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1 Introduction

The terms “mean value theorem”, “mean value property”, “mean formula”, and “mean value” are quite
common in mathematics (e.g. real analysis, complex analysis, probability theory, partial differential
equations) and physics. But they may pertain to diverse phenomena.

In the theory of partial differential equations mean value theorems for harmonic functions and
solutions of various elliptic equations are best known. They include the classical mean value prop-
erty for harmonic functions [12] and the results obtained in works [9, 7, 8, 27] for more general
elliptic equations and elliptic operators. Similar theorems are formulated for (hypoelliptic) parabolic
equations [16, 17, 18].

Such facts can be established not only for elliptic and parabolic equations but also for hyperbolic
ones. Foremost, it should be noted the classical Asgeirson’s mean value theorem [3, 6] for the
ultrahyperbolic differential equation and the mean value theorem of Bitsadze and Nakhushev for
the wave equation [2]. Spherical means can be used to solve initial-value problems as it is done
in work [10] for the wave equation and the Darboux equation. Using a symbolic approach [28]
several results [24, 22, 23, 30, 25, 31, 29, 26, 33, 32] associated with mean values of solutions of
various differential equations were obtained in works of Polovinkin and Meshkov et al. It should also
be said that in these works the parallelogram identity (parallelogram rule) for the wave equation
(which the authors call ‘difference mean-value formula’) was generalized to the following cases: a
(nonstrictly) hyperbolic equation with constant coefficients of the third-order [24], fourth-order [22],
higher-order [32], an equation with constant coefficients and with the operator represented by the
product of the first order hyperbolic operators and the second-order elliptic operators [29]. These
results can be used to obtain analytical and numerical solutions to differential equations as it was
done in [12, 14, 11, 20, 21]. However, these results are mainly given for equations with constant
coefficients because of the methods used (Fourier transform, search for accompanying distribution
with compact support).
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Moreover, the characteristic parallelogram of differential equations has some applications in hy-
drodynamics [19].

In this paper, we derive the identity of a curvilinear characteristic parallelogram for a general
semilinear second-order hyperbolic equation using the method of characteristics [12]. This identity
can be considered as the mean value theorem in some sense.

2 Semilinear hyperbolic equation

In the domain Ω ⊆ R2 of two independent variables x = (x1, x2) ∈ Ω we consider the following
semilinear hyperbolic equation of the second-order

Au(x1, x2) = f(x1, x2, u(x1, x2), ∂x1u(x1, x2), ∂x2u(x1, x2)), (2.1)

where the operator A is defined as

Au(x1, x2) := a(x1, x2)∂2
x1
u(x1, x2) + 2b(x1, x2)∂x1∂x2u(x1, x2) + c(x1, x2)∂2

x2
u(x1, x2),

and is hyperbolic (this means b2(x)− a(x)c(x) > 0 for any x ∈ Ω).
Equation (2.1) has two families of characteristics: γ1(x1, x2) and γ2(x1, x2), which are the first

integrals of the ordinary differential equation [12]

a(x)(dx2)2 − 2b(x)dx1dx2 + c(x)(dx1)2 = 0, (2.2)

and solutions of the equation of characteristics [12]

a

(
∂γi
∂x1

)2

+ 2b
∂γi
∂x1

∂γi
∂x2

+ c

(
∂γi
∂x2

)2

= 0, i = 1, 2. (2.3)

It is known [12] that equation (2.2), generally speaking, can be decomposed into two equations

a(x)dx2 − (b(x)±
√
b2(x)− a(x)c(x))dx1 = 0, if a(x) 6= 0,

or
c(x)dx1 − (b(x)±

√
b2(x)− a(x)c(x))dx2 = 0, if c(x) 6= 0,

or
dx1dx2 = 0, if a(x) = c(x) = 0.

Therefore, we can assume that γ1 and γ2 are the first integrals of different differential equations

and they are functionally independent since the Jacobian
∣∣∣∣∂(γ1, γ2)

∂(x1, x2)

∣∣∣∣ is nonzero [12].

If the curves γi, i = 1, 2, have a parametric representation (x
(i)
1 (t), x

(i)
2 (t)), where x(i)

j , j = 1, 2,
are some twice continuously differentiable functions, then the following equality holds [4]

a
(
Dx

(i)
2

)2

− 2bDx
(i)
1 Dx

(i)
2 + c

(
Dx

(i)
1

)2

= 0, i = 1, 2,

where D is the ordinary differential operator.
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3 Curvilinear characteristic parallelogram

Definition 1. Curvilinear characteristic parallelogram of hyperbolic differential equation (2.1) is the
set Π = {x | γ1(x) ∈ [l1, l2] ∧ γ2(x) ∈ [r1, r2]}, where l1, l2, r1, r2 are some real numbers and γi,
i = 1, 2 are two different functionally independent characteristics.

Remark 1. Definition 1 is well defined. It is known [1] that any other first integral of (2.2) has the
form q ◦ γ1, where q is some continuously differentiable function. If γ1(x) ∈ [l1, l2], then, due to the
continuity of q, q(γ1(x)) ∈ q([l1, l2]) = [l̃1, l̃2]. So the curvilinear characteristic parallelogram does
not depend on considered characteristics.

Fig. 1. Curvilinear characteristic parallelogram

Definition 2. Vertices of the curvilinear characteristic parallelogram Π = {x | γ1(x) ∈ [l1, l2] ∧
γ2(x) ∈ [r1, r2]} are points x such that γ1(x) = li ∧ γ2(x) = rj, (i, j) ∈ {1, 2} × {1, 2}.

Remark 2. Definition 2 is well defined. We should show that q ◦ γ1, where q is some continuously
differentiable function, maps [l1, l2] into [l̃1, l̃2] and ∂([l1, l2]) into ∂([l̃1, l̃2]). Obviously, if the function
q is increasing or decreasing these properties must be true. But if the the function q does not satisfy
these conditions, then there exists at least one point l0 ∈ (l1, l2) such that q′(l0) = 0. Due to the
continuity of q, there exists a point x ∈ Π such that γ1(x) = l0 ∈ (l1, l2) This implies∣∣∣∣∂(q ◦ γ1, γ2)

∂(x1, x2)

∣∣∣∣ (x) =

∣∣∣∣q′(γ1(x))∂x1γ1(x) q′(γ1(x))∂x2γ1(x)
∂x1γ2(x) ∂x2γ2(x)

∣∣∣∣ = 0 when γ1(x) = l0.

But we consider only characteristics with nonzero Jacobian. The statement is proved.

Definition 3. Opposite vertices of the curvilinear characteristic parallelogram Π = {x | γ1(x) ∈
[l1, l2] ∧ γ2(x) ∈ [r1, r2]} are its vertices x1 and x2 such that γ1(x1) 6= γ1(x2) and γ2(x1) 6= γ2(x2).

Point transformation of variables of the form y1 = γ1(x1, x2), y1 = γ2(x1, x2) is invertible [34], i.e.
there is the inverse change of variables x1 = γ−1

1 (y1, y2), x2 = γ−1
2 (y1, y2).
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Lemma 3.1. Let Π = {x | γ1(x) ∈ [l1, l2] ∧ γ2(x) ∈ [r1, r2]} be a curvilinear characteristic parallel-
ogram and the conditions a ∈ C2(Π), b ∈ C2(Π), c ∈ C2(Π), and f ∈ C1(Π × R3) be satisfied. The
function u belongs to the class C2(Π) and satisfies equation (2.1) if and only if it can be represented
as

u(x) = g1(γ1(x)) + g2(γ2(x))

+

γ1(x)∫
l(0)

dz1

γ2(x)∫
r(0)

1

2 (a∂x1γ1∂x1γ2 + b (∂x2γ2∂x1γ1 + ∂x2γ1∂x1γ2) + c∂x2γ1∂x2γ2) (γ−1
1 (z), γ−1

2 (z))

×
[
f
(
γ−1

1 (z), γ−1
2 (z), u

(
γ−1

1 (z), γ−1
2 (z)

)
,

∂x1u
(
γ−1

1 (z), γ−1
2 (z)

)
, ∂x2u

(
γ−1

1 (z), γ−1
2 (z)

))
− Aγ1

(
γ−1

1 (z), γ−1
2 (z)

) (
∂x1u

(
γ−1

1 (z), γ−1
2 (z)

)
∂y1γ

−1
1 (z)

+ ∂x2u
(
γ−1

1 (z), γ−1
2 (z)

)
∂y1γ

−1
2 (z)

)
− Aγ2

(
γ−1

1 (z), γ−1
2 (z)

) (
∂x1u

(
γ−1

1 (z), γ−1
2 (z)

)
∂y2γ

−1
1 (z)

+ ∂x2u
(
γ−1

1 (z), γ−1
2 (z)

)
∂y2γ

−1
2 (z)

)]
dz2, (3.1)

where l(0) ∈ [l1, l2], r(0) ∈ [r1, r2], and the functions g1, g2 belong to the classes C2(D(g1)), C2(D(g2))
respectively.

Proof. Let a function u ∈ C2(Π) satisfy equation (2.1). Making the nonlinear nondegenerate change
of independent variables y1 = γ1(x1, x2), y1 = γ2(x1, x2) and denoting u(x1, x2) = v(y1, y2) we obtain
a new differential equation

2 (a∂x1γ1∂x1γ2 + b (∂x2γ2∂x1γ1 + ∂x2γ1∂x1γ2) + c∂x2γ1∂x2γ2)
(
γ−1

1 (y), γ−1
2 (y)

)
× ∂y1∂y2v(y) + Aγ1

(
γ−1

1 (y), γ−1
2 (y)

)
∂y1v(y) + Aγ2

(
γ−1

1 (y), γ−1
2 (y)

)
∂y2v(y)

= f
(
γ−1

1 (y), γ−1
2 (y), u

(
γ−1

1 (y), γ−1
2 (y)

)
, ∂x1u

(
γ−1

1 (y), γ−1
2 (y)

)
,

∂x2u
(
γ−1

1 (y), γ−1
2 (y)

))
= f

(
γ−1

1 (y), γ−1
2 (y), v(y), ∂y1v(y)∂x1γ1

(
γ−1

1 (y), γ−1
2 (y)

)
+ ∂y2v(y)∂x1γ2

(
γ−1

1 (y), γ−1
2 (y)

)
, ∂y1v(y)∂x2γ1

(
γ−1

1 (y), γ−1
2 (y)

)
+ ∂y2v(y)∂x2γ2

(
γ−1

1 (y), γ−1
2 (y)

))
Let us integrate it twice to obtain the equality

v(y) = g1 (y) + g2 (y)

+

y1∫
l(0)

dz1

y2∫
r(0)

1

2 (a∂x1γ1∂x1γ2 + b (∂x2γ2∂x1γ1 + ∂x2γ1∂x1γ2) + c∂x2γ1∂x2γ2) (γ−1
1 (y), γ−1

2 (y))

×
[
f
(
γ−1

1 (z), γ−1
2 (z), u

(
γ−1

1 (z), γ−1
2 (z)

)
,

∂x1u
(
γ−1

1 (z), γ−1
2 (z)

)
, ∂x2u

(
γ−1

1 (z), γ−1
2 (z)

))
− Aγ1(γ−1

1 (z), γ−1
2 (z))∂y1v(z)− Aγ2(γ−1

1 (z), γ−1
2 (z))∂y2v(z)

]
dz2,

Returning to the variables x1 and x2 we obtain equation (3.1). This also implies that the functions
gj belong to the class C2(D(g1)), j = 1, 2.

Substituting representations (3.1) into equation (2.1), we verify that the function u satisfies this
equation in Π.

Remark 3. Under some additional conditions on the functions f , a, b, c, g1, g2, we can show the
solvability of integro-differential equation (3.1) using the methods proposed in the works [5, 13, 35].
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For the convenience of further presentation, we introduce the notation

β = 2 (a∂x1γ1∂x1γ2 + b (∂x2γ2∂x1γ1 + ∂x2γ1∂x1γ2) + c∂x2γ1∂x2γ2) ,

K(z, p, q, r) = f(γ−1
1 (z), γ−1

2 (z), p, q, r)

− Aγ1(γ−1
1 (z), γ−1

2 (z))(q∂y1γ
−1
1 (z) + r∂y1γ

−1
2 (z))

− Aγ2(γ−1
1 (z), γ−1

2 (z))(q∂y2γ
−1
1 (z) + r∂y2γ

−1
2 (z)),

K̃(z, p, q, r) = (β(γ−1
1 (z), γ−1

2 (z)))−1K(z, p, q, r)

4 Curvilinear parallelogram identity

Theorem 4.1. Let a function u belong to the class C2(Ω) and be a solution to hyper-
bolic equation (2.1), where a ∈ C2(Ω), b ∈ C2(Ω), c ∈ C2(Ω), and f ∈ C1(Ω ×
R3). Then for any curvilinear characteristic parallelogram Π = {x | γ1(x) ∈ [l1, l2] ∧
γ2(x) ∈ [r1, r2]} ⊆ Ω with vertices A(γ−1

1 (l1, r1), γ−1
2 (l1, r1)), B(γ−1

1 (l1, r2), γ−1
2 (l1, r2)),

C(γ−1
1 (l2, r2), γ−1

2 (l2, r2)), (γ−1
1 (l2, r1), γ−1

2 (l2, r1)), the following equality holds

u(A)− u(B) + u(C)− u(D)

=

l2∫
l1

dz1

r2∫
r1

K̃
(
z, u

(
γ−1

1 (z), γ−1
2 (z)

)
, ∂x1u

(
γ−1

1 (z), γ−1
2 (z)

)
,

∂x2u
(
γ−1

1 (z), γ−1
2 (z)

))
dz2.

(4.1)

Proof. According to Lemma 3.1, the function u is representable in the form

u(x) = g1(γ1(x)) + g2(γ2(x))

+

γ1(x)∫
l1

dz1

γ2(x)∫
r1

K̃
(
z, u

(
γ−1

1 (z), γ−1
2 (z)

)
, ∂x1u

(
γ−1

1 (z), γ−1
2 (z)

)
,

∂x2u
(
γ−1

1 (z), γ−1
2 (z)

))
dz2.

(4.2)

where gi ∈ C2(D(gi)), i = 1, 2. Using expression (4.2) we calculate

u(A) = g1(l1) + g2(r1), u(B) = g1(l1) + g2(r2), u(D) = g1(l2) + g2(r1),

u(C) = g1(l2) + g2(r2)

+

l2∫
l1

dz1

r2∫
r1

K̃
(
z, u

(
γ−1

1 (z), γ−1
2 (z)

)
, ∂x1u

(
γ−1

1 (z), γ−1
2 (z)

)
,

∂x2u
(
γ−1

1 (z), γ−1
2 (z)

))
dz2. (4.3)

Substituting representations (4.3) into (4.1) we obtain the correct equality.

Theorem 4.2. Let functions u ∈ C2(Ω), a ∈ C2(Ω), b ∈ C2(Ω), c ∈ C2(Ω), f ∈ C1(Ω × R3), and
the condition b2(x) − a(x)c(x) > 0 be satisfied, where Ω ⊆ R2. If for any curvilinear characteristic
parallelogram Π = {x | γ1(x) ∈ [l1, l2] ∧ γ2(x) ∈ [r1, r2]} ⊆ Ω with vertices A(γ−1

1 (l1, r1), γ−1
2 (l1, r1)),

B(γ−1
1 (l1, r2), γ−1

2 (l1, r2)), C(γ−1
1 (l2, r2), γ−1

2 (l2, r2)), (γ−1
1 (l2, r1), γ−1

2 (l2, r1)), where γi, i = 1, 2 are
solutions of equations (2.2) and γ−1

i are defined as before, equality (4.1) is satisfied, then the function
u is a solution to equation (2.1).
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Proof. Let l2 = l + l1, r2 = r + r1. So, we can write the coordinates of points A, B, C and D in the
form

A(γ−1
1 (l1, r1), γ−1

2 (l1, r1)), B(γ−1
1 (l1, r + r1), γ−1

2 (l1, r + r1)),

C(γ−1
1 (l + l1, r + r1), γ−1

2 (l + l1, r + r1)), D(γ−1
1 (l + l1, r1), γ−1

2 (l + l1, r1)).

Let us consider the expression

u(A)− u(B)

r
=
u(γ−1

1 (l1, r1), γ−1
2 (l1, r1))− u(γ−1

1 (l1, r + r1), γ−1
2 (l1, r + r1))

r
−−→
r→0

−−→
r→0

−∂ru(γ−1
1 (l1, r1), γ−1

2 (l1, r1)).

In the same way
u(C)− u(D)

r
−−→
r→0

∂ru(γ−1
1 (l1 + l, r1), γ−1

2 (l1 + l, r1)).

Now since
∂ru(γ−1

1 (l1 + l, r1), γ−1
2 (l1 + l, r1))− ∂ru(γ−1

1 (l1, r1), γ−1
2 (l1, r1))

l
−−→
l→0

−−→
l→0

∂l∂ru(γ−1
1 (l1, r1), γ−1

2 (l1, r1)),

we obtain lim
(r,l)→(0,0)

(lr)−1(u(A)− u(B) + u(C)− u(D)) = ∂l∂ru(γ−1
1 (l1, r1), γ−1

2 (l1, r1)). Similarly, we

get

lim
(r,l)→(0,0)

1

lr

l+l1∫
l1

dz1

r+r1∫
r1

K̃
(
z, u

(
γ−1

1 (z), γ−1
2 (z)

)
, ∂x1u

(
γ−1

1 (z), γ−1
2 (z)

)
,

∂x2u
(
γ−1

1 (z), γ−1
2 (z)

))
dz2 =

= K̃
(
z = (l1, r1), u

(
γ−1

1 (z), γ−1
2 (z)

)
, ∂x1u

(
γ−1

1 (z), γ−1
2 (z)

)
, ∂x2u

(
γ−1

1 (z), γ−1
2 (z)

))
.

Thus

lim
(r,l)→(0,0)

1

lr

(
u(A)− u(B) + u(C)− u(D)

−
l+l1∫
l1

dz1

r+r1∫
r1

K̃
(
z, u

(
γ−1

1 (z), γ−1
2 (z)

)
, ∂x1u

(
γ−1

1 (z), γ−1
2 (z)

)
, ∂x2u

(
γ−1

1 (z), γ−1
2 (z)

))
dz2

)

= lim
(r,l)→(0,0)

u(A)− u(B) + u(C)− u(D)

lr

− lim
(r,l)→(0,0)

1

lr

l+l1∫
l1

dz1

r+r1∫
r1

K̃
(
z, u

(
γ−1

1 (z), γ−1
2 (z)

)
, ∂x1u

(
γ−1

1 (z), γ−1
2 (z)

)
,

∂x2u
(
γ−1

1 (z), γ−1
2 (z)

))
dz2 = ∂l∂ru(γ−1

1 (l1, r1), γ−1
2 (l1, r1))

−
K
(
z = (l1, r1), u

(
γ−1

1 (z), γ−1
2 (z)

)
, ∂x1u

(
γ−1

1 (z), γ−1
2 (z)

)
, ∂x2u

(
γ−1

1 (z), γ−1
2 (z)

))
β(γ−1

1 (l1, r1), γ−1
2 (l1, r1))

.

This means that the function u satisfies at the point

(γ−1
1 (z = (y1 = l1, y2 = r1)), γ−1

2 (z))
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the differential equation

β(γ−1
1 (z), γ−1

2 (z))∂y1∂y2u(γ−1
1 (z), γ−1

2 (z))

= f
(
γ−1

1 (z), γ−1
2 (z), u

(
γ−1

1 (z), γ−1
2 (z)

)
,

∂x1u
(
γ−1

1 (z), γ−1
2 (z)

)
, ∂x2u

(
γ−1

1 (z), γ−1
2 (z)

))
− Aγ1

(
γ−1

1 (z), γ−1
2 (z)

) (
∂x1u

(
γ−1

1 (z), γ−1
2 (z)

)
∂y1γ

−1
1 (z)

+ ∂x2u
(
γ−1

1 (z), γ−1
2 (z)

)
∂y1γ

−1
2 (z)

)
− Aγ2

(
γ−1

1 (z), γ−1
2 (z)

) (
∂x1u

(
γ−1

1 (z), γ−1
2 (z)

)
∂y2γ

−1
1 (z)

+ ∂x2u
(
γ−1

1 (z), γ−1
2 (z)

)
∂y2γ

−1
2 (z)

)
,

(4.4)

where x1 = γ−1
1 (y1, y2), x2 = γ−1

2 (y1, y2). By virtue of the arbitrariness of Π ⊆ Ω, equality (4.4) is
true for any point (x1 = γ−1

1 (z = (l1, r1)), x2 = γ−1
2 (z = (l1, r1))) ∈ Ω.

Making the change of variables x1 = γ−1
1 (y1, y2), x2 = γ−1

2 (y1, y2) in equation (4.4), we obtain
equation (2.1).

Note that formula (4.1) can be considered as a kind of a mean value theorem.

5 Applications

5.1 Wave equation

Let us consider Au(x1, x2) = ∂2
x1
u(x1, x2) − a2∂2

x2
u(x1, x2), where a > 0 (for definiteness). Then we

have γ1(x1, x2) = x2−ax1, γ2(x1, x2) = x2+ax1, γ−1
1 (y1, y2) = (y2−y1)/(2a), γ−1

2 (y1, y2) = (y1+y2)/2,
Aγ1 ≡ 0, Aγ2 ≡ 0.

5.1.1 Parallelogram identity

Let f ≡ 0. In this case, formula (4.1) transforms to

u

(
r1 − l1

2a
,
l1 + r1

2

)
− u

(
r2 − l1

2a
,
l1 + r2

2

)
+ u

(
r2 − l2

2a
,
l2 + r2

2

)
− u

(
r1 − l2

2a
,
l2 + r1

2

)
= 0, (5.1)

where l1, l2, r1 and r2 are some real numbers. Equality (5.1) is the well-known parallelogram identity
for the wave equation.

5.1.2 Goursat problem

Let us consider the Goursat problem [15]{
(∂2
x1
− a2∂2

x2
)u(x) = f(x), 0 < x1,−ax1 < x2 < ax1,

u(x1, x2 = ax1) = φ(1)(x1), u(x1, x2 = −ax1) = φ(1)(x2), x1 > 0,
(5.2)

where f ∈ C1({x | 0 6 x1,−ax1 6 x2 6 ax1}), φ(1) ∈ C2([0,∞)), φ(2) ∈ C2([0,∞)) and φ(1)(0) =
φ(2)(0). We can write the classical solution of (5.2) using formula (4.1). If we select C(x1, x2),

B

(
ax1 + x2

2a
,
ax1 + x2

2

)
, D
(
ax1 − x2

2a
,
x2 − ax1

2

)
, A(0, 0) and apply (4.1), then we obtain

u(x1,x2) = u(C) = φ(1)

(
ax1 + x2

2a

)
+ φ(2)

(
ax1 − x2

2a

)
− φ(1)(0)
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− 1

4a2

x2−ax1∫
0

dy1

x2+ax1∫
0

f

(
y2 − y1

2a
,
y1 + y2

2

)
dy2, 0 < x1,−ax1 < x2 < ax1.

5.1.3 Mixed problem

Let us consider the first mixed problem [12]
(∂2
x1
− a2∂2

x2
)u(x) = f(x), x ∈ (0,∞)× (0,∞),

u(0, x2) = φ(x1), ∂x1u(0, x2) = ψ(x2), x1 > 0,
u(x1, 0) = µ(x1), x2 > 0,

(5.3)

where f ∈ C1([0,∞)× [0,∞)), φ ∈ C2([0,∞)), ψ ∈ C1([0,∞)), µ ∈ C2([0,∞)).

Fig. 2. To the Goursat problem (5.2).

If x2 − ax1 > 0, then the solution of (5.3) at the point (x1, x2) can be defined by d’Alembert
formula

u(x1, x2) =
φ(x2 − ax1) + φ(x2 + ax1)

2
+

1

2a

x2+ax1∫
x2−ax1

ψ(ξ) dξ +

+
1

2a

x1∫
0

dτ

x2+a(x1−τ)∫
x2−a(x1−τ)

f(τ, ξ) dξ, x2 − ax1 > 0, x1 > 0, x2 > 0.

(5.4)

If x2− ax1 < 0, then we can use parallelogram identity (4.1) to derive the solution of (5.3) at the
point (x1, x2). We can select C(x1, x2), B

(
x1 −

x2

a
, 0
)
, D
(x2

a
, ax1

)
, A(0, ax1 − x2), apply (4.1) and

obtain
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u(x1, x2) = µ
(
x1 −

x2

a

)
+
φ(ax1 + x2)− φ(ax1 − x2)

2
+

1

2a

ax1+x2∫
ax1−x2

ψ(ξ) dξ

+
1

2a

x2
a∫

0

dτ

ax1+x2−aτ∫
ax1−x2+aτ

f(τ, ξ) dξ − 1

4a2

x2−ax1∫
ax1−x2

dy1

ax1+x2∫
ax1−x2

f

(
y2 − y1

2a
,
y2 + y1

2

)
dy2,

x2 − ax1 < 0, x1 > 0, x2 > 0.

(5.5)

Fig. 3. To the first mixed problem (5.3).

Using representations (5.4) and (5.5), we can easily derive necessary and sufficient matching
conditions µ(0) = φ(0), µ′(0) = ψ(0) and µ′′(0) = a2φ′′(0) + f(0, 0) under which the solution u of the
first mixed problem (5.3) will be classical.

5.2 Nonlinear wave equation

For convenience, further in this chapter we will present equations in divergence form. Let us consider
Au(x1, x2) = ∂x1∂x2u(x1, x2). Then we have γ1(x1, x2) = x1, γ2(x1, x2) = x2, γ−1

1 (y1, y2) = y1,
γ−1

2 (y1, y2) = y2, Aγ1 ≡ 0, Aγ2 ≡ 0.

5.2.1 Darboux problem

Let us consider the second Darboux problem for a nonlinear wave equation in divergence form [11]{
∂x1∂x2u(x) + λg(x, u(x)) = f(x), 0 < x1, αx1 < x2 < βx1,
u(x1, x2 = αx1) = u(x1, x2 = βx1) = 0, x1 > 0,

(5.6)

where λ ∈ R, 0 < α < 1 < β < ∞, f ∈ C1({x | 0 6 x1 ∧ αx1 6 x2 6 βx1}), g ∈ C1({x | 0 6
x1 ∧ αx1 6 x2 6 βx1} × R), |g(x1, x2, z)| 6 L1 + L2|z|, L1 > 0, L2 > 0.

We want to obtain an expression for the classical solution u of problem (5.6) at the point P0(x1, x2).
Let us denote by P1M0P0N0 the characteristic parallelogram, whose vertices N0 and M0 lie, respec-
tively, on the segments x2 = αx1 and x2 = βx1, that is: N0 := (x1, αx1), M0 := (β−1x2, x2),
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P1 := (β−1x2, αx1). Since P1 ∈ {x | 0 < x1 ∧ αx1 < x2 < βx1}, we construct analogously the charac-
teristic parallelogram P2M1P1N1 whose verticesN1 andM1 lie, respectively, on the segments x2 = αx1

and x2 = βx1. Continuing this process, we obtain the characteristic parallelogram Pi+1MiPiNi for
which Ni ∈ {x | x2 = αx1}, Mi ∈ {x | x2 = βx1}, and Ni :=

(
x

(i)
1 , αx

(i)
1

)
, Mi :=

(
β−1x

(i)
2 , x2

)
,

Pi+1 :=
(
β−1x

(i)
2 , αx

(i)
1

)
if Pi :=

(
x

(i)
1 , x

(i)
2

)
.

Fig. 4. To the second Darboux problem (5.6).

By virtue of (4.1) and (5.6) we have

u(Pi) = u(Mi) + u(Ni)− u(Pi+1) +

∫∫
Pi+1MiPiNi

[f(z)− λg(z, u(z))] dz

= −u(Pi+1) +

∫∫
Pi+1MiPiNi

[f(z)− λg(z, u(z))] dz, i ∈ N ∪ {0}.

Thus it follows that

u(x1, x2) = u(P0) =

∫∫
P1M0P0N0

[f(z)− λg(z, u(z))] dz− u(P1)

= u(P2) +

∫∫
P1M0P0N0

[f(z)− λg(z, u(z))] dz−
∫∫

P2M1P1N1

[f(z)− λg(z, u(z))] dz

= (−1)nu(Pn) +
n−1∑
i=0

(−1)i
∫∫

Pi+1MiPiNi

[f(z)− λg(z, u(z))] dz.



Curvilinear parallelogram identity and mean-value property for a semilinear hyperbolic equation 71

Clearly that lim
n→∞

u(Pn) = u
(

lim
n→∞

Pn

)
= u(0, 0) = 0. Hence, passing to the limit, as n → ∞, we

obtain the following integral representation

u(x1, x2) =
∞∑
i=0

(−1)i
∫∫

Pi+1MiPiNi

[f(z)− λg(z, u(z))] dz. (5.7)

The further solution of problem (5.6) is connected with the study of the solvability of equation (5.7),
and it is given in the work [11]. And it turns out that under the conditions specified in the formulation
of problem (5.6), it has a unique classical solution. But we still notice that in the linear case (i.e.,
when λ = 0), formula (5.7) transforms into

u(x1, x2) =
∞∑
i=0

(−1)i
∫∫

Pi+1MiPiNi

f(z)dz, (5.8)

The series in the right-hand side of equality (5.8) is uniformly and absolutely convergent [11]. So, in
the linear case, there is a solution u of (5.6) written in the explicit analytic form (5.8).

5.3 Linear second-order hyperbolic equation

As in the prevoius subsection, we consider Au(x1, x2) = ∂x1∂x2u(x1, x2). Then we have γ1(x1, x2) =
x1, γ2(x1, x2) = x2, γ−1

1 (y1, y2) = y1, γ−1
2 (y1, y2) = y2, Aγ1 ≡ 0, Aγ2 ≡ 0.

5.3.1 Goursat problem

Let us consider the Goursat problem for a linear second-order hyperbolic equation [12]
∂x1∂x2u(x) + a(x)∂x1u(x) + b(x)∂x2u(x) + c(x)u(x) = f(x), x

(0)
1 < x1, x

(0)
2 < x2,

u(x1 = x
(0)
1 , x2) = φ(x2), x2 > x

(0)
2 ,

u(x1, x2 = x
(0)
2 ) = ψ(x1), x1 > x

(0)
1 ,

(5.9)

where f ∈ C({x | x(0)
1 6 x1 ∧ x(0)

2 6 x2}), φ ∈ C2([x
(0)
2 ,∞)), ψ ∈ C1([x

(0)
1 ,∞)) and φ(x

(0)
2 ) = ψ(x

(0)
1 ).

We can write the classical solution of (5.9) using formula (4.1). If we select C(x1, x2), B
(
x

(0)
1 , x2

)
,

D
(
x1, x

(0)
2

)
, A
(
x

(0)
1 , x

(0)
2

)
and apply (4.1), then we obtain

u(x) = u(C) = φ(x2) + ψ(x1)− ψ(x
(0)
2 )

+

x1∫
x

(0)
1

dy1

x2∫
x

(0)
2

[f(y)− a(y)∂x1u(y)− b(y)∂x2u(y)− c(y)u(y)]dy2. (5.10)

A representation of the solution in the form of integro-differential equation (5.10) is obtained.
Under the conditions specified in the formulation of problem (5.9), equation (5.10) will be solvable
[12] and the function u will have the required smoothness. This proves the solvability of problem
(5.9).
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6 Conclusion

In the paper, the property of the characteristic parallelogram for the wave equation is generalized
to the case of a semilinear hyperbolic equation of the second order. This identity connects not only
the values of points at the vertices of the parallelogram but also the continuum of function values on
the parallelogram, in contrast to the linear cases with constant coefficients considered earlier. It is
shown how the obtained results, combined with other methods, can be used to solve various mixed
problems.
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