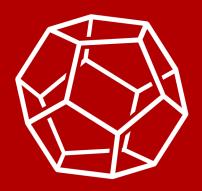
Н. А. Поклонский А. Т. Власов С. А. Вырко

КОНЕЧНЫЕ ГРУППЫ СИММЕТРИИ

Теория и приложения



Н. А. Поклонский А. Т. Власов С. А. Вырко

КОНЕЧНЫЕ ГРУППЫ СИММЕТРИИ

Теория и приложения

Минск «Беларуская навука» 2024

УДК 512.542

Поклонский, Н. А. Конечные группы симметрии. Теория и приложения / Н. А. Поклонский, А. Т. Власов, С. А. Вырко. – Минск : Беларуская навука, 2024. – 507 с. – ISBN 978-985-08-3179-8.

В монографии излагаются основы теории конечных групп преобразований евклидова пространства с ее приложениями к квантовым системам: атомам, молекулам и кристаллам. Рассмотрена симметрия систем с электронными и ядерными спинами, а также симметрия фундаментальных взаимодействий. В основе книги — опыт выполнения проектов Белорусского республиканского фонда фундаментальных исследований и чтения лекций членом-корреспондентом, профессором Н. А. Поклонским на физическом факультете Белорусского государственного университета и в Университете НАН Беларуси. Она включает выводы аналитических соотношений и примеры их практического применения. Приведены 125 упражнений с указаниями для их решения.

Издание предназначено для научных работников, аспирантов и студентов, специализирующихся в области физики, химии и прикладной математики.

Табл. 52. Ил. 58. Библиогр.: 41 назв.

Рецензенты:

доктор физико-математических наук, профессор Ю. А. Курочкин; доктор физико-математических наук, профессор В. В. Андреев; доктор физико-математических наук, профессор В. В. Беняш-Кривец

[©] Оформление. РУП «Издательский дом «Беларуская навука», 2024

Содержание

Предисловие	Ę
Глава 1. Начала теории групп преобразований	
§ 1.1. Введение в группы симметрии	7
§ 1.2. Основные понятия теории групп	10
§ 1.3. Группа перестановок. Теорема Кэли	20
Глава 2. Точечные группы симметрии	
§ 2.1. Оси и плоскости симметрии	24
$\S 2.2$. Группы преобразований \boldsymbol{C}_n , \boldsymbol{S}_n , \boldsymbol{C}_{nh} , \boldsymbol{C}_{nv} , \boldsymbol{D}_n , \boldsymbol{D}_{nh} , \boldsymbol{D}_{nd} ,	
T , T_d , T_h , O , O_h , Y , Y_h	28
§ 2.3. Алгоритм идентификации точечных групп	38
Глава 3. Теория представлений конечных групп	
§ 3.1. Представления групп	42
§ 3.2. Регулярное представление	45
§ 3.3. Леммы Шура. Соотношения ортогональности	45
§ 3.4. Базисные функции неприводимых представлений	59
§ 3.5. Регулярное представление и построение базисных функций неприводимых представлений	62
$\S 3.6$. Двумерное унитарное представление группы D_3	67
	01
Глава 4. Применение теории представлений групп для классификации молекулярных колебаний	
уля классификации молекулярных колеоании § 4.1. Определение типов колебаний атомов в молекуле	
прямым вычислением и групповыми методами	73
§ 4.2. Классификация колебаний молекул: преобразования	
векторов смещений атомов	84
§ 4.3. Моды колебаний молекулы воды	89
Глава 5. Симметрия уравнения Шредингера	
§ 5.1. Классификация стационарных состояний квантовых систем	95
$\S5.2$. Симметрия иона ${ m H}_2^+$: потенциальная энергия электрона	100
$\S 5.3$. Симметрия иона H_2^+ : кинетическая энергия электрона	103
§ 5.4. Преобразование пространственной инверсии гамильтониана	105
§ 5.5. Тензорное произведение неприводимых представлений	100
группы	108
§ 5.6. Правила отбора для переходов между стационарными состояниями квантовой системы	110
§ 5.7. Характеры некоторых групп и преобразование декартовых	110
координат при операциях симметрии	114
§ 5.8. Нарушение симметрии квантовой системы	119
§ 5.9. Расщепление уровней энергии атома примеси в кристалле:	
применение группы вращений	121
§ 5.10. Правила отбора для электрических дипольных переходов	
в поле кубической симметрии	125

4 Содержание

Franc 6 Cymrathaug ywwynau'i angay n wa tawytay	
Глава 6. Симметрия химической связи в молекулах § 6.1. Преобразования симметрии молекулы NH ₃	129
§ 6.2. Базисные функции неприводимых представлений.	123
Метод молекулярных орбиталей	131
§ 6.3. Теория направленных валентностей.	
sp^3 -Гибридизация в молекулах NH_3 и CH_4	136
$\S6.4$. Рассмотрение sp^3 -гибридизации с помощью теории групп $\S6.5$. Надружения протодоржения составляющий мотому $S4$	140
§ 6.5. Неприводимые представления состояний молекулы СН ₄ при учете спинов четырех протонов	143
Глава 7. Группы симметрии кристаллов	1 10
§7.1. Группы (решетки) Браве и сингонии	151
§ 7.2. Пространственная группа симметрии	158
§ 7.3. Точечная симметрия и анизотропия кристаллов	174
Глава 8. Симметрия стационарных состояний электронов	
кристалла	178
§ 8.1. Обратная решетка	170
Циклические граничные условия. Зона Бриллюэна	179
§ 8.3. Классификация одноэлектронных состояний	
в трехмерном кристалле. Функция Блоха	183
§ 8.4. Звезда волнового вектора электрона в двумерной	100
квадратной решетке	189
Глава 9. Симметрия спиновых систем	007
§ 9.1. "Двойные" группы	207 215
§ 9.3. Изоспиновая симметрия ядер	249
§ 9.4. Изоспин и пионы	263
$\S{9.5}$. Симметрия фундаментальных взаимодействий	269
Приложение А. Толковый словарь терминов	279
Приложение Б. Матрицы	299
Приложение В. Действие точечных операций симметрии	
на полярный и аксиальный векторы	314
Приложение Г. Проекционные операторы	318
Приложение Д. Применение проекционных операторов	
для определения мод колебаний молекулы H_2O	321
Приложение Е. Начала теории групп	332
§ Е.1. Конечные группы и их представления	332
§ Е.2. Представления группы симметрии трехмерного кристалла	351
§ Е.3. Непрерывные группы	365
§ Е.4. Группа SU(2)	374 391
У пражнения	406
•	
Список рекомендуемой литературы	501
Предметный указатель	503

Предисловие

Симметрия — согласованность частей целого — одно из важнейших свойств природы. Поэтому понятие симметрии используется в представлениях, развиваемых человеком для противостояния хаосу. Симметрией объекта называют преобразование, переводящее объект в эквивалентный. Все симметрии объекта образуют его группу симметрии, точнее группу преобразований (множество преобразований с бинарной композицией преобразований). Абстрактная группа, или просто группа, — это множество элементов вместе с одной ассоциативной бинарной операцией, причем имеется единичный элемент и каждый элемент обратим.

Идеи теории групп, математического фундамента симметрии, появились в начале XIX в., а теория представлений групп — лет на сто позже, когда уже создавалась квантовая теория. Развитие физики связано с расширением используемых групповых конструкций: группа Галилея (законы сохранения энергии, импульса, момента импульса), группа Лоренца (объясняет спин и существование античастиц), унитарные группы (классификация элементарных частиц), калибровочные группы (фундаментальные взаимодействия), суперсимметрия (симметрия между бозонами и фермионами). Установлено, что существует только 14 типов конечных групп симметрии молекул и 230 групп симметрии трехмерных кристаллов. Методы теории групп симметрии широко применяются в молекулярном зодчестве, биофизике, электронике, фотонике и т. д.

Научное издание во многом основано на исследованиях и лекциях члена-корреспондента НАН Беларуси Н.А. Поклонского. Излагаются элементы теории конечных групп, их представлений и приложения к молекулам, кристаллам и ковалентным химическим связям между атомами. Задача этой книги — показать читателю, как теория представлений групп позволяет реализовать соображения симметрии в практике расчетов.

Основное внимание уделено группам преобразований, оставляющим объект в исходной конфигурации, — группам симметрии молекул и кристаллов. Большая часть пособия посвящена рассмотрению объектов с дискретными группами симметрии и объяснению прямых методов получения физических следствий симметрии. Уровень изложения материала предполагает у читателя лишь на-

Предисловие

чальные знания по линейной алгебре и квантовой механике.

Книга состоит из девяти глав, главы разбиты на параграфы. Первая глава является введением в теорию конечных групп. Во второй главе рассмотрены все типы точечных групп в трехмерном евклидовом пространстве. В третьей главе изложены основы теории матричных представлений конечных групп. Главы 4-9 посвящены приложениям групповых методов, общему анализу следствий наличия симметрии у квантовых систем. На примерах показано, как групповые методы вносят ясность в исследование сложных систем. Рассматриваемый здесь круг явлений — молекулярные колебания, состояния электронов в молекулах, затем вводятся дискретные трансляции и их применение к кристаллическим структурам. Наконец, обсуждается симметрия спиновых систем (атомов, ядер и элементарных частиц). Приложения A-E аналитически дополняют основной текст. Упражнения (125 единиц) предназначены для самостоятельной работы, большая часть из них снабжена указаниями к решению. Приведен также список рекомендуемой для дальнейшего чтения литературы.

Рисунки и таблицы нумеруются в пределах каждой главы, например, рис. 3.12 — это рис. 12 в главе 3. Формулы пронумерованы в пределах каждой главы. Так, отсылка (2.5) означает формулу (5) главы 2. Замечания нумеруются в пределах каждой главы или приложения (запись #5.3 в начале строки — это замечание 3 в главе 5; конец замечания отмечен знаком " \boxtimes "). Подстрочные сноски имеют сквозную нумерацию внутри каждой главы. В упражнениях формулы и таблицы пронумерованы в пределах каждого упражнения, а рисунки и сноски имеют сквозную нумерацию.

Конечные группы обозначены прописными полужирными курсивными латинскими буквами (G, H), элементы групп — прописными светлыми курсивными буквами (X, Y). Векторы обозначены полужирными символами с прямым начертанием (\mathbf{a} , \mathbf{b}); вектор, направленный из точки A в точку B, обозначается AB; операторы (преобразования симметрии) — прописными светлыми курсивными буквами (R, S). Множество целых чисел (включая ноль) обозначается \mathbb{Z} , рациональных — \mathbb{Q} , вещественных — \mathbb{R} (положительных — $\mathbb{R}_{>0}$), комплексных — \mathbb{C} . Запись $i=\overline{1,n}$ означает, что i пробегает натуральные числа из \mathbb{N} от 1 до n.

Благодарим рецензентов за советы и замечания.

Н.А. Поклонский, А.Т. Власов, С.А. Вырко

Глава 1. Начала теории групп преобразований

§ 1.1. Введение в группы симметрии

Группой движений трехмерного евклидова пространства \mathbb{E}^3 называется множество таких взаимно однозначных отображений пространства на себя, которые сохраняют расстояния между точками. Если в результате преобразования (отображения) хотя бы одна точка остается на месте, преобразование называется точечным. Вообще, любое движение пространства есть некоторое сочетание поворота вокруг оси, зеркального отражения в плоскости и параллельного переноса (трансляции); см. также приложения A и E. Группа движений пространства E^3 является группой симметрии физической теории, что называется однородностью и изотропно-

стью пространства \mathbb{E}^3 . Это означает, что результаты измерений прибором \mathcal{D} объекта \mathcal{O} полностью совпадают с измерениями прибором $R\mathcal{D}$ объекта $R\mathcal{O}$ после преобразования R (см. рис. 1.1).

Многие системы (объекты) обладают симметрией — (само)согласованностью частей целого. Движение S пространства \mathbb{E}^3 называется симметрией объекта \mathcal{O} , если преобразованный объект $S\mathcal{O}$ не отличается от \mathcal{O} . (Результаты измерений прибором \mathcal{D} объекта \mathcal{O} полностью совпадают с измерения-

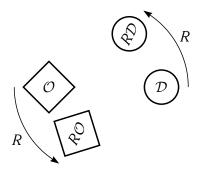


Рис. 1.1. Действие точечного преобразования (поворота) R на объект $\mathcal O$ и на прибор $\mathcal D$ в евклидовом пространстве

ми тем же прибором \mathcal{D} объекта $S\mathcal{O}$.) Для объекта \mathcal{O} все движения пространства, переводящие \mathcal{O} в себя, образуют *группу преобразований*, которую называют *группой симметрии* объекта \mathcal{O} .

Если символы S и T обозначают операции симметрии объекта и входят в математические выражения, то они удовлетворяют четырем условиям самосогласования операций. 1) Композиция $S \circ T$, означающая результат последовательного применения сначала операции T и затем операции S, также будет некоторой операцией R симметрии объекта. (В общем случае $S \circ T \neq T \circ S$.) 2) Набор операций симметрии содержит тождественное преобразование E, оставляющее все неизменным. 3) Всегда можно "нейтрализовать" действие любой операции S обратной операцией S^{-1} , так что

Обозначения Название преобразований (операций) в трехмерном евклидовом пространстве \mathbb{E}^3 Германа – Шёнфлиса Могена E1 Тождественное преобразование C_n Ось — поворот на угол $2\pi/n$, где $n \in \mathbb{N}$. Ось n с наибольшим n называют главной осью (порядка n), или вертикальной C_2' , U_2 2 Горизонтальная ось — поворот на угол π вокруг оси, перпендикулярной главной оси /mГоризонтальная плоскость — зеркальное отра- σ_h жение относительно плоскости, перпендикулярной главной оси Вертикальная плоскость — зеркальное отра- σ_v m жение относительно плоскости, содержащей главную ось Диагональная плоскость — зеркальное отраm σ_d жение относительно плоскости, содержащей

Таблица 1.1 **Преобразования симметрии и их обозначения**

главную ось и делящей пополам угол между двумя осями, перпендикулярными или на-

Центр симметрии — инверсия относительно начала декартовой системы координат

 $S^{-1} \circ S = S \circ S^{-1} = E$. 4) Выполняется условие ассоциативности бинарной операции (композиции): $S \circ (T \circ R) = (S \circ T) \circ R$. Эти четыре условия составляют четыре аксиомы группы преобразований.

клонными к главной оси

 $\overline{1}$

 $I = C_2 \sigma_h$

Бинарная операция (символ \circ) группы называется умножением и обозначается точкой (символ \cdot), которую обычно не пишут. Если композиция элементов S и T группы записывается как умножение, то $S \circ T \equiv S \cdot T \equiv ST$, если как сложение, то $S \circ T \equiv S + T$.

Далее используются традиционные названия элементов групп симметрии. Например, термин *ось* обозначает поворот вокруг оси, и по-прежнему ось, вокруг которой производится это вращение. *Оси симметрии* бывают: *вертикальные*, *горизонтальные* и *наклонные* (по отношению к главной оси; см. табл. 1.1).

В системе обозначений точечных групп симметрии и их элементов по Шёнфлису используется одна прописная буква с одним или двумя индексами. Буква \boldsymbol{C} (от слова cyclic — циклическая) употребляется в записи групп, имеющих только одну главную ось; буква \boldsymbol{D} (diagonal — диагональная) — для точечных групп с осями C_2' , перпендикулярными главной оси; буква \boldsymbol{S} (sphenoidal —

клиновидная) — для точечных групп с четной зеркально-поворотной осью $S_{2n}=C_{2n}\sigma_h=\sigma_hC_{2n}$ (композиция поворота на угол π/n вокруг оси C_{2n} и зеркального отражения относительно перпендикулярной ей плоскости σ_h). Буквы \boldsymbol{T} и \boldsymbol{O} (tetrahedral — тетраэдрическая и octahedral — октаэдрическая) используются для обозначения групп симметрии тетраэдра и октаэдра (а также гексаэдра, или куба). Буква Y (icosahedral — икосаэдрическая) обозначает группу симметрии икосаэдра и додекаэдра. Нижние индексы, следующие за прописной буквой, могут быть цифрами или буквами. Индексы $n=1,2,3,\ldots$ при буквах $\boldsymbol{C},\boldsymbol{D},\boldsymbol{S}$ указывают порядок n главной оси. Буквенные индексы означают: i (inversion) центр симметрии, s (single) — единственную плоскость симметрии, h (horizontal) — горизонтальную плоскость симметрии, v(vertical) — вертикальную плоскость симметрии, d (diagonal) — "диагональную" плоскость, делящую пополам угол между двумя осями, перпендикулярными (или наклонными) к главной оси.

В системе обозначений точечных групп симметрии по Герману – Могену используется последовательность символов элементов, порождающих группу (см. далее § 2.3). Сначала записывают символ n главной оси симметрии C_n ($n=1,2,3,\ldots$), затем пишут символы m или 2 столько раз, сколько $n=1,2,3,\ldots$), затем пишут символы $n=1,2,3,\ldots$ 0 имеется наряду с главной осью. Плоскости $n=1,2,3,\ldots$ 0 сопоставляют символ $n=1,2,3,\ldots$ 0 перед $n=1,2,3,\ldots$ 0 перет $n=1,2,3,\ldots$ 0 перет n=1,2

Зеркально-поворотная ось симметрии $S_p = C_p \sigma_h$ (по Шёнфлису) четного порядка p=2n для четного n является инверсионной осью (по Герману – Могену) — $nosopomom\ c$ инверсией $C_pI=IC_p$ и обозначается символом \overline{p} ($\overline{4}=S_4$, $\overline{8}=S_8$, $\overline{12}=S_{12}$). Ось $S_p=C_p\sigma_h$ четного порядка p=2n для нечетного n является инверсионной осью C_nI и обозначается \overline{n} ($\overline{1}=I=S_2$, $\overline{3}=S_6$, $\overline{5}=S_{10}$). Зеркально-поворотная ось $S_n=C_n\sigma_h$ нечетного порядка n является инверсионной осью C_2nI и обозначается $\overline{2n}$ ($\overline{2}=m=S_1$, $\overline{6}=S_3$, $\overline{10}=S_5$).

В молекулярной спектроскопии точечные группы обозначают по Шёнфлису, а в кристаллофизике — по Герману – Могену. Многие термины образованы с использованием греческих слов: $\emph{геми}$ — половина, $\emph{голо}$ — полный, $\emph{гониа}$ — угол, $\emph{морфо}$ — форма, $\emph{сингония}$ — сходноугольность, $\emph{скалена}$ — косой, $\emph{эдра}$ — грань.

1.1. Результаты измерений любого физического свойства объекта не изменяются, если расположение объекта в пространстве \mathbb{E}^3 изменить любым его элементом симметрии. Два примера. 1) Если тензор удельной электрической проводимости σ кристаллического образца на постоянном (стационарном) токе инвариантен относительно точечных преобразований симметрии образца (см. § 7.3), то результаты измерений σ в двух положениях образца (\mathcal{O} и \mathcal{SO}), отличающихся на преобразование симметрии S кристалла, совпадают, т. е. $S\sigma = \sigma$. 2) Собственный электрический дипольный момент Р монокристалла (т. е. его дипольный момент в отсутствие внешних воздействий) — полярный вектор, направленный от грани монокристалла с зарядом минус (-) к грани монокристалла с зарядом плюс (+). Если $\mathbf{P} \neq 0$, то инверсия (центр симметрии) I не является симметрией кристалла. Так, если вектор ${f P}$ инвариантен относительно \hat{I} , то $\hat{I}\mathbf{P} = \mathbf{P}$, но \mathbf{P} — полярный вектор, и поэтому $I\mathbf{P} = -\mathbf{P}$ (см. приложение В). Тогда из равенств $I\mathbf{P} = \mathbf{P}$ и $I\mathbf{P} = -\mathbf{P}$ следует, что $\mathbf{P} = 0$. Итак, инверсия I не принадлежит группе симметрии кристалла, имеющего $\mathbf{P} \neq 0$. \boxtimes

§ 1.2. Основные понятия теории групп

Группа преобразований ${m G}$ множества Q — это группа, элементами которой являются взаимно однозначные отображения множества Q в себя, а групповая операция (символ \circ) совпадает с композицией отображений. В этом случае говорят, что группа ${m G}$ действует на множестве Q (см. также \S E.1.2). Обозначение действия композиции элементов $X \circ Y$ из группы ${m G}$ на элементы из множества Q можно записывать двумя способами: либо слева от преобразуемого элемента $q \in Q$, и тогда $(X \circ Y)q = X(Yq)$, либо справа от $q \in Q$, и тогда $q(X \circ Y) = (qX)Y$. Далее преобразования из группы ${m G}$ множества ${m Q}$ (отображения ${m Q}$ в себя) записываются слева, так что $(X \circ Y)q$ означает выполнение сначала преобразования $Y \in {m G}$, а затем $X \in {m G}$. (На базисах в векторных пространствах используется правое действие группы, см. # Б.8.)

Группа D_3 вращений пространства \mathbb{E}^3 , переводящих правильный треугольник в себя, содержит шесть элементов (см. табл. 1.2): тождественное преобразование $X_1 = E$, два вращения $(X_2 = J, X_3 = K)$ вокруг главной оси C_3 и три вращения $(X_4 = L, X_5 = M, X_6 = N)$ вокруг трех осей C_2' . Каждое из этих преобразований (отображений) оставляет на месте центр треугольника. Композиция вращения J с последующим вращением N записывается в виде

Таблица 1.2

Группа D_3 вращательной симметрии правильного треугольника

Треугольник в плоскости xy $\begin{array}{c}
y \\
1 \\
2
\end{array}$

Пример композиции $N \circ J = M$

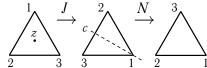


Таблица умножения (доска Кэли) элементов группы D_3

D_3	Е	J	K	L	М	N
Е	Ε	J	K	L	М	N
J	J	K				
K	K	E	J	N	L	M
L	L	N	Μ	E	K	J
M	M	L	N	J	E	K
N	N	M	L	K	J	Е

В таблице Кэли результат умножения $X_i \circ X_j$ элемента первого столбца X_i на элемент первой строки X_j находится на пересечении строки справа от элемента X_i и столбца под элементом X_j . (Для $X_3 = K$, $X_4 = L$ из \textbf{D}_3 имеем $X_3 \circ X_4 = N$; $K \circ M = L$.)

 $N \circ J = M$ (комбинация двух элементов дает третий). Элементы J и L вместе порождают всю группу и называются ее генераторами (образующими). Из табл. 1.2 видно, что группа \mathbf{D}_3 (= 32) некоммутативна (например, $N \circ J \neq J \circ N$). Элементам группы можно сопоставить преобразования множества точек евклидова пространства \mathbb{E}^3 , множества ребер правильного треугольника и др.

Определения основных понятий теории конечных групп и примеры этих понятий для точечной группы \mathbf{D}_3 собраны в табл. 1.3. Подробнее все это объясняется далее в тексте и приложениях A и E. Предполагается, что **читатель будет обращаться** к табл. 1.3, а также к приложениям A и E по мере необходимости.

Таблица 1.3 Определения основных понятий теории конечных групп

Термин	Термин Определение, примечания		
1. Конечная группа (обозначается G) [Все элементы множества различны по определению]	Конечное множество элементов $\{X_1 = E, X_2, X_3, \ldots, X_g\}$ вместе с бинарной операцией, удовлетворяющие аксиомам: 1) замкнутости, 2) ассоциативности операции, 3) существования единичного элемента E группы, 4) существования обратного элемента для каждого элемента группы	D3 E J K L M N E E J K L M N J J K E M N L K K E J N L M L L N M E K J M M L N J E K N M L K J E	
2. Порядок группы G (обозначается G или g)	Число g всех элементов группы G . (Группы обозначаются заглавными буквами, а их порядки — соответствующими строчными)	$ \mathbf{D}_3 = g = 6$	
3. Порядок элемента <i>X</i> группы <i>G</i> (обозначается ord(<i>X</i>))	Наименьшее число p такое, что $X^p = E$. Подмножество $\mathbb{Z}_p = \{X, X^2, \ldots, X^p = E\}$ называется ne -риодом элемента X , или циклической (абелевой) подгруппой, порожденной элементом $X \in \mathbf{G}$	Порядок элемента J равен 3, его период есть $\{J, K, E\}$; ord (J) = ord (K) = 3; ord (L) = ord (M) = = ord (N) = 2	
4. Подгруппа (обозначается <i>H</i> , ее порядок <i>H</i> или <i>h</i>)	Подмножество $\boldsymbol{H}\subset \boldsymbol{G}$, элементы которого образуют группу относительно бинарной операции группы \boldsymbol{G}	Все 6 подгрупп: $\{E,J,K\}, \{E,L\}, \{E,M\}, \{E,N\}; \{E,J,\dots,N\}, \{E\}$	
5. Собствен- ная подгруппа группы <i>G</i>	Любая подгруппа группы \boldsymbol{G} , кроме \boldsymbol{G} и $\boldsymbol{E} = \{E\}$ (подгруппы \boldsymbol{G} и \boldsymbol{E} называются несобственными, или тривиальными)	$egin{aligned} m{H}_1 &= \{E,J,K\}, \ m{H}_2 &= \{E,L\}, \ m{H}_3 &= \{E,M\}, \ m{H}_4 &= \{E,N\} \end{aligned}$	
6. Абелева, или коммутативная группа порядка g	Если для всех элементов группы ${m G}$ имеет место равенство $X_iX_j=X_jX_i$, где $i,j=1,\ldots,g$, то ${m G}$ называется абелевой группой	Группа D_3 не абелева. Все 4 ее собственные подгрупны абелевы	
7. Внутреннее произведение (умножение) подмножеств одной группы	Внутреннее произведение подмножеств $\{X_1, X_2, \ldots\}$ и $\{Y_1, Y_2, \ldots\}$ группы определяется так: $\{X_1, X_2, \ldots\} \{Y_1, Y_2, \ldots\} = \{X_1Y_1, X_1Y_2, \ldots, X_2Y_1, X_2Y_2, \ldots\}$, где учитываются только различные элементы	$ \begin{cases} J, K \} \{L, M\} = \\ = \{JL, JM, KL, \\ KM\} = \{L, M, N\}. \\ \{J, L\} \{K, M\} \neq \\ \neq \{K, M\} \{J, L\} \end{cases} $	

Продолжение табл. 1.3

Термин	Определение, примечания	Примеры для Д 3
8. Левый смежный класс XH (или правый, HX) по подгруппе H , определенный элементом $X \in G$	Внутреннее произведение подмножеств вида $XH \equiv \{X\}\{H\}$ (или $HX \equiv \{H\}\{X\}$) группы G . ($ XH = HX = H = h$.) Множество всех левых смежных классов подгруппы H в группе G обозначается G/H (правых $-H\backslash G$). ($ G/H = H\backslash G = G / H = g/h$)	$m{D}_3/m{H}_4 = \{\{E,N\},\ \{J,L\},\ \{K,M\}\},\ m{H}_4 ackslash m{D}_3 = \{\{E,N\},\ \{J,M\},\ \{K,L\}\},\ $ где $m{H}_4 = \{E,N\}$ — одна из собственных подгрупп в группе $m{D}_3$
9. Индекс $n := [\boldsymbol{G} : \boldsymbol{H}]$ подгруппы \boldsymbol{H} в группе \boldsymbol{G}	$n=g/h$ — отношение порядка g группы ${m G}$ к порядку h подгруппы ${m H}$. По теореме Лагранжа n — целое положительное число	Индекс $[\boldsymbol{D}_3 : \boldsymbol{H}_1]$ подгруппы $\boldsymbol{H}_1 = \{E, J, K\}$ в \boldsymbol{D}_3 равен 2
10. Циклическая группа порядка g (обозначается \mathbb{Z}_g)	Группа вида $\mathbb{Z}_g = \{X, X^2, \dots, X^g = E\}$, т. е. все элементы группы — степени одного элемента X , который называется генератором (образующей) группы \mathbb{Z}_g . Она абелева	Все собственные подгруппы H_1 , H_2 , H_3 , H_4 группы D_3 — циклические
11. Сопряженные элементы группы G . Центр группы	Элемент X_i называется сопряженным элементу X_j , если существует элемент $X \in \mathbf{G}$ такой, что $X_j = X^{-1}X_iX$. Если $X_i = X^{-1}X_iX$ для всех $X \in \mathbf{G}$, то X_i называется центральным элементом группы. Центр группы \mathbf{G} состоит из всех центральных элементов, это абелева нормальная подгруппа в \mathbf{G}	Элементы L и N — сопряженные, так как $K^{-1}LK = N$. Центр группы \mathbf{D}_3 равен $\mathbf{E} = \{E\}$. (Центр абелевой группы совпадает со всей группой)
12. Класс сопряженных элементов (обозначается $C_1, C_2,, C_{\nu}$, где ν — число всех классов)	Подмножество элементов группы, каждый из которых сопряжен каждому элементу этого подмножества. Класс центрального элемента содержит только этот элемент. Число классов абелевой группы \mathbb{Z}_g равно порядку группы g	Классы: $\mathscr{C}_1 = \{E\},\ \mathscr{C}_2 = \{J,K\},\ \mathscr{C}_3 = \{L,M,N\}.$ (Разложение группы на классы: $\mathbf{D}_3 = \mathscr{C}_1 \cup \mathscr{C}_2 \cup \mathscr{C}_3$)
13. Умножение классов сопряженных элементов группы	Произведение классов $\mathcal{C}_k\mathcal{C}_l$, определяемое как формальная сумма всех попарных произведений элементов из \mathcal{C}_k и \mathcal{C}_l , является суммой классов с целыми неотрицательными коэффициентами. (Формальная сумма всех элементов класса \mathcal{C}_k — элемент пространства $V(\Gamma_{\text{reg}})$ представления Γ_{reg})	$\mathscr{C}_2\mathscr{C}_3=2\mathscr{C}_3$, где 2 означает, что элементы класса \mathscr{C}_3 входят в произведение $\mathscr{C}_2\mathscr{C}_3$ дважды. $\mathscr{C}_2\mathscr{C}_2=(J+K)^2=J^2+JK+KJ+K^2=2\mathscr{C}_1+\mathscr{C}_2$

Продолжение табл. 1.3

Термин Определение, примечания		Примеры для ${m D}_3$
14. Сопряженные подгруппы группы	Подгруппы \boldsymbol{H} и \boldsymbol{H}' группы \boldsymbol{G} называются $conpяженными$, если существует такой элемент $X \in \boldsymbol{G}$, что $\boldsymbol{H}' = X^{-1}\boldsymbol{H}X$ (здесь $X^{-1}\boldsymbol{H}X$ обозначает подмножество всех элементов $X^{-1}YX$, где $Y \in \boldsymbol{H}$)	Подмножества $H_2 = \{E, L\}$ и $H_4 = \{E, N\}$ представляют собой сопряженные подгруппы. (Можно убедиться, взяв в качестве X элемент M)
15. Нормальная (или инвариантная) подгруппа	Подгруппа \boldsymbol{H} группы \boldsymbol{G} называется нормальной, если $\boldsymbol{H} = X^{-1}\boldsymbol{H}X$ для всех элементов X из группы \boldsymbol{G} (подгруппа \boldsymbol{H} самосопряженная), т. е. левый и правый смежные классы идентичны: $X\boldsymbol{H} = \boldsymbol{H}X$. Группа \boldsymbol{G} , не имеющая инвариантных подгрупп, кроме тривиальных (\boldsymbol{E} и \boldsymbol{G}), называется $npocmoй$	$m{H}_1 = \{E,J,K\}$ — единственная собственная нормальная подгруппа в группе $m{D}_3$. (Разложение $m{H}_1$ на классы сопряженных элементов: $m{H}_1 = \mathscr{C}_1 \cup \mathscr{C}_2$)
16. Фактор- группа <i>G/H</i> группы <i>G</i> по <i>нормальной</i> подгруппе <i>H</i>	На множестве всех левых G/H (или совпадающих с ними правых $H \setminus G$) смежных классов нормальной подгруппы H в группе G внутреннее произведение определяет структуру группы, которая называется фактор-группой. Порядок фактор-группы G/H равен $g/h = G / H $, т. е. индексу $n := [G:H]$ подгруппы H в группе G . Отметим, что $HH = H$	Фактор-группа $m{D}_3/m{H}_1$ содержит два смежных класса $m{H}_1 = \{E,J,K\},$ $Lm{H}_1 = \{L,M,N\}.$ $[m{D}_3:m{H}_1] = 2.$ Таблица умножения: $m{D}_3/m{H}_1 \parallel m{H}_1 \parallel Lm{H}_1 $
17. Прямое (или декартово) произведение G × G ′двух групп G и G ′	Прямое произведение $\mathbf{G} \times \mathbf{G}'$ есть группа, содержащая все возможные упорядоченные пары (X_i, X_j') , где $X_i \in \mathbf{G}, X_j' \in \mathbf{G}'$. Умножение элементов в группе $\mathbf{G} \times \mathbf{G}'$ задается равенством $(X_i, X_j') \cdot (X_k, X_l') = (X_i X_k, X_j' X_l')$. Порядок группы $\mathbf{G} \times \mathbf{G}'$ равен gg' , т. е. $ \mathbf{G} \times \mathbf{G}' = \mathbf{G} \cdot \mathbf{G}' = gg'$. В группе $\mathbf{G} \times \mathbf{G}'$ единичный элемент $-(E, E')$, обратный $-(X_i, X_j')^{-1} = (X_i^{-1}, (X_j')^{-1})$	Прямое произведение групп $H_1 = \{E, J, K\}$ и $H_2 = \{E, L\}$, подгрупп в D_3 , образует циклическую группу $\mathbb{Z}_6 = H_1 \times H_2 = \{(E, E), (E, L), (J, E), (J, L), (K, E), (K, L)\}$ шестого порядка. Ее генератором является элемент (J, L)

Продолжение табл. 1.3

Прооблжение тиол. Т			
Термин	Определение, примечания	Примеры для $m{D}_3$	
18. Изоморфизм групп (обозначается символом ≅)	Взаимно однозначное соответствие между двумя группами, сохраняющее умножение. Таблицы умножения изоморфных групп можно сделать идентичными, поменяв обозначения. Обычно изоморфные группы не различают	Группа \mathbf{D}_3 и группа $\mathbb{Z}_6 = \mathbf{H}_1 \times \mathbf{H}_2$ (прямое про-изведение групп \mathbf{H}_1 и \mathbf{H}_2) не изоморфны. Подгруппа $\mathbf{H}_1 = \{E, J, K\}$ группы \mathbf{D}_3 изоморфна подгруппе $\{(E, E), (J, E), (K, E)\}$ группы \mathbb{Z}_6 . $\mathbf{D}_3 \cong \mathbf{C}_{3v} = \{E, C_{3z}, C_{3z}^2, \sigma_{va}, \sigma_{vb}, \sigma_{vc}\}$	
19. Гомоморфизм групп (обозначается $f: \textbf{\textit{G}} \rightarrow \textbf{\textit{G}}'$)	Отображение f множества G в множество G' , сохраняющее умножение, т. е. $f(X_iX_j) = f(X_i)f(X_j)$ для всех $X_i, X_j \in G$ (образ произведения равен произведению образов), и $f(E) = E'$. Обратимый гомоморфизм называется изоморфизмом	Отображение $D_3 \to H_2$, переводящее E, J, K в E , а $L, M, N -$ в L , есть гомоморфизм группы D_3 в ее подгруппу $H_2 = \{E, L\}$. Например, $MN \mapsto LL = E$ согласуется с $MN = K \mapsto E$, где $K \mapsto E$ означает соответствие элементов	
20. Пред- ставление Г группы G в ком- плексном векторном простран- стве V	Гомоморфизм Γ группы G в группу $GL(V)$ линейных операторов в комплексном векторном пространстве V , т. е. Γ : $G \to GL(V)$. Элементу $X \in G$ сопоставляется оператор $\Gamma(X)$. Размерностью представления Γ называется размерность пространства V ; $\dim(\Gamma) = \dim(V)$. Пространство V называется пространство V называется I 0 пространство I 1 и обозначается I 2 и обозначается I 3 группы I 4 и обозначается I 7 и обозначается I 8 группы I 8 группы I 9 группы I 1 гру	Тривиальное представление Γ_1 любой элемент группы \mathbf{D}_3 переводит в 1, оно одномерно. Отображение $E\mapsto 1, J\mapsto 1, K\mapsto 1, L\mapsto -1, M\mapsto -1, N\mapsto -1$ является одномерным представлением Γ_2 . Двумерное представление Γ_3 сопоставляет каждому элементу \mathbf{D}_3 преобразование плоскости, в которой лежит правильный треугольник	
21. Регулярное представление $\Gamma_{\rm reg}$ группы	Пространство V представления $\Gamma_{\rm reg}$ группы ${\bf G}$ имеет в качестве базиса множество ${\bf G}=\{X_1,X_2,\ldots,X_g\}.$ Оператор (преобразование) $\Gamma_{\rm reg}(X)$, где $X\in {\bf G}$, действует на базисные векторы так: $\Gamma_{\rm reg}(X)X_i=XX_i,\ i=\overline{1,g};$ $\dim(\Gamma_{\rm reg})= {\bf G} $	Регулярное представление Γ_{reg} группы $\textbf{\textit{D}}_3$ шестимерно; $\dim(\Gamma_{\text{reg}})=6$. (Обычно вместо оператора $\Gamma(X)$ пишется X , например $\Gamma(E)=E$, $\Gamma(J)=J$ и т. д.)	

Окончание табл. 1.3

Термин	Примеры для Д 3	
22 . Прямая сумма $\Gamma' \oplus \Gamma''$ представлений Γ' и Γ'' группы $\textbf{\textit{G}}$	Пусть Γ' и Γ'' — представления группы ${m G}$ в векторных пространствах V' и V'' . Тогда действие $X(v'\oplus v'')=\Gamma'(X)v'\oplus \Gamma''(X)v''$ группы ${m G}$ в прямой сумме $V'\oplus V''$ векторных пространств V' и V'' (для всех $X\in {m G}, v'\in V'$ и $v''\in V''$) называется прямой суммой представлений Γ' и Γ'' и обозначается $\Gamma'\oplus \Gamma''$	Регулярное представление Γ_{reg} группы \textbf{D}_3 раскладывается в прямую сумму трех ее неприводимых представлений $(\Gamma_1, \Gamma_2, \Gamma_3)$ так: $\Gamma_{\text{reg}} \cong \Gamma_1 \oplus \Gamma_2 \oplus \Gamma_3 \oplus \Gamma_3$
23. Тензорное произведение $\Gamma' \otimes \Gamma''$ представлений Γ' и Γ'' группы $\textbf{\textit{G}}$	Пусть Γ' и Γ'' — представления группы ${m G}$ в векторных пространствах V' и V'' . Тогда действие $X(v'\otimes v'')=\Gamma'(X)v'\otimes\Gamma''(X)v''$ группы ${m G}$ в тензорном произведении $V'\otimes V''$ векторных пространств V' и V'' (для всех $X\in {m G}$, $v'\in V'$ и $v''\in V''$) называется тензорным произведением $\Gamma'\otimes\Gamma''$ представлений Γ' и Γ''	T ензорное произведение $\Gamma_3 \otimes \Gamma_3$ раскладывается в прямую сумму трех неприводимых представлений $\Gamma_3 \otimes \Gamma_3 \cong \Gamma_1 \oplus \Gamma_2 \oplus \Gamma_3$
24. Подпредставление Γ' представления Γ группы G (представление Γ' , вложенное в Γ); $V'(\Gamma') \subset V(\Gamma)$	Пусть Γ' и Γ — $npedcmasnehus$ группы G в векторных пространствах V' и V соответственно. Тогда Γ' называется подпредставлением представления Γ , если $V' \subset V$ и для всех $X \in G$ и $v' \in V'$ имеем $\Gamma'(X)v' = \Gamma(X)v'$, т. е. для всех элементов X группы G оператор $\Gamma'(X) = \Gamma(X) _{V'}$	Пусть $\Gamma\cong\Gamma'\oplus\Gamma''$, тогда Γ' и Γ'' — подпредставления представления Γ
25. Неприводимое представление группы	Представление Γ называется неприводимым, если пространство представления $V(\Gamma)$ не содержит инвариантных векторных подпространств, кроме несобственных 0 и $V(\Gamma)$. Подпространство $V' \subset V(\Gamma)$ называется инвариантным, если для всех $X \in \textbf{G}$ и $v' \in V'$ выполняется условие $\Gamma(X)v' \subset V'$ (или $Xv' \subset V'$)	Представления Γ_1 , Γ_2 , Γ_3 группы D_3 неприводимы. (Число неэквивалентных неприводимых представлений равно числу классов сопряженных элементов группы)

1.2. Множество ${m G}$ элементов $\{X_1=E,X_2,\ldots\}$ с заданной на нем двухместной (бинарной) операцией \circ называется $\it epynnoй$, если:

1) операция \circ определена для любой пары X_a и X_b элементов множества и $X_a \circ X_b \in \boldsymbol{G}$, 2) операция \circ ассоциативна, т. е. $(X_a \circ X_b) \circ \circ X_c = X_a \circ (X_b \circ X_c)$, 3) в множестве \boldsymbol{G} существует единица E, т. е. такой элемент, что $E \circ X_a = X_a = X_a \circ E$ для всех X_a из \boldsymbol{G} , 4) каждый элемент $X_a \in \boldsymbol{G}$ обратим, т. е. в множестве \boldsymbol{G} существует такой элемент X_a^{-1} , что $X_a^{-1} \circ X_a = E = X_a \circ X_a^{-1}$. При ослаблении условий 1)-4) получаются различные обобщения понятия группы. Так, если выполнены условия 1, 2), 3), то \boldsymbol{G} называется *полугруппой*.

Единичный (нулевой) элемент в группе может быть только один. Так, если E_1 и E_2 — единичные элементы, то $E_1=E_1E_2=E_2=E$. Для каждого элемента X_a обратный к нему элемент X_a^{-1} группы может быть только один. Так, если X_b и X_c обратные к X_a , то $X_b=X_bE=X_b(X_aX_c)=(X_bX_a)X_c=EX_c=X_c=X_a^{-1}$. Итак, обозначения E и X_a^{-1} корректны. Во всякой группе $(X_aX_b)^{-1}=X_b^{-1}X_a^{-1}$, но в общем случае $(X_aX_b)^{-1}\neq X_a^{-1}X_b^{-1}$. \boxtimes

1.3. Две системы обозначений и терминов для бинарных операций [мультипликативной ($\circ = \cdot$) и аддитивной ($\circ = +$)] в группах:

Умножение (произведение)		Сложение (обычно коммутативное)	
	Произведение: $X_a \cdot X_b \equiv X_a X_b$	Сумма: $X_a + X_b$	
	Единичный элемент: $E (= X_1)$	Нулевой элемент: $0 \ (= X_0)$	
	Обратный элемент: X_a^{-1}	Противоположный элемент: $-X_a$	\boxtimes

Теорема. В любом столбце (строке) таблицы умножения группы каждый элемент встречается один и только один раз.

Доказательство. Для элементов группы $G = \{X_1 = E, X_2, \ldots, X_g\}$, где g — порядок группы, справедливо утверждение: если X_a пробегает все элементы группы один раз, а X_b — некоторый фиксированный элемент группы, то произведения X_bX_a (или X_aX_b) также пробегают всю группу один раз. Действительно, любой элемент X_c группы может быть получен умножением справа X_b на $X_a = X_b^{-1}X_c$. При этом среди произведений X_bX_a не может быть повторяющихся. Так, если $X_bX_a = X_bX_c$, то, умножая это равенство на X_b^{-1} слева, получим $X_a = X_c$, что невозможно (ибо все элементы группы различны). Следовательно, для разных X_a все X_bX_a разные. (Имеется в виду внутреннее произведение подмножеств; см. табл. 1.3.)

Следствие. Для произвольной функции f, определенной на элементах группы ${m G}$, имеем: $\sum_{X_a} f(X_a X_b) = \sum_{X_a} f(X_a)$, т. е. сумма по всем элементам группы (усреднение по группе ${m G}$) не зависит от элемента $X_b \in {m G}$.