible mass feedback
is summarized in the first row of values in table 2. It is noteworthy that the effective potential
peaks associated with particle ‘0’ and particle ‘2’ are both located to the left of the decay point,
indicating the physical validity of this set of solutions. Furthermore, the increase in irreducible
mass exceeds the decrease in the BH mass.
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Particle coming in from infinity
Pgo=26321 Eg=10

Particle falling toward the " ONE WAY MEMBRANE"
Pgr=-10 E;y=-08415

1.5 2.0 255 3.0 3.5 4.0 45 5.0
F=riM

Particle going back to infinity
Py =4.0524 E,=14546

Figure 7. The physically feasible solution for particle ‘0’ and particle 2’ in region I
of the left panel of figure 6. This process is highly irreversible (AMiy >| E; |). In the
example, a = 0.9, 7 = 1.75 is maintained, and the ratio is keptas pto : p1 : pro = 1:0.02:

0.6990.

Table 2. The summary of irreducible mass feedback when the mass of the test particle
/M — 0. The columns, from left to right, represent the case number, the dimensionless
spin of the BH, the location of the decay point, the ratio between the growth of irredu-
cible mass and extracted energy in the limit of x/M — 0, and a judgment of whether
it is a physical solution. For the remaining parameters, please refer to the values in the

corresponding case diagram.

Case a 7 % physical solution?
1 0.9 1.75 52955 >1 Yes

0.9 1.5 0.7109 < 1 No
3 0.98 1.27 0.8962 < 1 Yes

The second case is still for @ = 0.9 but the decay point of 7 = 1.5. The schematic diagram
and corresponding parameters are presented in figure 8, and the corresponding irreducible
mass feedback is summarized in the second row of values in table 2. Although the expected
increase in irreducible mass is smaller than the decrease in the BH mass, the effective potential
peaks associated with particle ‘0’ and particle ‘2’ are both located to the right of the decay
point, indicating that these particles would need to overcome the potential barrier to reach the
decay point or escape to infinity. As a result, this set of solutions is considered non-physical in
classical theory. However, it is possible that the solutions may become physically meaningful
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Figure 8. The nonphysical solution of particle ‘0’ and particle 2’ in region II of the
left panel of figure 4. This process is not expected to be a highly irreversible process
(AMix <| Ei |). The vertical dashed line is the position where the particle ‘0" is expected

to decay. In the example, a = 0.9, 7 = 1.5, |, = —2.2948, py1 = —10is maintained, and
the ratio kept as o : 1 2 2 = 1:0.02 : 0.6302.

when accounting for the quantum effects of the particles. Nonetheless, discussing the quantum
effects is beyond the scope of this paper.

The third one is for @ = 0.98 and the decay point of # = 1.27. The schematic diagram and
corresponding parameters are presented in figure 9, and the corresponding irreducible mass
feedback is summarized in the third row of values in table 2. This case represents a physically
valid solution, where the increase in irreducible mass is smaller than the decrease in the BH
mass.

In the above examples, the first one represents a physical solution, while the second one
corresponds to a non-physical solution. This distinction arises because the decay point in the
first example is outside the f’peak,m,-n(& =0.9), while the decay point in the second example falls
within the 7peak min (@ = 0.9). Both examples maintain ps = —10, resulting in relatively larger
feedback on the irreducible mass in the first example due to the larger decay radius. Bringing
the decay point closer to the event horizon reduces the feedback on the irreducible mass, but
it may also lead to a non-physical solution, as observed in example 2. Moreover, particular
attention should be given to example 3, which presents a physical solution where the increase
in irreducible mass is smaller than the decrease in the BH mass. This suggests that the Penrose
process is not consistently highly irreversible.
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Figure 9. The physically feasible solution where the increase in irreducible mass is
smaller than the decrease in the BH mass (AM;,; <| E\ |), i.e. this process is not a highly
irreversible process. In the example, a = 0.98, 7 = 1.27 is maintained, and the ratio kept
as po : p1: e =1:0.02:0.3.

6. Discussion and conclusions

Determining the increase in the irreducible mass of a BH is crucial, as it not only reflects
the irreversibility of the corresponding process but also renders the calculation of changes in
the surface area and BH entropy effortless. Moreover, the energy extraction process in a BH
reduces the BH mass while increasing the irreducible mass, both of which lead to a contrac-
tion of the transformable energy. As a result, the total energy that can actually be extracted
from a BH is less than what would have been possible if no feedback had been considered. For
instance, Tursunov and Dadhich [31] indicate that all the initial transformable energy is avail-
able for extraction. However, our results show that the energy extraction process may be highly
irreversible and result in significantly less energy being extractable from a BH compared to
the initial transformable energy.

To illustrate the relationship between the released energy of a BH and the increase in its
irreducible mass, the Penrose process is examined as an example. We have re-derived the fun-
damental equations describing test particle motion and decay on the equatorial plane of a Kerr
BH, considering both massive and massless particles. These equations allow us to quantitat-
ively demonstrate the feedback of irreducible mass.

In the case of an extreme Kerr BH, as the limit /M — 0 is approached, the ratio
AM;,./|E;| tends to infinity, indicating that all the reduced transformable energy contributes
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to the increase in irreducible mass. This high irreversibility is demonstrated in table 1. The
amount of energy extracted from a Kerr BH using massive particles is significantly lower than
the change in transformable energy.

For non-extreme Kerr BHs, the effective potential of particle motion on the equatorial plane
in Kerr spacetime is analyzed. It is demonstrated that only BHs with a dimensionless spin
a greater than 1/ v/2 can undergo the Penrose process if the decay point coincides with the
turning point. Based on this analysis, the lower limit for the change in irreducible mass as a
function of the BH’s dimensionless spin is provided (figure 6).

There are numerous equally important processes for the case where the decay point does
not coincide with the turning point, as well as for the analysis of the negative root solution in
equation (3.2). The negative root solution may not be intuitively obvious from a physical stand-
point. However, since it is also a solution of the Einstein field equations, it warrants further
consideration. This may be related to the motion of antimatter in the reverse direction of time.
Additionally, various energy extraction processes, such as the confined Penrose process [22],
collisional Penrose processes [19], and the Blandford—Znajek(BZ) process [20], are worth
studying in terms of their feedback to BHs. Furthermore, the Pollock process [29, 30] and
accretion processes are also relevant for understanding the irreducible mass and irreversibility
of BHs. These physical processes either involve consideration of BH magnetic fields (such
as the BZ mechanism and Pollock process) or complex systems with many particles (such
as collisional Penrose processes). When considering magnetic fields, not only may the mag-
netic field itself interact with the BH, altering its mass and irreducible mass, but it may also
extend the ergosphere of the BH, leading to the appearance of a wider range of negative-energy
orbits, thereby resulting in different energy extraction and feedback from the BH compared
to the Penrose processes considered in the current manuscript. When considering complex
multi-particle systems, we intend to statistically account for the energy extracted from the
BH and the feedback on the BH, rather than considering the trajectory of each individual
particle and its impact on the BH. These supplementary findings will be discussed in future
research.
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Appendix A. Effective potential

In this appendix, explicit formulas for quantities relevant to describing the Penrose process in
Kerr spacetime are provided. In Boyer-Lindquist coordinates [34] and units where G = ¢ =
1, the Kerr metric takes the form

ds? = gapdx®dy”
2M. 4Marsin®6 ) A
- (1 - Er) a2 — %Smdtdqﬁ + S+ £d6 + Ssin’6dg? (A1)

where M is the mass of the BH, @ = a/M = J/M? is its dimensionless spin, and
Y = + d’cos’,
A=d*+1r*—2Mr,
A= (P+d) - Ad’sin’6. (A.2)

For a test particle, the four-momentum is

(A.3)

W e (dr dr do do
P =dv ““(axmmm)

where A is an affine parameter. The existence of a conserved energy, a conserved angular
momentum, and a conserved rest mass of the particle

E: _pla
LZ =Do,
p=(=p"pa)’- (A.4)

Dimensionless quantities can be introduced for convenience: #=r/M, a =a/M and for
massive particles additionally have the constants of motion: E = E/p, Po =pe/M/ . The
ergosphere is maximal in the equatorial plane; therefore, the decay of a particle falling onto
the BH in the equatorial plane is considered.

The motion of a particle (both mass particle and massless particle) in the equatorial plane
of Kerr BH is governed by effective potential, which is given by

V() = PEVI =% iz_a% (A5)

where «, 8 and v, given by

o= (r2+a2)2—Aa>O
B =2Mrapy
Y0 = (* —2Mr) pj — i’ A. (A.6)

Only the positive sign solution is considered in this paper. The allowed regions for a particle
of E are the regions with V < E, and the turning points occur where V = E [33].
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For massive particle,

y 2ot i@ G- 2) (334 R+ 24 )

- = A7

w P+a*(r+2) ’ (A7)
when r = ry, X — % where r,. = M ++/M? — a2 is the radius of the outer horizon.
Thus, we have that E> ‘”’7¢ for 7 > 7+, For the extreme Kerr BH (a = M),

24/ 1—a2

v 2ﬁ¢+(?—1)\/?(?3+?+2)+13§j2
v_ A8
o P42 ’ (A.8)

when 7 — 1, - — 2% Thus, we have that £ > 22 for i > 7+ = 1.
For massless particle,

2abe +f\/ (@2 +7(F—2)] 1% A9)

ro
+

whenr—r , V— 2+2\/; Thus, we have that E > 2+2\/7A2 for 7> 7. For the extreme

Kerr BH,

e 1 %y
=M i )\/7, (A.10)

PBEr+2

r Po Po PN
when 3 — 1,V — 55, Thus, have that £ > 7 forr>rt =1.

Appendix B. Particle decaying processes

We can imagine that test particle ‘1’ was created by the decay of particle ‘0’ at some turning
point in the ergosphere of Kerr BH when particle ‘1’ goes into the horizont and particle ‘2’
goes out to infinity (Penrose process). Since the minimum energy of a particle is achieved
when p, = pg = 0 [33], we only analyze the decay of a particle at the turning point.

For any given

Frrp<r<2 vl (B.1a)
E, <0, p¢1<O:E1>2+2\/A/i_7az (B.1b)
Hos M, Mot Ho > i1+ pho, (B.1lc)
one can always find the corresponding positive values
Eo, Peo, Er, Pen (B.2)
from the following set of equations:

Do =0, (B.3a)

poEo = Ey + ioEs, (B.3b)
oPg0 = Pg1 + HaDg2, (B.3¢)

poPro = Pri + 2D, (B.3d)
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where
po={(B-1)P 422 + [ (83-1) —ﬁfbo}?Jrz(&Eo—ﬁ(bo)z}l/z, B4
P = {(E%— 1) P 4 [a (Eg— 1) —;5552] %+2(a[92 —m)z}l/z. (B.5)

And the explicit expression of p,; depends on whether particle ‘1’ has mass or not. For massive
particle ‘1’, conserved quantities can be expressed in a dimensionless form and

X X R 2y 1/2
Pt = _{(E% - 1) P2+ [a (E% - 1) —ﬁél} ) (&El —,3¢1) } . (B.6)
For massless particle ‘1, conserved quantities cannot be expressed in a dimensionless form
and
2 Do\ 1/2
pi=— |EW+ @B -2 | 2 (aE1 - ﬁ) . (B.7)

Equation (B.3a) guarantees that the particle ‘0’ decays at the turning point (see example
figure 7), equations (B.36)—(B.3d) represents the conservation of energy, angular momentum,
and radial momentum.

Furthermore, it is essential to note the following: 1) if we assume that the particle ‘1’ is also
generated at the turning point, we have p,; = 0, and as a consequence, p,, = 0; 2) if particle
‘2’ is massless, the physical quantity related to particle ‘2’ should not be expressed as a dimen-
sionless quantity, similar to the physical quantity associated with particle ‘1°.

Appendix C. Change of irreducible mass

Particular attention is given to the role of the irreducible mass. Inverting equation (1.1), the
irreducible mass can be expressed as a function of the BH mass and angular momentum. There
are two negative and two positive roots. For obvious reasons, the two negative roots are dis-
carded, and the two positive roots are

M —
Mi(f)ﬂ/Mz—i ZM J27 (C.1)

which for the extreme Kerr BH coincide, i.e.

My =M =m) = % (C.2)
Generally, only the plus sign root in equation (C.1) is physical, while the negative sign root
is unphysical. For instance, the latter leads to Mi(r:) (J=0) =0, instead of the correct result,
M (1=0)=m.
Now, we consider the change of irreducible mass of a Kerr BH after absorbing the particle
‘1’ with energy E; and angler momentum p4 from the equatorial plane:

AMy = \/(M+E1)2+ \/(M+E1)4 —(aM? +py, )P N2 =M\ 1+ 1-a2/v2.  (C3)
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It is worth noting that the change in irreducible mass exhibits nonlinear behavior with respect
to 1 in general. Moreover, in the case of a massive particle, the quantities £ and pg can be
expressed as dimensionless values.
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