T. 91, № 2

V. 91, N 2

MARCH — APRYL 2024

ИК-ФУРЬЕ-СПЕКТРОСКОПИЯ НАРУШЕННОГО ПОЛНОГО ВНУТРЕННЕГО ОТРАЖЕНИЯ ПЛЕНОК ПОЛИИМИДА НА ПЛАСТИНАХ МОНОКРИСТАЛЛИЧЕСКОГО КРЕМНИЯ

В. С. Просолович ^{1*}, Д. И. Бринкевич ¹, Е. В. Гринюк ^{1,4}, С. Д. Бринкевич ^{1,5}, В. В. Колос ², О. А. Зубова ², С. Б. Ластовский ³

УДК 535.3:546.28

¹ Белорусский государственный университет, Минск, Беларусь; e-mail: brinkevich@bsu.by; prosolovich@bsu.by ² OAO "ИНТЕГРАЛ" — управляющая компания холдинга "ИНТЕГРАЛ", Минск, Беларусь; e-mail: VVKolos@integral.by; OZubova@integral.by ³ Научно-практический центр НАН Беларуси по материаловедению, Минск, Беларусь; e-mail: lastov@ifttp.bas-net.by

⁴ Институт физико-химических проблем Белорусского государственного университета, Минск, Беларусь; e-mail: grinyuk@tut.by

⁵ ООО "Мой медицинский центр — высокие технологии", Всеволожск Ленинградской обл., Россия

(Поступила 2 октября 2023)

Исследованы спектры нарушенного полного внутреннего отражения пленок полиимида PI2610, сформированных на пластинах монокристаллического кремния методом центрифугирования. Облучение электронами с энергией 5 МэВ проведено на линейном ускорителе в интервале доз $1 \cdot 10^{14}$ — $2 \cdot 10^{15}$ см⁻². Наиболее интенсивными в спектре полиимидных пленок PI2610 являются полосы колебаний связи C-N-C_{st} имидного цикла (1349 см⁻¹), колебаний ароматического кольца (1517 см⁻¹), валентных колебаний группы C=O_{str} имидного цикла (1700 см⁻¹) и валентных колебаний С-С-связи в CO-C_{st}-группе (1074 см⁻¹), а также полосы деформационных колебаний C-H-связей с максимумами при 734 и 828 см⁻¹. При начальной дозе $1 \cdot 10^{14}$ см⁻² наблюдалось изменение спектральной формы и интенсивности полос с максимумами при 1700 и 1349 см⁻¹, соответствующих колебаниям С=O-и C=N-C_{str}-групп. Предполагается, что это обусловлено релаксацией метастабильных состояний указанных групп. При дозе $2 \cdot 10^{15}$ см⁻² обнаружено уменьшение интенсивности полос, соответствующих асимметричным и симметричным валентным колебаниям C-H₂-связей. Интенсивность полос нарушенного полного внутреннего отражения, обусловленных колебаниям C=O- и C-N-связей ароматических и имидных циклов, практически не изменялась.

Ключевые слова: полиимид PI-2610, кремний, облучение электронами, нарушенное полное внутреннее отражение.

The spectra of attenuated total reflection of polyimide PI-2610 films deposited on single-crystal silicon wafers by centrifugation are studied. The films were irradiated by electrons with energy of 5 MeV on a linear electron accelerator at doses of $1 \cdot 10^{14} - 2 \cdot 10^{15}$ cm⁻². The most intense in the spectrum of PI-2610 polyimide films are the C-N-C_{st} vibration bands of the imide ring (1349 cm⁻¹), aromatic ring vibrations (1517 cm⁻¹),

IR-FOURIER SPECTROSCOPY OF ATTENUATED TOTAL REFLECTION OF POLYIMIDE FILMS ON MONOCRYSTALLINE SILICON WAFERS

V. S. Prosolovich ^{1*}, D. I. Brinkevich ¹, E. V. Grinyuk ^{1,4}, S. D. Brinkevich ^{1,5}, V. V. Kolos ², O. A. Zubova ², S. B. Lastovskii ³ (¹ Belarusian State University, Minsk, Belarus; e-mail: brinkevich@bsu.by; prosolovich@bsu.by; ² JSC "INTEGRAL" — "INTEGRAL" Holding Managing Company, Minsk, Belarus; e-mail: VVKolos@integral.by; OZubova@integral.by; ³ Scientific-Practical Materials Research Centre, National Academy of Sciences of Belarus, Minsk, Belarus; e-mail: lastov@ifttp.bas-net.by; ⁴ Institute for Physical Chemical Problems of the Belarusian State University, Minsk, Belarus; e-mail: grinyuk@tut.by; ⁵ LLC "My Medical Center — High Technologies", Vsevolozhsk, Leningrad region, Russia)

 $C=O_{str}$ stretching vibrations of the imide ring group (1700 cm⁻¹), and stretching vibrations of C-C bonds in the CO-C_{st} group (1074 cm⁻¹), as well as bands of bending vibrations of C-H bonds with maxima at 734 and 828 cm⁻¹. At an initial dose of $1 \cdot 10^{14}$ cm⁻², a change in the spectral shape and intensity of the bands with maxima at 1700 and 1349 cm⁻¹, caused by vibrations of the C=0 and C=N-C_{str} groups, was observed. It is assumed that this is due to the relaxation of the metastable states of these groups. At a dose of $2 \cdot 10^{15}$ cm⁻², a decrease in the intensity of bands caused by asymmetric and symmetric stretching vibrations of C-H₂ bonds was detected. The intensity of the ATR bands caused by vibrations of C=O and C-N bonds, aromatic and imide rings remained practically unchanged.

Keywords: polyimide PI-2610, silicon, electron irradiation, attenuated total reflection.

Введение. В настоящее время активно проводятся исследования полиимидных пленок, используемых в качестве слоев для изоляции в условиях бескорпусной сборки и изготовления масок при пайке и при формировании резонансной полости микроболометров [1, 2]. Это обусловлено тем, что полиимид (ПИ) химически стоек к органическим растворителям, удаляется с кремниевой подложки только в сильных кислотах и щелочах, а также в плазме кислорода. К достоинствам ПИ следует также отнести высокую термическую и радиационную стойкость, устойчивость к воздействию УФ-излучения. Это связано с насыщенностью цепей ароматическими фрагментами и наличием системы сопряжения в полимерной цепи. Система π-электронов способствует эффективному перераспределению избыточной энергии, нивелируя возможность распада гетероатомных связей [3].

Цель настоящей работы — определение оптических характеристик колебательных мод облученных и не облученных электронами тонких пленок ПИ PI-2610 на монокристаллическом кремнии.

Эксперимент. Полиимидные пленки PI-2610 (HD MicroSystems) толщиной 2.5 мкм формировались на поверхности пластин монокристаллического кремния марки КДБ-10 с ориентацией (111) методом центрифугирования полиимидного прекурсора на базе BPDA/PPD (бифенилдиангидрид/1,4фенилендиамин), растворенного в *n*-метил-2-пирролидоне. Затем проводилась двухстадийная термообработка — сушка при температуре 150 °C в атмосфере N₂ в течение 13 мин для удаления растворителя и имидизация при 350 °C в атмосфере N₂ в течение 30 мин.

Спектры нарушенного полного внутреннего отражения (НПВО) регистрировались при комнатной температуре в диапазоне $v = 400-4000 \text{ см}^{-1}$ ИК-Фурье-спектрофотометром ALPHA (Bruker Optik GmbH) с разрешением не хуже 2 см⁻¹. Количество сканов 24. Перед каждым измерением проводилась коррекция фона [4]. Облучение электронами с энергией 5 МэВ проводилось на линейном ускорителе У-003 в интервале доз $1 \cdot 10^{14}$ — $2 \cdot 10^{15} \text{ см}^{-2}$. Плотность электронного пучка $1 \cdot 10^{12} \text{ см}^{-2} \cdot \text{с}^{-1}$. Температура образцов в процессе облучения не превышала 310 К.

Результаты и их обсуждение. Установлено, что наиболее интенсивными в спектре НПВО пленок PI-2610 являются полосы колебаний C-N-C_{st}-связи имидного цикла (1349 см⁻¹), колебаний ароматического кольца (1517 см⁻¹), валентных колебаний группы C=O_{str} имидного цикла (1700 см⁻¹) и валентных колебаний C-C-связи в группе CO-C_{st} (1074 см⁻¹), а также полосы деформационных колебаний C-H-связей с максимумами при 734 и 828 см⁻¹ (рис. 1). Экспериментальные частоты полос ИКпоглощения пленок PI-2610 и их соответствие определенным функциональным группам приведены в табл. 1. Отметим, что спектр НПВО пленки PI-2610 близок к спектру пиррола [4, 5], однако существенно отличается от спектра другого полиимида — каптона [6, 7]. Полоса при ~1700 см⁻¹, обусловленная валентными асимметричными колебаниями двойной связи С=О в имидном цикле [5, 8], имеет два близко расположенных максимума — 1706 и 1692 см⁻¹ (рис. 1, δ). Возможно, это обусловлено наличием водородной связи с одной из двух С=О-групп в имидном цикле.

Полоса с максимумом при ~3490 см⁻¹ (рис. 1, *a*) обусловлена свободными валентными колебаниями N-H-связи. Аналогичные полосы с близкими волновыми числами наблюдаются также для других ароматических ПИ, в частности каптона [6]. Связанные валентные колебания N-H-связи проявлялись в виде слабой полосы с максимумом при ~3200 см⁻¹ (рис. 1, *a*). В спектре НПВО наблюдается также слабая полоса с максимумом при ~3630 см⁻¹, обусловленная валентными колебаниями O-H-связи. Предполагается, что она связана с присутствием остаточной воды или карбоксильной группы -COOH.

В области валентных колебаний одиночных связей С-О и С-С ($v = 1000-1300 \text{ см}^{-1}$) и деформационных колебаний ($v = 400-900 \text{ см}^{-1}$) наблюдается ряд полос средней и малой интенсивности, энергетическое положение и принадлежность которых к функциональным группам представлены в табл. 1.

ν, cm^{-1}	Интенсивность	Функциональная группа, тип колебаний
510	очень слабая	
528	средняя	внеплоскостные колебания С-Н-связей [5, 8]
550	средняя	внеплоскостные колебания С-Н-связей [5, 8]
568		
587	очень слабые	
611		
636		нсі данных
672		
695		
734	сильная	изгибные внеплоскостные колебания имидного кольца [5, 8]
762	слабая	внеплоскостные колебания С-Н-связей орто- и пара-
795	очень слабая	замещенного кольца [9]
828	сильная	
864	слабая	нет данных
889	сильная	внеплоскостные колебания С-Н-связей [5, 8]
940	слабая	
973	слабая	С-О-С-связи [5, 10]
1022	слабая	колебания С-С-связей [4]
1075	сильная	СО-С _{st} -группа [5, 8]
1119	слабая	валентные колебания С-О [11]
1176	слабая	
1219	средняя	валентные колебания С-О [11]
1266	слабая	
1319	слабая	нет данных
1349	сильная	связи С-N-С _{st} имидного цикла [5, 8, 12]
1419	средняя	валентные колебания ароматического кольца [8]
1480	слабая	нет данных
1511	сильная	тангенциальное растяжение PDA кольца [8]
1617	средняя	пульсационные колебания углеродного скелета ароматиче- ского кольца [5]
1700	сильная	С=О _{str} асимметричные и симметричные валентные колебания
1772	средняя	имидного цикла [8, 12, 13]
2720	слабые	
2792		нет данных
2851		симметричные валентные колебания СН ₂ -групп [5]
2918		асимметричные валентные колебания СН2-групп [5]
3080	средняя	валентные колебания СН-групп [6]
~3200	очень слабая	валентные колебания N-H-групп, свободные и связанные [6]
3490	средняя	
~3630	слабая	валентные колебания О-Н-групп [5]

Таблица 1. Экспериментальные частоты ИК-поглощения функциональных групп в пленках полиимида PI2610

Рассмотрим широкую полосу с максимумом при 1349 см⁻¹, имеющую ряд локальных максимумов (1319, ~1290 и 1266 см⁻¹) на низкоэнергетическом крыле (рис. 1, δ). В центре структуры ПИ на кремнии (ПИ/Si) эта полоса имеет два максимума равной интенсивности при 1290 и 1349 см⁻¹ (рис. 2, кривая *I*). После отделения ПИ-пленки от кремния интенсивность максимума при 1349 см⁻¹ возрастает, а максимума при 1290 см⁻¹ резко падает. Максимум при 1290 см⁻¹ исчезает и на низкоэнергетическом крыле полосы проявляются два перегиба при 1319 и 1290 см⁻¹ (кривая *2*). Аналогичное поведение эта полоса демонстрирует при облучении электронами. После облучения начальной дозой $1 \cdot 10^{14}$ см⁻² структур ПИ/Si максимум при 1290 см⁻¹ исчезает и остается максимум при 1349 см⁻¹ (рис. 2). При дальнейшем увеличении дозы вплоть до $2 \cdot 10^{15}$ см⁻² существенных трансформаций формы полосы не наблюдается (рис. 1, δ).

Аналогично при облучении ведет себя полоса с максимумом при ~1700 см⁻¹, обусловленная колебаниями двойной связи С=О в имидном цикле. В спектрах исходных пленок она имеет два близко расположенных максимума (1706 и 1692 см⁻¹), а при облучении дозой $1 \cdot 10^{14}$ см⁻² трансформируется в полосу с одним максимумом при 1699 см⁻¹ (рис. 2). При дальнейшем повышении дозы до $2 \cdot 10^{15}$ см⁻² ее структура не изменялась. Отметим, что при дозах вплоть до $1 \cdot 10^{15}$ см⁻² изменений структуры либо интенсивности других полос поглощения не наблюдалось.

Рис. 1. Спектры НПВО исходной пленки полиимида (1) и облученных дозами 1 · 10¹⁴ (2) и 2 · 10¹⁵ см⁻² (3) структур ПИ/Si в области валентных колебаний С-H- и N-H-связей (*a*), колебаний С=С-, С=О-, С-О-С- и С-N-С-связей (*б*), деформационных колебаний (*в*)

Известно [5, 8], что максимум при 1349 см⁻¹ обусловлен колебаниями связи C-N-C_{st} имидного цикла. Можно предположить, что описанные особенности полос с максимумами при 1349 и 1700 см⁻¹ связаны с метастабильными нарушениями структуры имидного цикла, замороженными после формирования ПИ-пленки на кремнии. Они могут быть стабилизированы упругими напряжениями, возникшими в структуре ПИ/Si. Эти упругие напряжения могут приводить к изменению длин связей в имидном цикле, что, соответственно, выражается в изменении частоты валентных колебаний. При удалении пленки с поверхности кремния либо при внешних воздействиях данные упругие напряжения релаксируют.

Заметная трансформация спектра НПВО структур ПИ/Si и пленок PI-2610 наблюдается только при дозе электронов $2 \cdot 10^{15}$ см⁻². Так, имеет место снижение интенсивности полос спектра НПВО ПИ-пленок в области валентных колебаний С-H-связей (рис. 1, *a*), что предположительно обусловлено радиационно-индуцированными процессами на побочных продуктах синтеза ПИ, а также молекулах остаточного растворителя [5]. Увеличение дозы с $1 \cdot 10^{14}$ до $2 \cdot 10^{15}$ см⁻² приводит к снижению в три раза интенсивности полос при ~2840 и 2915 см⁻¹, обусловленных асимметричными и симметричными валентными колебаниями С-H₂-связей. При этом интенсивности полос с максимумами при 3077 см⁻¹ (валентные колебания С-H-связи имидного кольца) и 3480 см⁻¹ (валентные колебания N-H- связи) изменяются незначительно (на ~20 %), а интенсивность полосы при 2710 см⁻¹ не изменяется. В области колебаний О-Н-связей (v > 3500 см⁻¹) в спектрах облученных образцов наблюдается усиление шума, которое не коррелирует с ростом дозы (рис. 1, *в*), что не позволяет достаточно достоверно проанализировать дозовую зависимость интенсивности полосы с максимумом при ~3600 см⁻¹, связанной с валентными колебаниями О-Н-связей.

Рис. 2. Спектры НПВО пленки полиимида PI-2610 (1) и структуры ПИ/Si, исходной (2) и облученной электронами (3) дозой 1 · 10¹⁴ см⁻¹

Изменения интенсивностей других полос — деформационных колебаний (рис. 1, ϵ), валентных колебаний C=O-, C-N-C_{st}-, C-C- и C-O-связей (рис. 1, ϵ) — при дозе $2 \cdot 10^{15}$ см⁻² не наблюдалось. Аналогично поведение при дозах электронного облучения до $2 \cdot 10^{15}$ см⁻² также в другом ПИ — каптоне [14].

Заключение. Наиболее интенсивными в спектре полиимидных пленок PI-2610 являются полосы колебаний связи C-N-C_{st} имидного цикла (1349 см⁻¹), колебаний ароматического кольца (1517 см⁻¹), валентных колебаний группы C=O_{str} имидного цикла (1700 см⁻¹) и валентных колебаний C-C-связи в CO-C_{st}-группе (1074 см⁻¹), а также полосы деформационных колебаний C-H-связей с максимумами при 734 и 828 см⁻¹. Полоса при ~1700 см⁻¹, соответствующая валентным колебаниям связи C=O, имеет два близко расположенных максимума при 1706 и 1692 см⁻¹, что обусловлено наличием водородной связи с одной из двух C=O-групп в имидном цикле. Пленки полиимида PI-2610 на кремнии при облучении электронами дозой до $2 \cdot 10^{15}$ см⁻² стабильны. Существенная трансформация спектра нарушенного полного внутреннего отражения наблюдалась только в области валентных колебаний C-H- и O-H-связей, что обусловлено радиационно-индуцированными процессами на побочных продуктах синтеза полиимида и остаточных растворителях. Заметного снижения интенсивности полос поглощения, обусловленных колебаниями скелета ароматического кольца, имидного цикла, одиночных и двойных C-C- и C-O-связей и имидных C=O-связей, не наблюдалось.

[5] **Б. Н. Тарасевич.** ИК спектры основных классов органических соединений. Справочные материалы, Москва, МГУ (2012)

^[1] M. Zawierta, M. Martyniuk, R. D. Jeffery, G. Putrino, A. Keating, K. K. M. B. Dilusha Silva, L. Faraone, J. Microelectromech. Systems, 26, N 3 (2017) 593-600

^[2] А. А. Жуков, С. А. Жукова, Ю. С. Четверов, П. Г. Бабаевский. Прикл. физика, № 6 (2005) 154—159

^[3] В. В. Коршак, В. В. Ляшевич, В. В. Родэ, Я. С. Выгодский. Высокомол. соединения, А22, № 11 (1980) 2559—2566

^[4] С. Д. Бринкевич, Е. В. Гринюк, Д. И. Бринкевич, В. С. Просолович. ХВЭ, 54, № 5 (2020) 377—386 [S. D. Brinkevich, E. V. Grinyuk, D. I. Brinkevich, V. S. Prosolovich. High Energy Chemistry, 54, N 5 (2020) 342—351]

[6] А. А. Харченко, Ю. А. Федотова, И. А. Зур, Д. И. Бринкевич, С. Д. Бринкевич, Е. В. Гринюк, В. С. Просолович, С. А. Мовчан, Г. Е. Ремнев, С. А. Линник, С. Б. Ластовский. ХВЭ, 56, № 5 (2022) 378—387 [A. A. Kharchenko, Yu. A. Fedotova, I. A. Zur, D. I. Brinkevich, S. D. Brinkevich, E. V. Grinyuk, V. S. Prosolovich, S. A. Movchan, G. E. Remnev, S. A. Linnik, S. B. Lastovskii. High Energy Chemistry, 56, N 5 (2022) 354—362]

[7] С. А. Вабищевич, Н. В. Вабищевич, Д. И. Бринкевич, В. С. Просолович, В. В. Колос, О. А. Зубова. Вестн. Полоц. гос. ун-та. Серия С. Фундамент. науки. Физика, № 11 (2022) 53—58

[8] Э. Преч, Ф. Бюльманн, К. Аффольтер. Определение строения органических соединений. Таблицы спектральных данных, Москва, Мир, Бином (2006)

[9] I. Poljansek, U. Sebenik, M. Krajnc. J. Appl. Polymer Sci., 99 (2006) 2016-2028

[10] С. Д. Бринкевич, Е. В. Гринюк, Р. Л. Свердлов, Д. И. Бринкевич, В. С.Просолович, А. Н. Петлицкий. Журн. прикл. спектр., 87, № 4 (2020) 589—594 [S. D. Brinkevich, E. V. Grinyuk, D. I. Brinkevich, R. L. Sverdlov, V. S. Prosolovich, A. N. Pyatlitski. J. Appl. Spectr., 87, N 4 (2020) 647—651]

[11] В. Б. Оджаев, А. Н. Петлицкий, В. С. Просолович, Н. С. Ковальчук, Я. А. Соловьев, Д. В. Жигулин, Д. В. Шестовский, Ю. Н. Янковский, Д. И. Бринкевич. Журн. прикл. спектр., 89, № 4 (2022) 498—504 [V. B. Odzhaev, A. N. Pyatlitski, V. S. Prosolovich, N. S. Kovalchuk, Ya. A. Soloviev, D. V. Zhygulin, D. V. Shestovsky, Yu. N. Yankovski, D. I. Brinkevich. J. Appl. Spectr., 89, N 4 (2022) 665—670]

[12] S. Diaham, M.-L. Locatelli, R. Khazak. High Performance Polymers – Polyimides Based. From Chemistry to Applications, Ed. Marc Abadie (2012), doi: 10.5772/53994

[13] С. Д. Бринкевич, Д. И. Бринкевич, В. С. Просолович, Р. Л. Свердлов. XBЭ, 55, № 1 (2021) 66—75 [S. D. Brinkevich, D. I. Brinkevich, V. S. Prosolovich, R. L. Sverdlov. High Energy Chemistry, 55, N 1 (2021) 65—74]

[14] В. В. Петров, Ю. А. Пупков. ЖТФ, 86, № 7 (2016) 65—68 [V. V. Petrov, Yu. A. Pupkov. Technical Physics, 61, N 7 (2016) 1023—1026]