
40

О б р а з е ц   ц и т и р о в а н и я:
Николайчик МА, Чжан Шици. Построение механико-мате-
матической модели вязкоупругого блочного элемента для 
решения динамических задач геомеханики методом дис-
кретных элементов. Журнал Белорусского государствен­
ного университета. Математика. Информатика. 2024;3:  
40 – 61 (на англ.).
EDN: GORQYA

F o r  c i t a t i o n:
Nikolaitchik MA, Zhang Shiqi. Construction of mechanical and 
mathematical model of viscoelastic block element for solving 
geomechanics dynamic problems using discrete element method. 
Journal of the Belarusian State University. Mathematics and 
Informatics. 2024;3:40 – 61. 
EDN: GORQYA

А в т о р ы:
Михаил Александрович Николайчик – кандидат физико- 
математических наук; заведующий научно-исследователь-
ской лабораторией прикладной механики механико-мате-
матического факультета.
Чжан Шици – магистрант кафедры теоретической и при-
кладной механики механико-математического факультета. 
Научный руководитель – М. А. Журавков.

A u t h o r s:
Mikhail A. Nikolaitchik, PhD (physics and mathematics); head 
of the laboratory of applied mechanics, faculty of mechanics 
and mathematics. 
nikolaitchik.m@gmail.com
Zhang Shiqi, masterʼs degree student at the department of theore-
tical and applied mechanics, faculty of mechanics and mathematics.
shiqizhang177@gmail.com

Николайчик М. А., Чжан Шици. Построение механико-
математической модели вязкоупругого блочного элемента 
для решения динамических задач геомеханики методом 
дискретных элементов 40

Nikolaitchik M. A., Zhang Shiqi. Construction of mechani-
cal and mathematical model of viscoelastic block element for 
solving geomechanics dynamic problems using discrete ele-
ment method 61

УДК 539.3, 539.422.23, 531.011, 51­74, 519­62

ПОСТРОЕНИЕ МЕХАНИКО -МАТЕМАТИЧЕСКОЙ МОДЕЛИ  
ВЯЗКОУПРУГОГО БЛОЧНОГО ЭЛЕМЕНТА ДЛЯ РЕШЕНИЯ  

ДИНАМИЧЕСКИХ ЗАДАЧ ГЕОМЕХАНИКИ  
МЕТОДОМ ДИСКРЕТНЫХ ЭЛЕМЕНТОВ

М. А. НИКОЛАЙЧИК1), ЧЖАН ШИЦИ1)

1)Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

Аннотация. Рассматриваются методы численного моделирования, которые яв ляются эффективными ин-
струментами решения инженерно-геомеханических задач. Приводится процедура построения механико-мате-
матической модели одного типа вязкоупругого блочного элемента. На основе такого типа блочных элементов 
представляется возможным использование метода дискретных элементов для моделирования состояния массива 
горных пород в областях, где предположение о сплошности нарушается. Результирующие уравнения, описываю-
щие поведение предложенного блочного элемента, получены с применением классических законов механи-
ки. Выполнен ряд численных экспериментов, рассмотрены различные варианты начальных условий, а также 
параметры связей между элементами блока. Разработан алгоритм, позволяющий описывать динамику блока, 
состоящего из n элементов. Проведена оценка быстродействия разработанного алгоритма с использованием  
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последовательных и параллельных вычислений. Полученные результаты могут применяться для решения 
динамических задач геомеханики методом дискретных элементов в областях породного массива, в которых на-
рушается гипотеза о сплошности.

Ключевые слова: численное моделирование; механико-математическое моделирование; механика деформируе-
мого твердого тела; элементы дискретного метода; граничные условия; подземная геомеханика; деформируемый 
блочный элемент.
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CONSTRUCTION OF MECHANICAL  
AND MATHEMATICAL MODEL OF VISCOELASTIC BLOCK ELEMENT  

FOR SOLVING GEOMECHANICS DYNAMIC PROBLEMS  
USING DISCRETE ELEMENT METHOD
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Abstract. Numerical simulation methods have become one of the effective tools to solve geomechanical engineering 
problems. The paper presents a procedure for constructing a mechanical and mathematical model of one type of visco-
elastic block element. Based on this type of block element, it seems possible to apply the discrete element method for 
modelling the state of a rock massif in areas where the continuity assumption is violated. The resulting equations descri-
bing the behaviour of the proposed block element are obtained using classical laws of mechanics. A number of numerical 
experiments were carried out, different variants of initial conditions were considered, as well as parameters of connections 
between the elements of the block. An algorithm is developed to describe the block consisting of n elements dynamics. 
The performance of the developed algorithm using sequential and parallel computations has been evaluated. The obtained 
results can be used to solve dynamic problems of geomechanics by the discrete element method in the areas of rock massif 
where the continuity hypothesis is violated.

Keywords: numerical simulation; mechanic-mathematical modelling; mechanics of deformable solids; discrete me-
thod elements; boundary conditions; underground geomechanics; deformable block element.
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Introduction
Currently, combined continuous and discrete models are increasingly used when solving subsurface geome-

chanical problems. In 1996, researcher T. Belytschko from the Northwestern University in the United States 
proposed a meshless approximation based on moving least-squares, kernels, and partitions of unity [1]. Then 
in 2004, S. H. Li and others from Asia proposed a continuum-based discrete element method for a continuous 
de formation and failure process [2]. And just after two years, in 2006, A. K. Ariffin and his colleagues used the 
numerical modelling based on the combination of finite element method (FEM) and the discrete element me-
thod (DEM) to simulate crack propagation under mixed mode loading [3]. In 2008, A. Karami and D. Stead 
investigates the processes of joint surface damage and near-surface intact rock tensile failure using a hybrid 
FEM and DEM code [4]. Also J. P. Morris and other researchers investigated the effect of explosive and impact 
loading on geological media using the FEM and DEM methods [5]. In 2022, D. S. Zhurkina and her colleagues 
simulated the modelling of shear localisation and transition of the geoenvironment to unstable deformation 
modes based on the DEM [6]. In addition, many scientists have analysed the application of numerical methods 
in geomechanics1. 

1Zhuravkov M. A. Modern numerical methods in mechanics : a course of lectures. Minsk : Belarus. State Univ., 2022. 132 p.
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Continuous numerical methods (FEM, boundary element method (BEM)) are used when studying the stress-
strain state (SSS) in regions distant from the underground rock mass structure [7]. Continuum methods [8] 
are not completely suitable for considering regions of rock masses with clearly identified block structures or 
fracture zones, whereas discrete methods allow the disruption of the continuity hypothesis to be of great help 
in studying rocks. And when studying the behaviour of nearby regions, it is more suitable and accurately to use 
the DEM for modelling with various modifications, which makes it possible to directly consider cracks and 
block structures [9]. 

Let us consider the modelling problem of constructing general models that allow us to study deformation 
processes and rock mass states in the regions where massive structures are formed. For the rock mass, its initial 
state can be considered within the framework of continuum mechanics, while its structure cannot be ignored 
when studying the SSS of rock mass when it is in an obviously massive region.

According to the simplified definition of regular packing [10], its parameters can be determined experimen-
tally rather than theoretically, by calibrating the model using field measurement data from real rock masses in 
the structural state under study.

Therefore, we imagine discontinuous regions of a rock mass as regular accumulations of blocks. In the 
DEM, deformations in the block structure are considered to be due only to the connections between individual 
elements [11].

Let us consider the following approach to study the deformation of indivi-
dual blocks, representing the block as a system consisting of multiple internal 
solid elements interconnected by several connections (fig. 1).

Therefore, the deformation of the block occurs due to the deformation 
of the connections between elements, which are considered as solid bodies. 
In this case, the entire discontinuous area is a system of several such block 
elements, which in turn are connected to each other by certain connections. 
That is, in order to simulate damaged or fractured areas in a rock mass, such 
block elements should be placed over all discontinuous areas.

We introduce the following restrictions on the shape of the individual ele-
ments in the overall block structure. The shape of the elements is symmetri-
cal. Additionally, elements can have various shapes and sizes. We impose the 
same restriction on the connections between elements: in the general struc-
ture, the connections of the element i to its neighbours are symmetrical.

Therefore, the following problem is considered as a basic modelling problem: the study of the state of a pla-
nar structure consisting of internal elements which are interconnected by elastic and viscous connections when 
subjected to external loads (see fig. 1).

Construction of basic models
Let us consider the following model problem. As mentioned before, the state of the block shown in the 

previous fig. 1 is studied in the case of mi = m, i =1 16, . That is, the mass of each element is m, and the distance 
between the centroids of the internal components is l. Elements are connected by elastic and viscous dam ping 
links: l l l l l l l l l l l l l l l4 5 10 11 16 17 22 23 25 26 27 28 29 30 31, , , , , , , , , , , , , , , ll32 are elastic connections with stiffness coeffi- 
cient k; l l l l l l l l l l l l l l l l1 2 3 6 7 8 9 12 13 14 15 18 19 20 21 24, , , , , , , , , , , , , , ,  are viscous links with a damping coefficient c. 
Each element mi in the system is displaced xi in the horizontal X-axis direction by a certain amount due to the 
overall (see fig. 1).

We solve the problem analytically using the Lagrangian equations of the second kind2. In order to consider 
the damping, it is necessary to introduce additional terms in the right part of the Lagrangian equations, taking 
into account the presence of medium resistance. Let the damping coefficient be η. Let us define a dissipation 
function G such that the resistance of the medium f and the dissipation function G satisfy the following rela-
tionship3:
 f G

x
� �

�
�

.  (1)

It can be seen from the appearance of  (1) that the dissipation function G has a power dimension, which it self 
reflects the loss rate of mechanical energy [12]. Taking into account the assumptions introduced, the Lag ran-
gian equations of the second kind can be written as follows:

2Vyarvilskaya O. N., Medvedev D. G., Savchuk V. P. A short course in theoretical mechanics : textbook. Minsk : Belarus. State Univ., 
2020. 207 p.

3Shakirzyanov R. A., Shakirzyanov F. R. Dynamics and stability of structures : textbook. 2nd ed., revised. Kazan : Publ. House of the 
Kazan State Univ. of Archit. and Eng., 2015. 120 p.

Fig. 1. The model of blocks  
consisting of 16 elements
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For calculating, it is easier to divide the entire system into four parts, the first part contains elements 1, 2, 3, 4 
(fig. 2). Calculate the Lagrangian equation for the first part.

The kinetic energy (3) for this part is
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The potential energy (4) of the system is
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�
� k lj
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6

.  (4)

It is determined by the potential energy of elastic connections (springs). From geometric considerations for 
the first part, the spring displacements (5) are equal to
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Then, the expression for potential energy takes the form defined by formula (6):
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(6)

Fig. 2. The first part of model consisting of 16 elements



44

Журнал Белорусского государственного университета. Математика. Информатика. 2024;3:40–61
Journal of the Belarusian State University. Mathematics and Informatics. 2024;3:40–61 

As a result, the Lagrange function (7) is written as follows:
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For the dissipation function G (8) it takes form as

 G lj
j

�
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� .  (8)

Where only vicious connections (damper) are considered, the geometric considerations for the first part, the 
damper displacements (9) are equal to
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Then the equation of the dissipation function G (10) is
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As a result, equations (2) for the first part where i = 1, 2, 3, 4 are written explicitly (11) as follows:
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For the remaining three parts ( , , , , , ),i i i= = =5 8 9 12 13 16  the same analysis method will be constructed. 
The second part contains elements 5, 6, 7, 8 (fig. 3).

Equations (2) for the second part where i = 5, 6, 7, 8 are written explicitly (12) as follows:
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Fig. 3. The second part of model consisting of 16 elements
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The third part contains elements 9, 10, 11, 12 (fig. 4):

Fig. 4. The third part of model consisting of 16 elements
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Equations (2) for the third part where i = 9, 10, 11, 12 are written explicitly (13) as follows:
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The fourth part contains elements 13, 14, 15, 16 (fig. 5):

Equations (2) for the fourth part where i = 13, 14, 15, 16 are written explicitly (14) as follows:
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Fig. 5. The fourth part of model consisting of 16 elements



49

Теоретическая и прикладная механика
Theoretical and Practical Mechanics

 

mx k x x l x x l l x x

16 15 16

2

14 16

2

1

2 2

14 16

2� �� � � � �� �� � �
�

�
�
�

�

�
�
�

� �� ��� � �� �
�

�

�
�

�

� � � �� �� � �
�

�
�
�

�

�
�
�

� �

�
1

2

14 16

2

13 16

2

1

2 2

13

x x

l l x x l l l x ��� �� � � �� �
�

�

�
�
�

� � �� � � �� �

�
x l x x

x x
x x x

16

2

1

2

13 16

15 16

14 16

2

14�  

 ��� �
� �� �

�

�
�
�

�

�
�
�

x

l x x
16

2

14 16

2
.

 (14)

In order to solve this set of differential equations about time, we choose the NDSolve method in computer 
software Wolfram Mathematica [13].

When computing NDSolve, there are usually three stages. Firstly, the given system of equations is con-
verted into a function that represents the terms on the right-hand side of the system of equations in the normal 
form. Secondly, it is solved iteratively starting from the initial conditions. Thirdly, the data stored during the 
iterative process is processed into one or more InterpolatingFunction objects. Using the functions in NDSolve, 
one can have more control over the iterative process. These steps are tied together by an NDSolve StateData 
object, which can retain all the solved differentials.

In order to get a specific solution, we also need to enter the initial boundary conditions in the NDSolve code. 
So now we will consider various variants for different initial conditions for the introduced block model.

Under the initial displacement. The parameters and the initial conditions are
m = 2 kg, l = 0.1 m, k = 100 N/m, c = 0.5 N ⋅ s/m, t = 10 s.

There is an initial displacement in the horizontal direction to any element which is shown below (fig. 6), 
and in this variant the value is x1 = 0.05 m.

And the following pictures (fig. 7) show the motion of the system in the first 10 s under the initial displace-
ment conditions.

Under the initial velocity. The parameters and the initial conditions are
m = 2 kg, l = 0.1 m, k = 100 N/m, c = 0.5 N ⋅ s/m, t = 10 s.

There is an initial velocity in the horizontal direction to any element which is shown below (fig. 8), and in 
this variant the value is v1 = 0.5 m/s.

Fig. 6. The initial displacement

Fig. 7. The motion of model in 0–10 s under initial displacement
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And the following pictures (fig. 9) show the motion of the system in the first 10 s under the initial velocity 
conditions.

Under the initial impulse. The parameters and the initial conditions are 
m = 2 kg, l = 0.1 m, k = 100 N/m, c = 0.5 N ⋅ s/m, t = 10 s.

There is an initial impulse in the horizontal direction to any element which is shown below (fig. 10), and the 
initial impulse with the function (15) in this variant (fig. 11) is

 F t P tH t t H t t H t� � � � � � ��
�
�

�
�
� ��

�
�

�
�
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�
�

�

�
�2

1

2

1

2
1 1 ,  (15)

where H is the Heaviside function4.

The variant can be solved by using the momentum theorem written as formula (16):
 F t t m v v� � � �� ��

1 0
.  (16)

And the initial velocity of system is 0, so compute the velocity (17) at t = 1 s:

 v
F t t mv

m

F d

m

t

1

0 0�
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�
� �

�

��
� �

.  (17)

4Evseev N. A. Elements of harmonic analysis. Novosibirsk : Novosibirsk State Univ., 2017. 97 p.

Fig. 8. The initial velocity

Fig. 9. The motion of model in 0–10 s under initial velocity

Fig. 10. The initial impulse Fig. 11. Dynamic load in the form of a triangular impulse
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Then the same impulse condition is translated to the condition when t = 1 s, the velocity of the element 1 is v1. 
In this variant v t1 1

0 125�� � � .  m/s. And the following picture (fig. 12) shows the motion of the system in the first 
10 s under the initial impulse condition.

Under the different elastic coefficients. Different elastic coefficients will change the motion state of the 
model [14]. For the same initial conditions and parameters m = 2 kg, l = 0.1 m, c = 0.5 N ⋅ s/m, t = 10 s.

Let us study the difference between the elastic coefficient decreasing by 10 times (k = 10 N/m) and increa-
sing by 10 times (k = 1000 N/m) under the same initial displacement conditions described in subdivision «Un-
der the initial displacement» where x1 = 0.05 m (fig. 13).

Implementation of parallel computing  
in the Wolfram Mathematica system

The Wolfram Mathematica’s computer algebra system is a very efficient means of calculation. Today the 
system contains about 5000 functions, many of which were originally written in an optimised form (especially 
for low-level calculations). Most computational functions in Wolfram Mathematica, such as dimensionality 
reduction operations, statistical data processing, processing images and other are widely used. However, there is 
a set of tools (such as ParallelSum, Parallelise, ParallelMap, ParallelTable, ParallelArray, ParallelCombine, etc.) 
that can significantly speed up code calculations when implementing multi-threaded tasks [15].

Let us take the previous task as an example. We used NDSolve for sequential calculation before. The cal-
culation rule is time iteration, and the AbsoluteTiming function outputs the final calculation result in seconds. 

Fig. 12. The motion of model in 0–10 s under initial impulse

Fig. 13. The motion of the model in 0–10 s under the different elastic coefficients: 
k = 10 N/m (a); k = 1000 N/m (b)
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The calculation time is as follows. Of course, it should be emphasised that all computer calculations in this 
paper were performed based on the following configuration: Intel(R) Core(TM) i5-9300-H CPU / NVIDIA 
GeForce GTX 1650. The absolute time of the sequential calculation for the code is T1 = 0.988 049 s.

Parallel computing refers to the process of using multiple computing resources to solve computing problems 
at the same time. It is an effective means to improve the computing speed and processing the power of computer 
systems [16]. Its basic idea is to use multiple processors to collaboratively solve the same problem, that is, to 
decompose the problem to be solved into several parts, and each part is calculated in parallel by an independent 
processor. A parallel computing system can be either a specially designed supercomputer containing multiple 
processors or a cluster of several independent computers interconnected in some way. Data processing is comp-
leted through parallel computing clusters, and the processing results are returned to the user.

Different from NDSolve, ParallelEvaluate performs parallel calculations on differential equations, which 
greatly shortens the calculation time while achieving the same calculation purpose.

Under the same configuration environment, the absolute time of parallel calculation is Tp = 0.176  067 s.
In order to measure the effect of parallel computing, we introduce two parameters: acceleration and effi-

ciency.
The formula of acceleration (18) is

 S T
Tp
p

= 1 ,  (18)

where p refers to the number of central processing units, which in the paper is p = 2; T1 refers to the execution 
time of the sequential execution algorithm; Tp refers to the execution time of a parallel algorithm when there 
are p processors.

The formula of efficiency (19) is

 E
S
pp
p= .  (19)

When Sp = p, it can be called linear acceleration. When the acceleration ratio of a certain parallel algorithm 
is an ideal acceleration ratio, if the number of processors is doubled, the execution speed will also be doubled, 
that is, as ideal means, it has excellent scalability [17].

The value of efficiency Ep is generally between 0 and 1, and it is used to indicate how fully the processors 
involved in calculations are fully utilised when solving problems compared to the cost of communication and 
synchronisation. It is easy to see from the definition that the efficiency of an algorithm with a linear speedup 
and an algorithm executed on a single processor is 1.

Now let us calculate the computational efficiency and acceleration of different operation methods (table 1).

Ta b l e  1
Acceleration and efficiency of different computing solution

Time, T
Acceleration, S T

Tp
p

= 1 Efficiency, E
S
pp
p=

Sequential calculation Parallel calculation

0.988 049 0.176  067 5.611 778 2.805  889

From the results in the last table, it is clear that Ep > 1, that is we obtain superlinear acceleration. In the pro-
cess of parallel computing, sometimes there is a situation where the acceleration ratio is larger than the number 
of processors. The acceleration ratio obtained in this case is called a superlinear acceleration ratio [18].

The superlinear acceleration ratio has the following causes, such as the «cache effect» caused by the dif-
ferent storage levels of modern computers; specifically, compared with sequential computing, in parallel com-
puting, not only are there more processors involved in calculations, caches from different processors are also 
pooled. In view of this, the cache of the collection is sufficient to provide the storage required for calculations. 
There is no need to use slower memory when executing the algorithm. Therefore, the memory reading time can 
be greatly reduced, what creates an additional acceleration effect for actual calculations. 

Construction of models with order n
We have calculated and verified the motion status of 16 elements. Now when the number of elements in-

creases exponentially to k (fig. 14), in another words it means we have the number of amount (20):
 k n

n� � �� �4 1 2 3, , , .  (20)
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Using the second Lagrangian equation the kinetic energy (21) of the system is

 T T mx mx mxi
i
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�
�
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4
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2

2

2 21

2

1

2

1

2
   .  (21)

With the potential energy of the system, the equation of motion of the entire system can be calculated by 
the formula (22):
 d

dt
L
x

L
x

G
x
i

i i i
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�

�
 

, , .1 k  (22)

When the number of elements reaches k, we focus on two types of elements. The first type is the four ele-
ments in the corners, and the second type is the four elements in the center of the entire model.

In order, we first study the motion equations (table 2) of the four elements in the corners (fig. 15).

Ta b l e  2
Equation of motion for four elements in the corners

Location The number  
of element Equation of motion

Upper  
left 

corner
t = 1

mx k x x l x x l l x x x

1 1 2

2

1 3

2

1

2 2

1 3

2

1

2

1
� �� � � � �� �� � �

�

�
�
�

�

�
�
�

� �� �� �� ��� �
�

�

�
�

�

� � � �� �� � �
�

�
�
�

�

�
�
�

� � �� �� ��
x

l l x x l l l x x l

3

2

1 4

2

1

2 2

1 4

2

1

2 �� �� �
�

�

�
�
�

� � �� � �
�� � �� �
� �� �

�

�
�

x x

x x
x x x x

l x x

1 4

1 2

1 3

2

1 3

2

1 3

2
�  

 

��

�

�
�
�

Fig. 14. The number of elements reaches to k

Fig. 15. The four elements in the corners
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Location The number  
of element Equation of motion

Upper  
right  

corner
t

n� �� � ��4

3
4 1 2

1

(n = 1, 2, 3, …)

mx k x x l x x l l x x

t t t t t t t
� �� � � � �� �� � �

�

�

�
�

�

�

�
�

� �� ��� � �1

2

2

2

1

2 2

2

2 �� �� �
�

�

�
�

�

� � � �� �� � �
�

�

�
�

�

�

�
�

� � �

�

�

�

1

2

2

2

1

2

1

2 2

x x

l l x x l l l x x

t t

t t t tt t t

t t

t t t

�

�

�

�
�

� �� � � �� �
�

�

�
�
�

� � �� � �
�� � �

1

2

1

2

1

1

2

2

l x x

x x
x x x

�  

 xx

l x x

t

t t

�

�

� �
� �� �

�

�

�
��

�

�

�
��

2

2

2

2

Lower  
left  

corner
t

n� �� � ��8

3
4 1 3

1

(n = 1, 2, 3, …)

mx k x x l x x l l x x

t t t t t t t
� �� � � � �� �� � �

�

�

�
�

�

�

�
�

� �� ��� � �1

2

2

2

1

2 2

2

2 �� �� �
�

�

�
�

�

� � � �� �� � �
�

�

�
�

�

�

�
�

� �

�

�

� �

1

2

2

2

1

2

1

2 2

1

x x

l l x x l l l x

t t

t t t
��� �� � � �� �

�

�

�
�
�

� � �� � �
�� �

�

�

�
� �

x l x x

x x
x x x

t t t

t t

t t t

2

1

2

1

1

2

2

2

�  

 ��� �
� �� �

�

�

�
��

�

�

�
���

x

l x x

t

t t

2

2

2

Lower  
right  

corner
t = 4n 

(n = 1, 2, 3, …)

mx k x x l x x l l x x

t t t t t t t
� �� � � � �� �� � �

�

�

�
�

�

�

�
�

� �� ��� � �1

2

2

2

1

2 2

2

2 �� �� �
�

�

�
�

�

� � � �� �� � �
�

�

�
�

�

�

�
�

� �

�

�

� �

1

2

2

2

3

2

1

2 2

3

x x

l l x x l l l x

t t

t t t
��� �� � � �� �

�

�

�
�
�

� � �� � �
�� �

�

�

�
� �

x l x x

x x
x x x

t t t

t t

t t t

2

1

2

3

1

2

2

2

�  

 ��� �
� �� �

�

�

�
��

�

�

�
���

x

l x x

t

t t

2

2

2

Then we study the motion equations (table 3) of the four elements in the center of the system which are 
shown in fig. 16.

Fig. 16. The four elements in the center

E n d i n g  o f  t h e  t a b l e  2
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Ta b l e  3

Equation of motion for four elements in the center

Location The number  
of element Equation of motion

Upper  
left

t = 4n – 1 

(n = 2, 3, 4, …)

mx k x x l x x l l x x

t t t t t t t
� �� � � � �� �� � �

�

�

�
�

�

�

�
�

� �� ��� � �1

2

2

2

1

2 2

2

2 �� �� �
�

�

�
�

�

� � � �� �� � �
�

�

�
�

�

�

�
�

� �

�

�

� �

1

2

2

2

3

2

1

2 2

3

x x

l l x x l l l x

t t

t t t
��� �� � � �� �

�

�

�
�
�

� � �� � �
�� �

�

�

�
� �

x l x x

x x
x x x

t t t

t t

t t t

2

1

2

3

1

2

2

2

�  

 ��� �
� �� �

�

�

�
��

�

�

�
���

x

l x x

t

t t

2

2

2

Upper  
right

t
n� �� � ��20

3
4 1 7

2

(n = 2, 3, 4, …)

mx k x x l x x l l x x

t t t t t t t
� �� � � � �� �� � �

�

�

�
�

�

�

�
�

� �� ��� � �1

2

2

2

1

2 2

2

2 �� �� �
�

�

�
�

�

� � �
�

�
��

�

�
��

�

�

�
�

�

�

�
�

�

�

�

�
�

�

�

�

1

2

2

2

9

5

2

5

2

1

2

x x

l x x l

t t

t
t��

�

�

�

�
�
�
�

� �
�

�
��

�

�
��

�

�

�
�

�

�

�
�

�
�

�
��

�

��

�

�
l x x x x2

9

5

2

5

2

1

2

9

5

2

5

t
t

t
t

��� �

� � � �� �� � �
�

�

�
�

�

�

�
�

� � �� �� � �� �

�

l l x x l l l x x l x2

1

2

1

2 2

1

2

1

2

t t t t t ��

�
�

�

�� � �

� �
�

�
��

�

�
��

�

�

�
�
� � �� � �

�� �

1

3

5

1

5

1

2

2

x

x x x x
x x

t

t
t t t

t t

�  

xx x

l x x

t t

t t

�

�

�� �
� �� �

�

�

�
��

�

�

�
��

2

2

2

2



Lower  
left

t
n� �� � ��28

3
4 1 10

2

(n = 2, 3, 4, …)

mx k x x l x x l l x x

t t t t t t t
� �� � � � �� �� � �

�

�

�
�

�

�

�
�

� �� ��� � �1

2

2

2

1

2 2

2

2 �� �� �
�

�

�
�

�

� � �
�

�
��

�

�
��

�

�

�
�

�

�

�
�

�

�

�

�
�

�

�

�

1

2

2

2

3

7

2

7

2

1

2

x x

l x x lt

t t

t��
�

�

�

�
�
�
�

� �
�

�
��

�

�
��

�

�

�
�

�

�

�
�

�
�

�
��

�

��

�

�
l x x x x2

3

7

2

7

2

1

2

3

7

2

7
t

t
t

t ��� �

� � � �� �� � �
�

�

�
�

�

�

�
�

� � �� �� � �� �

�

l l x x l l l x x l x2

1

2

1

2 2

1

2

1

2

t t t t t
��� � �

� �
�

�
��

�

�
��

�

�

�
�
� � �� � �

�� �

�

�
�

�

x

x x x x
x x

t

t
t

t t

t t

1

9

7

1

7

1

2

2

�  

xx x

l x x

t t

t t

�� �
� �� �

�

�

�
��

�

�

�
��

�

�



2

2

2

2
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Location The number  
of element Equation of motion

Lower  
right

t
n� �� � ��8

3
4 1 3

1

(n = 2, 3, 4, …)

mx k x x l x x l l x x

t t t t t t t
� �� � � � �� �� � �

�

�

�
�

�

�

�
�

� �� ��� � �1

2

2

2

1

2 2

2

2 �� �� �
�

�

�
�

�

� � �
�

�
��

�

�
��

�

�

�
�

�

�

�
�

�

�

�

�
�

�

�

�

1

2

2

2

5

9

2

9

2

1

2

x x

l x x l

t t

t
t

��
�

�

�

�
�
�
�

� �
�

�
��

�

�
��

�

�

�
�

�

�

�
�

�
�

�
��

�

��

�

�
l x x x x2

5

9

2

9

2

1

2

5

9

2

9
t

t
t

t ��� �

� � � �� �� � �
�

�

�
�

�

�

�
�

� � �� �� � �� �

�

l l x x l l l x x l x2

3

2

1

2 2

3

2

1

2

t t t t t
��� � �

� �
�

�
��

�

�
��

�

�

�
�
� � �� � �

�� �

�

�
�

�

x

x x x x
x x

t

t
t t t

t t

3

7

9

1

9

1

2

2

�  

xx x

l x x

t t

t t

�� �
� �� �

�

�

�
��

�

�

�
��

�

�



2

2

2

2

Simulation when system consists of 64 elements. We have studied the situation when there are 4 (n = 1) 
and 16 (n = 2) elements. Now we calculate and verify the motion state of the system when n = 3, 4, 5, and 
simulate the four elements in the center of the system.

When n = 3, then the total number of amount is k = 64 (fig. 17).
In order, we calculate the Lagrangian equations of motion for the four elements in the center (fig. 18, table 4).

Fig. 17. The system when n = 3

Fig. 18. The four elements in the center of the system  
when there are totally 64 elements

E n d i n g  o f  t h e  t a b l e  3
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Ta b l e  4
Equation of motion for four elements in the center when n = 3

Location The number  
of element Equation of motion

Upper  
left t = 16

mx k x x l x x l l x x

16 15 16

2

14 16

2

1

2 2

14 16

2� �� � � � �� �� � �
�

�
�
�

�

�
�
�

� �� ��� � �� �
�

�

�
�

�

� � � �� �� � �
�

�
�
�

�

�
�
�

� �

�
1

2

14 16

2

13 16

2

1

2 2

13

x x

l l x x l l l x ��� �� � � �� �
�

�

�
�
�

� � �� � �
�� �

�
x l x x

x x
x x x

16

2

1

2

13 16

15 16

14 16

2

14�  

 ��� �
� �� �

�

�
�
�

�

�
�
�

x

l x x
16

2

14 16

2

Upper  
right t = 27

mx k x x l x x l l x x

27 27 28

2

25 27

2

1

2 2

25 27

2� �� � � � �� �� � �
�

�
�
�

�

�
�
�

� �� ��� � �� �
�

�

�
�

�

� � �� �� � �
�

�
�
�

�

�
�
�

� �

�
1

2

25 27

2

27 49

2

1

2 2

27 49

x x

l x x l l x x�� �� � �� � �

� � � �� �� � �
�

�
�
�

�

�
�
�

� � �

�
2

1

2

27 49

2

26 27

2

1

2 2

26

x x

l l x x l l l x xx l x x x x

x x
x x

27

2

1

2

26 27 16 27

27 28

25

� �� � � �� � � �� �
�

�

�
�
�

� � �� � �
�

�

�  

227

2

25 27

2

25 27

2

� � �� �
� �� �

�

�
�
�

�

�
�
�

 x x

l x x

Lower  
left t = 38

mx k x x l x x l l x x

38 37 38

2

38 40

2

1

2 2

38 40

2� �� � � � �� �� � �
�

�
�
�

�

�
�
�

� �� ��� � �� �
�

�

�
�

�

� � �� �� � �
�

�
�
�

�

�
�
�

� �

�
1

2

38 40

2

16 38

2

1

2 2

16 38

x x

l x x l l x x�� �� � �� � �

� � � �� �� � �
�

�
�
�

�

�
�
�

� � �

�
2

1

2

16 38

2

38 39

2

1

2 2

38

x x

l l x x l l l x xx l x x x x

x x
x x

39

2

1

2

38 39 38 49

37 38

38

� �� � � �� � � �� �
�

�

�
�
�

� � �� � �
�

�

�  

440

2

38 40

2

38 40

2

� � �� �
� �� �

�

�
�
�

�

�
�
�

 x x

l x x

Lower  
right t = 49

mx k x x l x x l l x x

49 49 50

2

49 51

2

1

2 2

49 51

2� �� � � � �� �� � �
�

�
�
�

�

�
�
�

� �� ��� � �� �
�

�

�
�

�

� � �� �� � �
�

�
�
�

�

�
�
�

� �

�
1

2

49 51

2

27 49

2

1

2 2

27 49

x x

l x x l l x x�� �� � �� � �

� � � �� �� � �
�

�
�
�

�

�
�
�

� � �

�
2

1

2

27 49

2

49 52

2

1

2 2

49

x x

l l x x l l l x xx l x x x x

x x
x x

52

2

1

2

49 52 38 49

49 50

49

� �� � � �� � � �� �
�

�

�
�
�

� � �� � �
�

�

�  

551

2

49 51

2

49 51

2

� � �� �
� �� �

�

�
�
�

�

�
�
�

 x x

l x x
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Then we simulate the motion image of the four elements in the center of the system. The initial boundary 
conditions are displacement, velocity and impulse as in the previous task.

Initial condition (displacement). For the variant where the initial condition is displacement, we reduce the 
displacement from 0.5 to 0.05 m and finally reduce it to 0.005 m, in order to study the difference in the motion 
of the model (table 5).

Ta b l e  5
The movement of the four elements in the center  

under different initial displacement with total of 64 elements

The parameters and the initial conditions are 
m = 2 kg, l = 0.1 m, k = 100 N/m, c = 0.5 N ⋅ s/m, t = 10 s, x1 = 0.5 m

t = 0 s t = 1 s t = 2 s t = 3 s t = 4 s t = 5 s t = 6 s t = 7 s t = 8 s t = 9 s t = 10 s

The parameters and the initial conditions are
m = 2 kg, l = 0.1 m, k = 100 N/m, c = 0.5 N ⋅ s/m, t = 10 s, x1 = 0.05 m

t = 0 s t = 1 s t = 2 s t = 3 s t = 4 s t = 5 s t = 6 s t = 7 s t = 8 s t = 9 s t = 10 s

The parameters and the initial conditions are
m = 2 kg, l = 0.1 m, k = 100 N/m, c = 0.5 N ⋅ s/m, t = 10 s, x1 = 0.005 m

t = 0 s t = 1 s t = 2 s t = 3 s t = 4 s t = 5 s t = 6 s t = 7 s t = 8 s t = 9 s t = 10 s

Initial condition (velocity). The parameters and the initial conditions are 
m = 2 kg, l = 0.1 m, k = 100 N/m, c = 0.5 N ⋅ s/m, t = 10 s.

There is an initial velocity in the horizontal direction to any element which is shown in fig. 19, and in this 
variant the initial velocity is v1 = 0.5 m/s.

Initial condition (impulse). The parameters and the initial conditions are 
m = 2 kg, l = 0.1 m, k = 100 N/m, c = 0.5 N ⋅ s/m, t = 10 s.

There is an initial impulse in the horizontal direction to any element which is shown in fig. 20, and in this 
variant the initial impulse with the function is the same as in the previous study.

Fig. 19. The movement of the four elements in the center under the initial velocity with total of 64 elements

Fig. 20. The movement of the four elements in the center under initial impulse with total of 64 elements
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Simulation when the system consists of 256 elements. When n = 4, then the number of amount is k = 256 
(fig. 21).

As what we did in the previous study then we also simulate the motion image of the four elements in the center 
of the system (fig. 22). The initial boundary conditions are displacement, velocity and impulse as in the previous 
task (table 6).

Ta b l e  6
The simulation of four elements in the center of the system  

which contains 256 elements under the different initial conditions

Initial condition (displacement): 
m = 2 kg, l = 0.1 m, k = 100 N/m, c = 0.5 N ⋅ s/m, t = 10 s, x1 = 0.5 m

Initial condition (velocity):
m = 2 kg, l = 0.1 m, k = 100 N/m, c = 0.5 N ⋅ s/m, t = 10 s, v1 = 0.5 m/s

Initial condition (impulse): 
m = 2 kg, l = 0.1 m, k = 100 N/m, c = 0.5 N ⋅ s/m, t = 10 s, 

the impulse is the same as previous task

Fig. 21. The system when n = 4
Fig. 22. The four elements in the center of the system  

when there are totally 256 elements
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Simulation when the system consists of 256 elements. When n = 5, then the number of amount is k = 1024 
(fig. 23).

We already study the situation when n = 3 and n = 4. As what we did in the previous study then we also 
simulate the motion image of the four elements in the center of the system (fig. 24). The initial boundary con-
ditions are displacement, velocity and impulse as in the previous task (table 7).

Ta b l e  7
The simulation of four elements in the center of system  

which contains 1024 elements under the different initial conditions

Initial condition (displacement):
m = 2 kg, l = 0.1 m, k = 100 N/m, c = 0.5 N ⋅ s/m, t = 10 s, x1 = 0.5 m

Initial condition (velocity):
m = 2 kg, l = 0.1 m, k = 100 N/m, c = 0.5 N ⋅ s/m, t = 10 s, v1 = 0.5 m/s

Initial condition (impulse):
m = 2 kg, l = 0.1 m, k = 100 N/m, c = 0.5 N ⋅ s/m, t = 10 s, 

the impulse is the same as in the previous task

Fig. 24. The four elements in the center of the system  
when there are totally 1024 elementsFig. 23. The system when n = 5



61

Теоретическая и прикладная механика
Theoretical and Practical Mechanics

Conclusions
This article introduces the application of numerical simulation methods in geomechanical engineering prob-

lems, relevant principles and lists specific situations under different boundary conditions. Finally, it points out 
the development directions and problems that still exist in current numerical simulation experiments. The re-
search pro poses a block element that can take into account its deformation capability under external loads. 
Based on this type of block element, it seems promising to simulate the SSS of the rock mass region through the 
discrete element method, since considering the rock mass region within the framework of the continuum model 
is a rather «rough» approximation assumption. Another important fact is that the introduced block elements can 
be used to study problems under static as well as dynamic loads.

For real geological and rock soil mechanics problems, the solution proposed in this article can be used as 
a basic model construction method. In order to further improve the accuracy and practicality of the solution, 
this can be achieved by changing the structure and size of the block units, as well as the density and connection 
methods of various link keys between units. Developing codes that compute faster and more accurate models 
is a direction for future research. With the increasing scale of geomechanical engineering, our requirements 
for the level of scientific research and the accuracy of solutions in engineering construction are getting higher 
and higher. That is the reason numerical simulation methods have become an effective solution. Numerical 
simulation is of great significance for understanding the SSS and movement change of rock and soil blocks 
in geomechanical engineering. It can also provide theoretical basis for actual engineering and play a role in 
safety protection.
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