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Annomayus. PaccmarpuBarorcsi CBOOOIHbBIE MaIble KOJIeOaHUsI MUKPOKOHCOIIU BOIN3M e OpMUPOBAHHOTO CTAaTHYe-
CKOT'O TTOJIOKEHHUS C yUEeTOM MEXKMOJIEKYIIAPHBIX U AEKTPOCTATHYECKUX CUJI, AEHCTBYIOIINX CO CTOPOHBI HEMOABHKHOTO
anexTpona. Ha mepBoM sTare ¢ mpuMeHeHHEM T10/1X0/1a, OCHOBAHHOTO Ha alllIPOKCHMAIINH PE3YJIBTUPYIOMINX OOKOBBIX CHIT
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TaMU PEIIAeTCsl ¢ UCTIOIb30BaHUEM KaK aCUMIITOTHUECKOro MOJXo/a, Tak 1 Metoaa Pynre — Kyttsl. IIpoananusupoBano
BIIMSTHUE TIPHIIOKEHHOTO HATIPSDKEHMST M MEKMOJICKYIISIPHBIX CHJI, BKITFOUast ciutbl Ban-nep-Baansca un Kazumupa.
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Abstract. The paper deals with free small vibrations of a micro-cantilever near the deformed static position incorpo-
rating the electrostatic and intermolecular forces acting from the fixed electrode. First, the initial static deviation of the
cantilever due to the external forces is determined using the approach based on the approximation of the resultant lateral
forces by the linear or parabolic functions of the axial coordinate, the initial deflection being evaluated under the values
of voltage and intermolecular forces less than the critical ones. To study free small vibrations of the initially deformed
cantilever, we linearise the nonlinear differential equation in the neighbourhood of the deformed static position. The de-
rived governing equation with variable coefficients is solved using both the asymptotic approach and the Runge — Kutta
method. The effect of the applied voltage and the intermolecular forces, including the van der Waals and Casimir ones,
is analysed.
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Introduction

Over the past fifteen years, a large number of papers devoted to studying the phenomenon of pull-in insta-
bility and vibrations of electrostatically actuated micro- and nano-beams was published. A detailed analysis
of these contributions can be found in the review article [1]. The increased attention to this topic is explained,
firstly, by the widespread use of low-dimensional electrically actuated beams as sensing elements in various
kinds of micro- and nano-electromechanical systems (MEMS/NEMS), such as micro- and nano-sized sensors
and actuators, switches and tweezers and in other nanotube-based devices. The second reason that again and
again attracts researchers to this topic is the extreme complexity of the mathematical models governing the
mechanical behaviour of low-dimensional beams taking into account the electromechanical and intermolecular
forces. The incorporation of the van der Waals (vdW) and Casimir forces into a model leads to a high degree of
nonlinearity, which increases when size effects are taken into account. We do not discuss here the problem
of capturing the size effects [2] as it was done, for example, in [3; 4], but we focus on free vibrations of a micro-
sized cantilever near the deformed static position which is due to the intermolecular and electrostatic forces
acting from a fixed electrode (fig. 1).

If a gap between the fixed electrode and electrostatically actuated micro-cantilever is very small, then even
if the electrostatic force is absent, the movable electrode is attracted towards the fixed one due to the intermo-
lecular forces. Thus, the initially the micro-cantilever is always pre-strained, and the initial static deformation
becoming larger under an applied voltage. If suddenly applied voltage turns out to be less than the critical
pull-in voltage, at which the electrical circuit is closed, then the movable cantilever electrode begins vibrating
around the initial static deformed position. And vice versa, when the voltage is turned off, the movable elect-
rode, before returning to its original position, makes oscillatory movements around this final position. In other
words, any sudden change in the electrical voltage leads to deformation of the micro-cantilever, which may be
accompanied by unwanted vibrations and unintended circuit closure. To predict the dynamics of a cantilever
as a micro-switch element, it is crucial studying its eigenmodes and corresponding eigenfrequencies, taking
into account the intermolecular forces acting on it.

Due to the strong nonlinearity, the dynamic response of electrically actuated micro- or nano-sized beams is as
arule predicted using different semi-analytical approaches and numerical methods, which are usually associated
with some computational difficulties. Moreover, in some cases, if the problem is formulated incorrectly, they
can lead to solutions that ignore the initial deviation caused by intermolecular forces. For example, in [5—7]
zero displacements and velocities for beams were taken as the initial conditions, which in fact lead to a solution
that describes oscillations in the vicinity of the undeformed state of a micro- or nano-beam.
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In our opinion, an alternative approach taking into account above mentioned issues could be an approach based
on splitting the stress-strain state of the beam into a static deformed state and the dynamic state corresponding
to the beam vibrations near the deformed static position. This approach has been utilised by K. F. Wang and his
colleagues [8] to study large amplitude free vibrations of electrically actuated clamped-clamped nano-beams.
In the mentioned paper, the nonlinear dynamic response of the nano-beam under the Casimir forces was ana-
lysed considering various complicating factors, such as surface energy and temperature changes. The authors
show that the effect of the initial nonlinear static deformation on the fundamental frequency is significant and it
increases together with the applied voltage. However, solutions to the nonlinear dynamics equations were found in
the form of harmonic functions, which is more consistent with linear oscillations of a mechanical system. It also
seems doubtful to ignore the vdW forces when displacements of the beam become very large and comparable
to the gap value. A simpler version of this approach is based on the linearisation of the beam dynamic state in
the vicinity of the deformed static position. Of course, this simplification does not allow predicting large amp-
litude vibrations, but it turns to be very effective for analysing small vibrations near the initially deformed
pre-buckling position. Such approach has been applied by L. Xu and his colleagues [9; 10] to investigate the
effect of the vdW forces on small oscillations of a micro-cantilever, at that the electrostatic and Casimir forces
were not considered by the authors, and the static deflection caused by the vdW forces has been determined
approximately with a large error (see, for example, equation (13) in [9]).

Taking into account the above critical remarks, we aim in this study to reconsider the approach based on
splitting the nonlinear dynamic equation into the static and dynamic ones and give a simple methodology
which, in contrast to the mentioned papers, allows more correct predicting the initial static deformed state, which
strongly affects the eigenmodes of free vibrations. The novelty of our study lies in the implementation of
the approach [3; 4] verified by outcomes of the atomistic simulation [11], which relies on approximations
of the lateral forces acting on a beam by linear or parabolic functions and permits to correctly predict the static
deviation of the micro-cantilever via correct choosing the type of intermolecular forces. Such approach results
in a boundary-value problem for a differential equation with correctly found variable coefficients governing
small vibrations of the deformed beam, which is readily integrated by using any numerical method, for example,
the Runge — Kutta one. In contrast to many contributions, the results of numerical computations given in the
present study are invariant with respect to the geometrical and physical parameters of the micro-mechanical
systems, and can be used for the wide range of their variation.

Mathematical model

Consider a micro-switch which consists of a fixed electrode and a micro-cantilever of length L, width b
and thickness /4 separated by a dielectric spacer with an initial gap g, as shown in fig. 1. The beam material is
assumed to be elastic with Young’s modulus £ and density p.

a b

l L |
\

N Car‘ltllever beam electrode 2

Y
Fixed electrode @

Fig. 1. Schematic configuration of a micro-switch (a)
and vibration mode W, of a cantilever near the static deviation 17, (b)

Let W(x, t) be a transverse displacement of the cantilever, where x is a coordinate of a point at the midline,
and ¢ is time. In general, the displacement  can be forced by the inertia forces and different external forces
such as the distributed electrostatic force F,, generated by a voltage V applied to the fixed electrode, and the
intermolecular force F;, where m = 3 and m = 4 correspond to the vdW and Casimir forces, respectively. Ap-
plied voltage or (and) intermolecular forces result in the deflection of the beam towards the electrode. At a criti-
cal voltage value V", called the pull-in voltage, or at a very small initial gap g*, the phenomenon of the pull-in
instability of the micro-switch occurs, which consists in the retraction of the cantilever onto the stationary elec-
trode. We assume here that ' < V", and g > g* so that all forces acting on the micro-cantilever result in a static
deviation W, (x) < g without the pull-in instability effect. The problem is to study small free vibrations of the
micro-cantilever with an amplitude 7, (x, t) in the neighbourhood of its initial stationary deflection W, taking
into account both the electrostatic and intermolecular forces.
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Free bending vibrations of an elastic beam is governed by the equation

o'w oW
EI +pS——=g(x), 1
ER RSPV a(x) M

where £ is the bending rigidity of the beam; S is the cross-sectional area; q(x) =F, + F,, is the distributed

lateral load per unit length. The electrostatic force, including the fringing one, and the vdW and Casimir forces
as well are given by

2 27
FezLVZ(HO.ﬁﬂ], F3=A—b3’ F4=$b4‘ )
2(g-w) b 6n(g - W) 240(g - W)

In relations (2), ¢, = 8.854 - 1072 C*- N7'- m™ is the permittivity of vacuum, 4 is the Hamaker constant, h=

=1.055-10""*J - s is Plank’s constant divided by 2, and ¢ = 2.998 - 10°® m/s is the speed of light. The boundary
conditions for the cantilever read

w(0,1)=W.(0,¢)=0, W, (L, t)=W. (L, 1)=0, 3)

where the subscript following the hatch denotes differentiation with respect to the corresponding variable.
We introduce dimensionless parameters and variables:

bV
s=2 t=onU=2 y-06s8 p=502" =
L g b 26°El
B 4)
AbL? n*hebL?
O3 =—F—» 0y =~ ——=
o6ng El 245g°El

where o, = is the characteristic frequency. Then, according to (4), equation (1) can be rewritten in the

pSL!

dimensionless form:
4 2
6(4]+6l2]= Yﬁ+ B2+ bl , (5)
0s o 1-U (1-vu)y (1-U0)"
where m = 3 or m = 4 for the vdW and Casimir forces, respectively.

Equation (5) possesses a strong nonlinearity and does not admit an explicit solution. We will seek an ap-
proximate solution in the form of the superposition of the static and dynamic components:

U(x, ’E) :u(s) + w(s, r), (6)

where u (s) is a static deviation due to the intermolecular and (or) electrostatic forces; w(s, r) is an additional
small dynamic deflection, which describes free linear vibrations of the micro-cantilever near the deformed
static position. We substitute (6) into equation (5) and assume that |w(s, ‘C)| <1 forany tand se [0, 1]. Then

expanding the right-hand side in equation (5) into a series in powers of w and keeping only linear terms, we
arrive at the following equation:

u g B,
as* 1-u (l—u)2 (1—u)"
o'w  'w YBw 2Bw moL,,w

=— - + + m=3,4. (7

+ )
os*t o7’ (1—u)2 (l—u)3 (1—u)mJrl

Because equation (7) should be satisfied for any 7 it can be split into the two equations:

du_p . B, o,

ost 1-u (l—u)2 (1—u)"

®)
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and

4 2

5:1/_ e 7t = 3 T man:nﬂ W+5_1;V:0, ©)
Os (l—u) (l—u) (l—u) ot

from which equation (8) defines the static deviation of the cantilever, and equation (9) governs free small vi-
brations near this deflected position.
Substituting (6) into (3) leads to the boundary conditions

1/1(0) = u’s(o) = 07 u'ss(l) = u'sss(l) = O’ (10)
w(O, 7:) = w,S(O, r) =0, w,ss(l, r) = w,sss(l, r) =0 (11)
for equations (8) and (9), respectively.

Static deviation of micro-cantilever

Consider the static problem (8), (10). Due to the nonlinearity of the external force experienced by the can-
tilever, this problem does not allow obtaining an exact solution in the explicit form. We use the approach pro-
posed in [12] and later refined in papers [3; 4]. In accordance to this approach, the lateral dimensionless force

o
fu)) e s S 12
l-u (1—u) (l—u)
not depending on the its nature, is approximated by a linear or quadratic function of s:
S(s)=fo+ (fr = fo)s" (13)
where n=1orn=2; f,=B+7vB +a,; f;is the lateral force acting on the cantilever tip. As was proposed

in [3], the models, for which n =1 and n = 2, are called the linear distributed load (LDL) and quadratic distri-
buted load (QDL) models, respectively.
If we assume the LDL model, then equation (8) with the boundary conditions (10) has the solution

u(s)sz_.fi)S5+&S4_fO+fTS3+-f6+2fTS2’ (14)
120 24 12 12
and the force f; introduced by equation (12) will be as follows:
a’m
£ = w o, B -+ — (15)
L—ur (1-—up)” (1-up)
where u; is the deflection of the cantilever tip calculated by equation (14) and equal to
11/, + 41,
=—Jr JO0 16
T 120 (16)

In the framework of the QDL model, a solution of the static problem (8), (10) is given by the polynomial

u(S):MsﬁJrﬁs“_fT"'zfoS%rfT+foS2 (17
360 24 18 8
with the force fdefined from the same equation (15), but with the tip deflection evaluated as
267 +19f,
Ur=—"2" 18
d 360 (18)

We note that the accuracy of such models for estimating the static component (17) was verified in [3] by
comparing with available data of the atomistic simulations [11].

For the freestanding micro-cantilever (p = 0), regardless of the model assumed, equation (15) together with
(X‘m
Ur
critical value o), of a parameter o, (m = 3, 4) and the associated displacement ;. Having known the critical
value o, we can estimate the lower and upper bounds for the gap g and the beam length L beyond which the
micro-cantilever may fall onto the base due to the intermolecular forces [3]:

* 3
§< 4[na23Eh , (19)

(16) or (18) yield the relationship a.,, = o, (uT ) Then, relying on the condition d

=0, one can calculate the
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and

% 35 27 14
L<‘J20a4f_hg . nth3 0
n"he 200, Eh
for the micro-cantilever subjected to the vdW and Casimir forces, respectively.
Under the applied voltage V, B > 0, and equation (15) together with (16) or (18) give the relationship

B= B(uT ) Then the condition % =0 allows finding the critical value B* corresponding to the pull-in vol-

tage Vp;, which is defined as

5 (gh)3 8"
6g,L* '

In what follows, we assume that for the freestanding beam, inequalities (19), (20) hold simultaneously,

and in the case of applied voltage V, we set the additional inequality V' <V}, where Vp, is evaluated by (21).
If these conditions are satisfied, then the micro-cantilever just deviates from its initial position toward the fixed

electrode by the value u(s) <uj for any s €[0, 1] and does not fall onto it. Figure 2 displays the dimensionless
pre-buckling tip displacement u; of the micro-cantilever for different values of the vdW parameter o, calcula-
ted on the base of LDL model. Here, the critical value a; =1.004, while for the QDL model a3 =1.139.

0.25

Vo = 1)

0.20

0.15—
Ur

010

0.05F

0 1 1
0.2 0.4 0.6 0.8 1.0

O

Fig. 2. Tip deflection u;, of a freestanding micro-cantilever versus
the parameter o calculated on the base of the LDL model

We study free small vibrations of the micro-cantilever near the deformed static position, which are go-
verned by equation (9) with the boundary conditions (11). Seeking a solution in the form w(s, #)=y(s)e",

where i =+/—1 is the imaginary unit, and o is a natural frequency, and inserting it into (9), (11), we arrive at
the boundary-value problem

d4y B 2B mao.
——| A+ + + = y=0, (22)
dS4 (1_u)2 (1—1/1)3 (l_u)m+1

y(O)zy'(O)zO, y"(l)zy”'(l)zO, (23)
where A = ®” is a required eigenvalue, and u (s) is the initial static deviation found above.
Free vibrations of freestanding micro-cantilever
First, we consider equation (22) for the case when 3 =0 and m = 3:
GV
o [1-u)]

It is obvious that equation (24), as well as equation (22) for the general case, do not admit an exact solution
due the variable coefficients depending on u(s). However, they can be readily integrated numerically and by

Ay =0. (24)
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using an asymptotic approach for the special case when the initial displacement u(s) is small. The asymptotic
solution will be used only to validate further numerical calculations.

Asymptotic approach. Let u = uz(s), where p=u (1) < 1. Then the formal asymptotic solution of the boun-
dary-value problem (23), (24) can be sought in the form of series:

(s 1) = vo(s) + o (s) + wyy(s) +...s
(25)
A=A+ b+ 1, +.
Substituting (25) into equation (24) and the boundary conditions (23), with the function (1 - uz)_4 being ex-
panded into the Tailor series, we arrive at the sequence of boundary-value problems which can be considered
step-by-step.
In the leading approximation, one has the homogeneous boundary-value problem

J’(()W) = 30359 = Aoyo =0,

¥0(0)=0, ¥5(0)=0, y5 (1) =0, y5(1) =0,

(26)

which has the solution

with

k=40 + Ay, Fy(s, k)= %(sinh ks + cosks),
Fl(s, k) =%(coshks — cosks), F3(s, k) =%(sinhks — sinks),

k=1.875, k, =4.694, ky="7.855, k,=10.99, ....
Note that of all available k,, one needs to consider only those values for which
Ao = Ao, =k =301, > 0. (27)

In the first-order approximation, we have the inhomogeneous boundary-value problem

yl(IV) - (3(*3 + 7bo)yl =MYo+ 120‘32(3))’05

7(0)=0, y/(0)=0, y/(1)=0, (1) =0,

which is the problem on the spectrum of the homogeneous boundary-value problem (26). With the self-adjoint-
ness of problem (26) taken into account, the condition for the existence of a solution to problem (28) results in
the relation for a correction:

(28)

1

120L3J-z(s)y02(s)ds

: (29)
Iyg(s)ds
0

The procedure for seeking all unknown parameters and functions from (25) can be formally continued. By in-
terrupting this process, we found the parameters A, A, as functions of a; based on only two approximations.
Figure 3, a, displays the first four eigenvalues A, versus o, calculated within the LDL model. It can be seen
that inequality (27) holds for any natural » and all values of the vdW parameter o; <1 corresponding to the
pre-buckling position. It is also seen that the zero approximation of the parameter A is not strongly influenced
by the parameter a,;; an increase in oy leads to a decrease only in the first root A, (it should be noted that curves
in fig. 3, a, are plotted in the logarithmic scale). As for the correction A, evaluated by (29) and corresponding
to A, it reveals a large dependence on the vdW parameter a, it increasing in value along with o, for any
mode number 7.
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Fig. 3. The first four eigenvalues A, (a)
and the corresponding corrections A,, versus the vdW parameter o,

Numerical solution. Equation (24) with the boundary conditions (23) can be solved numerically. We re-
write it in the form of a system of differential equations

Y'=C(s; 1) Y, (30)
where Y = ( V> Var Vas y4) is the four-component vector with y, =y, v, =¥/, ¥; =y}, ¥, = »5 the icon T means
transpose, and C is the (4 X 4)—matrix introduced as

0 10 0
0 01 0

C= Jep=h b ——
0 00 1T
¢y 000

The corresponding boundary conditions read

71(0)=3,(0)=0, y3(1) = y4(1) =0, 31)
We consider the following independent Cauchy problems for equation (30):
Y|S:0 =(0,0,0,1)and Y|S:O =(0,0,1,0). (32)

These problems are to be solved simultaneously using, for example, the Runge — Kutta method. Let YW=
= ( yl(l), ygl), ygl), ygl)) and Y? = ( yfz), ygz), ygz), yfﬁ)) be solutions of the problems (30), (32), and (30), (32),,

respectively. Composing the function Y = clY(l) + czY(z) and substituting it into conditions (31), at point s = 1,
we arrive at the homogeneous algebraic equations with respect to unknown constants ¢, c,:
1 2
clyg )(1) + czyg )(1) =0,
1 2
clyfl )(1) + czyg )(1) =0.
The condition for the existence of a nontrivial solution to equations (33) leads to the equation
1 2 1 2
W) (1) - (107 (1)=0 (34)
with respect to the required parameter A.

Numerical integration of the above Cauchy problems for equation (30) was performed using the NDSolve-
function in the Wolfram code with intermediate vector orthonormalisation. At each integration step, the ele-

(33)

ments of the vectors Y(l), Y were determined with accuracy up to six decimal places, while equation (34)
was solved with accuracy up to three decimal places. Figure 4 demonstrates the behaviour of the first positive
eigenvalue A of the boundary-value problem (23), (24) versus the vdW parameter a.,, established both by the
numerical integration (dotted line) and using the asymptotic approach (red circles) within the LDL model.
Firstly, we note the satisfactory agreement of the results obtained by the two methods, a slight divergence
being observed beginning only from o, = 0.5, which increases and reaches the value not exceeding 2 % for
o = 0.7. This divergence is due to an error of the asymptotic approach, which increases together with the static
tip deviation p = u(l) Secondly, fig. 4 shows that the lowest natural frequency of the freestanding cantilever

decreases along with the gap g between the electrodes.
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Fig. 4. The first positive eigenvalue A of the boundary-value problem (23), (24)
versus the vdW parameter o; defined using the numerical and asymptotic methods

Effect of electrostatic forces
on free vibrations of micro-cantilever

Now, returning to equation (22), we will study the influence of the electrostatic forces on the natural fre-
quencies considering the forces of intermolecular interaction. The lateral forces acting on the cantilever from
the fixed electrode will be approximated by both the linear and quadratic functions (13) in the framework of the
LDL and QDL models. Calculations of the first positive eigenvalue for the boundary-value problem (22), (23)
will be done using the numerical procedure developed above with

A+ Py >+ 28 T+ ma’"4
I:l—z(s):l I:l—z(s)] [1— Z(S):I
assumed in the matrix C, where m = 3 and m = 4 for the vdW and Casimir forces, respectively.

In fig. 5, the first positive dimensionless parameters A are plotted as functions of the vdW parameter o,
at y = 1 for different values of the voltage parameter 3 in the framework of the LDL (see fig. 5, a) and QDL
models (see fig. 5, b). Curves marked with numbers /, 2, 3, 4 correspond to the values 3 = 0, 0.15, 0.3, 1.0, re-
spectively. The calculations were carried out only for B < B* and at the interval 0 < o, < a3, where B*, o are the
critical values corresponding to pull-in instability of the cantilever, the higher the voltage 8 being, the shorter
the interval of variation of the parameter a;. When a; or 3 reaches its critical value, the mobile cantilever col-
lapses onto the substrate [10]. It is seen that for fixed values of the parameter o, the QDL model gives higher
values of the eigenfrequency then the LDL model. The divergence in results is slight for small a5, however it
increases together with a. It is also seen that for any values of 3 the natural frequencies decrease as the vdW
parameter o, increases, this decrease becoming dramatic as oy approaching os.

Figure 6 shows the results of calculations similar to those given above, but demonstrating A versus the Ca-
simir parameter o,,. It is seen that behaviour of all curves are the same as in fig. 5.
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Fig. 5. The first positive eigenvalue A versus the vdW parameter o, for different values
of the voltage parameter {3 calculated in the framework of the LDL (a) and QDL (b) models:
B=0(1),B=0.15(2),p=03(3),p=1.0)
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However, a more detail comparison of the curves in fig. 5 and 6, made for the same parameter 3 and the
adopted model, shows that the incorporation of the Casimir forces results in a weaker reduction in the first
natural frequency than accounting for the vdW forces when the voltage becomes close to the critical value .

Conclusions

In this work, free small vibrations of a micro-cantilever as an element of the micro-switch were investigated con-
sidering the electrostatic and intermolecular forces, including the vdW and Casimir ones. We revised the approach
stated earlier (see, for example, [9; 10]), which is based on splitting the stress-strain state of the micro-cantilever
into the static and dynamic states. Assuming a solution of the original nonlinear dynamic equation in the form
of the superposition of static and dynamic components, we derived the nonlinear differential equation, gover-
ning the static deviation caused by the intermolecular forces, and the linear equation with variable coefficients
describing free small oscillations in the vicinity of the static strained state. The novelty of our approach com-
pared to the similar ones realised in [9; 10] is in the effective method, which allows correct estimating the static
component strongly influencing the subsequent calculations of the natural frequencies of free vibrations near the
deformed state. The static component was first correctly determined within the well-established LDL and QDL
models [3; 4], according to which the resulting lateral force acting on the movable cantilever is approximated
by either the linear or parabolic function of the axial coordinate. The differential equation governing small
vibrations of the micro-cantilever near the static deformed position was derived in the form which is invariant
with respect to the geometrical and physical parameters of the micro-electromechanical systems and can be
utilised for studying small vibrations with a wide range of variation of these parameters. In the case of a small
static deviation of the beam, we determined several first natural frequencies and corresponding modes using the
asymptotic approach with a small parameter equal to the tip deviation. For the general case with a finite static
tip deviation, we proposed the numerical procedure based on the Runge — Kutta method. All computations were
performed for the vdW and Casimir forces not exceeding the critical pull-in instability values. The comparison
of results obtained by different methods showed a good agreement for small values of the vdW parameter o,
corresponding to relatively large clearances between the electrodes. As an expected result, we confirm that
increasing the voltage and intermolecular forces leads to a decrease in the natural frequencies, with this effect
turning to be strong for the lower natural frequency and becoming weak as the mode number increases. In ge-
neral, the calculations performed for the adapted models without specifying the parameters of the micro-electro-
mechanical systems also revealed that for the fixed values of the vdW or Casimir parameters, the QDL model
gives higher values of the eigenfrequency with respect to the LDL model.

We note that the simple procedure developed in this paper, which relies on the adopted LDL and QDL mo-
dels [3; 4], may be considered as a benchmark for subsequent investigations to study small and finite vibrations
of the electrically actuated nano-beam considering size effects within the nonlocal theory of elasticity [2].
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