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MOCJICAOBATCIIBHBIX U IMMapalJICIbHBIX BBIUMCJICHHUH. HOIIy‘IeHHI)Ie PE3YIbTATBI MOT'YT IPUMEHATHCA [JId PCHICHUA
JUHAMHUYCCKUX 3a1a4 TCOMEXaHUKH METOAOM NUCKPETHBIX 3JICMCHTOB B o0acTsax IIOPOJAHOTO MaCcCHBa, B KOTOPBIX HA-
pymra€Tcs rumnoresa O CIUIOIIHOCTH.

Kiouegvie cnosa: 9ucieHHOE MOICTHPOBAHKE; MEXaHHKO-MAaTEMaTHICCKOE MOJICTUPOBAHKE; MEXaHUKA e(hopMHpye-
MOTO TBEPJIOTO TeJa; ANEMEHTbI TUCKPETHOTO METO/Ia; TPAHUYHbBIC YCIOBUS, OA3EMHAasl FeOMeXaHuKa; Ae(opMUpyeMblit
OJIOYHBIN DJIEMEHT.

bnrazooaprnocme. ViccnenoBanue BBINOTHEHO B paMKaX COBMECTHOTO MPOEKTa «BhICOKOITPOM3BOMUTENBHBIN METO
JVCKPETHBIX IEMEHTOB AJISI CHIITyYNX MAaTepHAIIOB MIPOU3BOIBHOM (OPMBI H €T0 MPUMEHEHHE B TE€OTEXHHUKE XOIOTHBIX
PETHOHOB M TOPHOIOOBIBAIOIINX PaiOHOBY» bemopycckoro pecmybnukanckoro Gponaa GyHIaMEHTaTbHBIX HCCICTOBAHUN
n HanmonanpHOTO (DOHIA €CTeCTBEHHBIX HayK Kuras.

CONSTRUCTION OF MECHANICAL
AND MATHEMATICAL MODEL OF VISCOELASTIC BLOCK ELEMENT
FOR SOLVING GEOMECHANICS DYNAMIC PROBLEMS
USING DISCRETE ELEMENT METHOD
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Abstract. Numerical simulation methods have become one of the effective tools to solve geomechanical engineering
problems. The paper presents a procedure for constructing a mechanical and mathematical model of one type of visco-
elastic block element. Based on this type of block element, it seems possible to apply the discrete element method for
modelling the state of a rock massif in areas where the continuity assumption is violated. The resulting equations descri-
bing the behaviour of the proposed block element are obtained using classical laws of mechanics. A number of numerical
experiments were carried out, different variants of initial conditions were considered, as well as parameters of connections
between the elements of the block. An algorithm is developed to describe the block consisting of n elements dynamics.
The performance of the developed algorithm using sequential and parallel computations has been evaluated. The obtained
results can be used to solve dynamic problems of geomechanics by the discrete element method in the areas of rock massif
where the continuity hypothesis is violated.

Keywords: numerical simulation; mechanic-mathematical modelling; mechanics of deformable solids; discrete me-
thod elements; boundary conditions; underground geomechanics; deformable block element.
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Introduction

Currently, combined continuous and discrete models are increasingly used when solving subsurface geome-
chanical problems. In 1996, researcher T. Belytschko from the Northwestern University in the United States
proposed a meshless approximation based on moving least-squares, kernels, and partitions of unity [1]. Then
in 2004, S. H. Li and others from Asia proposed a continuum-based discrete element method for a continuous
deformation and failure process [2]. And just after two years, in 2006, A. K. Ariffin and his colleagues used the
numerical modelling based on the combination of finite element method (FEM) and the discrete element me-
thod (DEM) to simulate crack propagation under mixed mode loading [3]. In 2008, A. Karami and D. Stead
investigates the processes of joint surface damage and near-surface intact rock tensile failure using a hybrid
FEM and DEM code [4]. Also J. P. Morris and other researchers investigated the effect of explosive and impact
loading on geological media using the FEM and DEM methods [5]. In 2022, D. S. Zhurkina and her colleagues
simulated the modelling of shear localisation and transition of the geoenvironment to unstable deformation
modes based on the DEM [6]. In addition, many scientists have analysed the application of numerical methods
in geomechanics'.

' Zhuravkov M. A. Modern numerical methods in mechanics : a course of lectures. Minsk : Belarus. State Univ., 2022. 132 p.
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Continuous numerical methods (FEM, boundary element method (BEM)) are used when studying the stress-
strain state (SSS) in regions distant from the underground rock mass structure [7]. Continuum methods [8]
are not completely suitable for considering regions of rock masses with clearly identified block structures or
fracture zones, whereas discrete methods allow the disruption of the continuity hypothesis to be of great help
in studying rocks. And when studying the behaviour of nearby regions, it is more suitable and accurately to use
the DEM for modelling with various modifications, which makes it possible to directly consider cracks and
block structures [9].

Let us consider the modelling problem of constructing general models that allow us to study deformation
processes and rock mass states in the regions where massive structures are formed. For the rock mass, its initial
state can be considered within the framework of continuum mechanics, while its structure cannot be ignored
when studying the SSS of rock mass when it is in an obviously massive region.

According to the simplified definition of regular packing [10], its parameters can be determined experimen-
tally rather than theoretically, by calibrating the model using field measurement data from real rock masses in
the structural state under study.

Therefore, we imagine discontinuous regions of a rock mass as regular accumulations of blocks. In the
DEM, deformations in the block structure are considered to be due only to the connections between individual
elements [11].

Let us consider the following approach to study the deformation of indivi-
dual blocks, representing the block as a system consisting of multiple internal
solid elements interconnected by several connections (fig. 1).

Therefore, the deformation of the block occurs due to the deformation
of the connections between elements, which are considered as solid bodies.
In this case, the entire discontinuous area is a system of several such block
elements, which in turn are connected to each other by certain connections.
That is, in order to simulate damaged or fractured areas in a rock mass, such
block elements should be placed over all discontinuous areas.

We introduce the following restrictions on the shape of the individual ele-
ments in the overall block structure. The shape of the elements is symmetri-
cal. Additionally, elements can have various shapes and sizes. We impose the
same restriction on the connections between elements: in the general struc-
ture, the connections of the element i to its neighbours are symmetrical.

Therefore, the following problem is considered as a basic modelling problem: the study of the state of a pla-
nar structure consisting of internal elements which are interconnected by elastic and viscous connections when
subjected to external loads (see fig. 1).

Fig. 1. The model of blocks
consisting of 16 elements

Construction of basic models

Let us consider the following model problem. As mentioned before, the state of the block shown in the
previous fig. 1 is studied in the case of m; = m, i =1, 16. That is, the mass of each element is m, and the distance
between the centroids of the internal components is /. Elements are connected by elastic and viscous damping
links: 1, Is, Lo, L5 Ligs D75 ooy Dss by gy L7y bhgs bos Ly Iy, 15, are elastic connections with stiffness coeffi-
cientk; L, b, Iy, I, I, Is, by, Ly, b, Das byss Ligs Loy bhg» by, by are viscous links with a damping coefficient c.
Each element m, in the system is displaced x; in the horizontal X-axis direction by a certain amount due to the
overall (see fig. 1).

We solve the problem analytically using the Lagrangian equations of the second kind”. In order to consider
the damping, it is necessary to introduce additional terms in the right part of the Lagrangian equations, taking
into account the presence of medium resistance. Let the damping coefficient be 1. Let us define a dissipation
functi0n3G such that the resistance of the medium fand the dissipation function G satisfy the following rela-
tionship’:

f:—g. ()

It can be seen from the appearance of (1) that the dissipation function G has a power dimension, which itself
reflects the loss rate of mechanical energy [12]. Taking into account the assumptions introduced, the Lagran-
gian equations of the second kind can be written as follows:

“Wyarvilskaya O. N., Medvedev D. G., Savchuk V. P. A short course in theoretical mechanics : textbook. Minsk : Belarus. State Univ.,
2020. 207 p.

3Shakirzyanov R. A., Shakirzyanov F. R. Dynamics and stability of structures : textbook. 2™ ed., revised. Kazan : Publ. House of the
Kazan State Univ. of Archit. and Eng., 2015. 120 p.
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diL_oL_ oG

dt ox;  Ox; ox;

For calculating, it is easier to divide the entire system into four parts, the first part contains elements 1, 2, 3, 4
(fig. 2). Calculate the Lagrangian equation for the first part.

,i=1,16. )

27 28

Fig. 2. The first part of model consisting of 16 elements
The kinetic energy (3) for this part is
| 2 I . 2 1 . 2 1. 2
T=)>T =—mxX{ + —mx5 + —mx; + —mx;. 3
Z:l PTG )
The potential energy (4) of the system is

6
- zg 2 @)

It is determined by the potential energy of elastic connections (springs). From geometric considerations for
the first part, the spring displacements (5) are equal to

Al=(x+x,),

A=+ (1= x,—x;) —1,
i J 2=%) (5)

Al =AJI> + (x, = x,0)" —1.

Then, the expression for potential energy takes the form defined by formula (6):

H=§((x1+x2)2+( lz+(x]—x3)2—lj2+(\/12+(1—x2—x3)2—l)2+
+( 12+(x2—x4)2—1)2+(\/12+(Z—x1—x4)2—l)2+
+(x3+x4)2+(x2+x5)2+(x4+x7)2+( lz+(x3—x9)2—lj2+(\/12+(l—x4—x10)2—ljz} (6)
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As a result, the Lagrange function (7) is written as follows:

2
L=%m(x12+x§+x32+xf)—%((X]erz)z+( 12+(x1—x3)2 —lj +

2

+(\/12+(1—x2—x3)2—l)2+[m—l)2+(\/12+(1—x1—x4)2—l) +
F (o x ) +(n+x) (g +x) + (w/lz+(x3 —x) —1)2 + (\/12+(l—x4 ~x0) - IJZJ. (7

For the dissipation function G (8) it takes form as

$ N2
GZZENJ' )]
i=1

Where only vicious connections (damper) are considered, the geometric considerations for the first part, the
damper displacements (9) are equal to

AL = (i + %),
A'lz _ (o = ;) (% — %3)

\/12 + (x1 - X3 )2

b

o )
AL = (x2 - x4)(x1 - x4)
=
>+ (x2 - X, )2
Alg= (s + %, ).
Then the equation of the dissipation function G (10) is
2 2
G=1(5,+ %) + (= %) - &) + (22— %) (%, — 44) + (s +3,) | (10)
2 12+(x1—x3)2 12+(x2—x4)2

As a result, equations (2) for the first part where i = 1, 2, 3, 4 are written explicitly (11) as follows:

! _L

mx, + k{(x1 + xz) + £(12+ (x1 - x3)2)5 - l](12+ (x1 - x3)2) 2(x1 —x3)—
- [(12+ (1=x-x) ) - 1](1% (1=x= %)) (-5 - x4)]

:—n[(ler 1)+ B m) G _53)}

l2+(x1—x3)

m562+k{(x1+ X))+ [(12+(x2—x4)2)2 —IJ(12+(x2—x4)2) (= xy) -
—[(12+(1—x2—x3)2)2 —l}(lz—i-(l—xz—x3)2)_2(l—x2—x3) + (x2+ xs)}_

z—n[(xl+ 5)+ B x) (& _f“)}

I* + (x2 - xy)
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1

miy + kL(x3 +x,) - [(12 + (% —x )2)2 - l](lz + (% —x )2 );(x1 —-x;) +

(11)

For the remaining three parts (i = 5,8,i=9,12,i=13, 16), the same analysis method will be constructed.
The second part contains elements 5, 6, 7, 8 (fig. 3).

29 30

Fig. 3. The second part of model consisting of 16 elements

Equations (2) for the second part where i = 5, 6, 7, 8 are written explicitly (12) as follows:

1

miis + kL(x5+ Xg) + {(12+ (xs—x7)2); _IJ(12+ (xs—x7)2) *(x5—xp) -

1

—{(12+(l—x5—x8)2); —IJ(12+(l—x5—x8)2)2(l—x5—x8) +(x, + xs)]

:_n[(x5+x6)+ (x5 —x7) (xs_fﬁ)]’

P+ (Eo x7)2

45



Kypnaa Besopycckoro rocyiapcTBeHHOro yuupepcurera. Maremaruka. Madopmaruka. 2024;3:40-61
Journal of the Belarusian State University. Mathematics and Informatics. 2024;3:40-61

1 L

mx, + k[(xs—i- Xg) + [(lz-i— (356—968)2)2 - IJ(12+ (xé—xg)z) *(xg—xg) —

—_

—[(12+(l—x6—x7)2)2 —IJ(12+ (l—x6—x7)2)_§(l—x6—x7) + (x4+x7)]

:-—n((x74-Xg)—-(x5__xﬁ) (XB__57)J,

12+(x5—x7)

1 1

mig + k[(x7+ Xg) — [(12+ (x6— xg)z)g - l}(12+ (x6— xg)z) ?(xg— xg) +

_£(12+(1—x5—x8)2)2 —IJ(12+(l—x5—x8)2) 2(l—x5—x8)}

=—1{(5€7+5Cg)— (xs—xs) (5‘6—568)}

I?+ (x6 - x8)2

The third part contains elements 9, 10, 11, 12 (fig. 4):

Fig. 4. The third part of model consisting of 16 elements
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Equations (2) for the third part where i =9, 10, 11, 12 are written explicitly (13) as follows:

1

miy + k[(x9 +xp0) + £(12+ (xg— x11)2 ); — 11(12+ (xo— xll)z) (X —xp,) -

1

- {(12 + (- x9)2); - 11(12 + (33— x9)2)7(x3 —Xo) -

—[(12+ (Z—XQ_XIZ)Z); —IJ(IZ"'(I_%_XU)Z)2(l_x9_x12)]

:-T][(fcg + X)) + (o =) (% ;.C“)}

P+ (xg— x11)

1

mi, + ]{(% +x0) + [(12 + (29— x5 )2 )2 -

1 _

- ((Zer (x4— 3‘10)2)E - ZJ(ZZJF (x4— xlO)z) 2("4"510) -

1

_L(ler(l_xlo_xll)z); _l}(l%r(l_xlo_xll)z) (1= 20— x11) + (3 +xl3)}

13
(xlO — X )2 (5‘10 - X, )] ()

2+ (xm - x12)2

=—1| (% + X)) +

mx,; + k{(x11 + x12) - (12+ (x9 - x11)2 ); — IJ(I2 + (x9 - xll)z) 2(x9 - xn) -
- [(ZZJF (l ~ X0~ xll)z); - l}(lz + (l R xn)z)_;(l ~ X0~ xn)]

:—n[(xn + %)) = (o) - fll)}

I+ (%0 — )

mxy, + ]{(xll + X5 ) = [(ZZ’L (%10 = 3‘12)2)E - ZJ(F + (%0 — xlz)z) 2 (10— x12) —

_[(12+ (l_x9_x12)2); _11(12+(1—x9—x12)2);(1—x9—x12) + (x12+x15)J—

:—n{(x11+x12)_ (0~ %) (5510—25612)}

I+ (x10 - x12)
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The fourth part contains elements 13, 14, 15, 16 (fig. 5):

29 30

31

32 24

Fig. 5. The fourth part of model consisting of 16 elements

Equations (2) for the fourth part where i = 13, 14, 15, 16 are written explicitly (14) as follows:

1

miyy + k[(xw + 1) + [(12 + (33— xls)z); - l}(ﬂ + (33— x15)2) ?(x3—xs) -

= —n[(fcm + ) + (s = is)" (s~ xw)],

P+ (33— x15)2
1 L
. 2 2
mX4 + k[(xn +x14) + [(IZJF (%14 = xi6) )2 - l}(ﬂ + (%14 = Xi6) ) ? (34— x6) -

- [(IZJF (% - x14)2)5 - ZJ(ZZ + (o - x14)2)_5(x8 — ) -

__ ((mer Kig) + (314 — x6) (5‘14_5516)}

I+ (%14 — X6 )2

1

My, s + k[(XIS +X6) — [(12 + (23— x15)2)2

- IJ(ZZJF (%3 - x15)2) (%3 x5) -

- ((12+ (1_3514—9515)2)i - ZJ(12+ (l_x14—x15)2);(l_xm—xls) + (5 + le)J_

_ _n[(fﬁs 4 5516)_ (x13 - xlS) (x13 — X5 )}

P+ (x13 - X5 )2
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1 1

mx,c + k (x15 + x16) - (12+ (x14 - x16)2)2 -1 (12 + (x14 - x16)2) 2()614 - x16) -

1 1

- (lz—i—(l—xn—xm)z)g—l (lz+(l—x13—x16)2) 2(1—x13—x16) = (14)

(x14 — X6 )2 (x14 - xls)
I+ (x14 - xm)2

In order to solve this set of differential equations about time, we choose the NDSolve method in computer
software Wolfram Mathematica [13].

When computing NDSolve, there are usually three stages. Firstly, the given system of equations is con-
verted into a function that represents the terms on the right-hand side of the system of equations in the normal
form. Secondly, it is solved iteratively starting from the initial conditions. Thirdly, the data stored during the
iterative process is processed into one or more InterpolatingFunction objects. Using the functions in NDSolve,
one can have more control over the iterative process. These steps are tied together by an NDSolve StateData
object, which can retain all the solved differentials.

In order to get a specific solution, we also need to enter the initial boundary conditions in the NDSolve code.
So now we will consider various variants for different initial conditions for the introduced block model.

Under the initial displacement. The parameters and the initial conditions are

m=2kg, [=0.1m, k=100 N/m,c=0.5N"-s/m,r=10s.

There is an initial displacement in the horizontal direction to any element which is shown below (fig. 6),
and in this variant the value is x; = 0.05 m.

=-M (5515 + 5516)_

Fig. 6. The initial displacement

And the following pictures (fig. 7) show the motion of the system in the first 10 s under the initial displace-

Fig. 7. The motion of model in 0—10 s under initial displacement

—0—

Under the initial velocity. The parameters and the initial conditions are
m=2kg, [=0.1m, k=100 N/m,c=05N"-s/m,r=10s.

There is an initial velocity in the horizontal direction to any element which is shown below (fig. 8), and in
this variant the value is v, = 0.5 m/s.
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Fig. 8. The initial velocity

And the following pictures (fig. 9) show the motion of the system in the first 10 s under the initial velocity

R
£{ % & f & 41

Fig. 9. The motion of model in 0—10 s under initial velocity
Under the initial impulse. The parameters and the initial conditions are
m=2kg, [=0.1m, k=100 N/m,c=0.5N"-s/m,t=10s.

There is an initial impulse in the horizontal direction to any element which is shown below (fig. 10), and the
initial impulse with the function (15) in this variant (fig. 11) is

F 1) =P[tH(t) _ Z(I _ %)H(t _ %) (=1 H (1 _1)} (15)
where H is the Heaviside function®.

Impulse
—_—

0 0.2 04 06 08 1.0 4

Fig. 10. The initial impulse Fig. 11. Dynamic load in the form of a triangular impulse
The variant can be solved by using the momentum theorem written as formula (16):
F(t)Atzm(vl—vO). (16)

And the initial velocity of system is 0, so compute the velocity (17) att=1s:

t
F(t)d
F(t)At +my, ;! (T) !
m T m

(a7

Vlz

*Evseev N. A. Elements of harmonic analysis. Novosibirsk : Novosibirsk State Univ., 2017. 97 p.
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Then the same impulse condition is translated to the condition when 7 = 1 s, the velocity of the element 1 is v,.
In this variant Vi(=1)= 0.125 m/s. And the following picture (fig. 12) shows the motion of the system in the first

10 s under the initial impulse condition.

doEE F OB
SH I T - A<

Fig. 12. The motion of model in 0—10 s under initial impulse

Under the different elastic coefficients. Different elastic coefficients will change the motion state of the
model [14]. For the same initial conditions and parameters m =2 kg, /=0.1m,c=0.5N-s/m, t=10s.

Let us study the difference between the elastic coefficient decreasing by 10 times (kK =10 N/m) and increa-
sing by 10 times (k= 1000 N/m) under the same initial displacement conditions described in subdivision «Un-

der the initial displacement» where x; = 0.05 m (fig. 13).
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Fig. 13. The motion of the model in 0—10 s under the different elastic coefficients:
k=10 N/m (a); k=1000 N/m (b)

Implementation of parallel computing
in the Wolfram Mathematica system

The Wolfram Mathematica’s computer algebra system is a very efficient means of calculation. Today the
system contains about 5000 functions, many of which were originally written in an optimised form (especially
for low-level calculations). Most computational functions in Wolfram Mathematica, such as dimensionality
reduction operations, statistical data processing, processing images and other are widely used. However, there is
a set of tools (such as ParallelSum, Parallelise, ParallelMap, Parallel Table, ParallelArray, ParallelCombine, etc.)
that can significantly speed up code calculations when implementing multi-threaded tasks [15].

Let us take the previous task as an example. We used NDSolve for sequential calculation before. The cal-
culation rule is time iteration, and the AbsoluteTiming function outputs the final calculation result in seconds.
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The calculation time is as follows. Of course, it should be emphasised that all computer calculations in this
paper were performed based on the following configuration: Intel(R) Core(TM) i5-9300-H CPU/NVIDIA
GeForce GTX 1650. The absolute time of the sequential calculation for the code is 7} = 0.988 049 s.

Parallel computing refers to the process of using multiple computing resources to solve computing problems
at the same time. It is an effective means to improve the computing speed and processing the power of computer
systems [16]. Its basic idea is to use multiple processors to collaboratively solve the same problem, that is, to
decompose the problem to be solved into several parts, and each part is calculated in parallel by an independent
processor. A parallel computing system can be either a specially designed supercomputer containing multiple
processors or a cluster of several independent computers interconnected in some way. Data processing is comp-
leted through parallel computing clusters, and the processing results are returned to the user.

Different from NDSolve, ParallelEvaluate performs parallel calculations on differential equations, which
greatly shortens the calculation time while achieving the same calculation purpose.

Under the same configuration environment, the absolute time of parallel calculation is 7, = 0.176 067 s.

In order to measure the effect of parallel computing, we introduce two parameters: acceleration and effi-
ciency.

The formula of acceleration (18) is

T
S =L (18)
p

1,

where p refers to the number of central processing units, which in the paper is p = 2; T, refers to the execution
time of the sequential execution algorithm; 7, refers to the execution time of a parallel algorithm when there
are p processors.

The formula of efficiency (19) is

SP
E,=-L. (19)

When S, = p, it can be called linear acceleration. When the acceleration ratio of a certain parallel algorithm
is an ideal acceleration ratio, if the number of processors is doubled, the execution speed will also be doubled,
that is, as ideal means, it has excellent scalability [17].

The value of efficiency E, is generally between 0 and 1, and it is used to indicate how fully the processors
involved in calculations are fully utilised when solving problems compared to the cost of communication and
synchronisation. It is easy to see from the definition that the efficiency of an algorithm with a linear speedup
and an algorithm executed on a single processor is 1.

Now let us calculate the computational efficiency and acceleration of different operation methods (table 1).

Table 1
Acceleration and efficiency of different computing solution
Time, T S
1me, Acceleration, S, = I Efficiency, E, =
Sequential calculation Parallel calculation T,
0.988 049 0.176 067 5.611778 2.805 889

From the results in the last table, it is clear that £, > 1, that is we obtain superlinear acceleration. In the pro-
cess of parallel computing, sometimes there is a situation where the acceleration ratio is larger than the number
of processors. The acceleration ratio obtained in this case is called a superlinear acceleration ratio [18].

The superlinear acceleration ratio has the following causes, such as the «cache effect» caused by the dif-
ferent storage levels of modern computers; specifically, compared with sequential computing, in parallel com-
puting, not only are there more processors involved in calculations, caches from different processors are also
pooled. In view of this, the cache of the collection is sufficient to provide the storage required for calculations.
There is no need to use slower memory when executing the algorithm. Therefore, the memory reading time can
be greatly reduced, what creates an additional acceleration effect for actual calculations.

Construction of models with order n

We have calculated and verified the motion status of 16 elements. Now when the number of elements in-
creases exponentially to k (fig. 14), in another words it means we have the number of amount (20):

k=4"(n=1,2,3,...) (20)
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Fig. 14. The number of elements reaches to k

Using the second Lagrangian equation the kinetic energy (21) of the system is

4
I L, 1 5 I
T=)T=—mX;{ +—mx5 + ...+ —mx,. 21
2T = mii + 5 miy > 1)

With the potential energy of the system, the equation of motion of the entire system can be calculated by
the formula (22):

———--—=——,i=Lk (22)
When the number of elements reaches k, we focus on two types of elements. The first type is the four ele-

ments in the corners, and the second type is the four elements in the center of the entire model.
In order, we first study the motion equations (table 2) of the four elements in the corners (fig. 15).
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Fig. 15. The four elements in the corners

Table 2
Equation of motion for four elements in the corners
Location The number Equation of motion
of element
1 1
mi + k| (x+ x,) + [(12+ (x1 - x3)2)2 - ZJ(12+ (x - x3)2) 2(x1 - x3)—
Upper 1 L
left t=1 —((Pr=m= ) PP = =x)) 20— x-x) |-
corner
20, .
_ —1{(561 + i)+ (xlz_ %) (% 2’53)]
"+ (x1 - x3)
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Ending of the table 2

Location Ehfee?;nrit;ir Equation of motion
1 L
mx, + k (xt_]+xt)+ (12+(xt tz)z)z—l (12+(xt—xt+2)2) (xt—xHZ)—
U 1 L
ri%lilir t=§(4n_1_1)+2 - (12+(l—xt—xt+1)2)2—l (12+(l—xt—xt+1)2) 2(l—xt—xprl) =
comer | m=1,2,3,..)
2 . .
S (x1 1+xt)+(xt_Xt+2) (xt_xt+2)
- 2
12+(xt—xt+2)
L 1
mi, + k (xt+x[+1)— (12+(xt_2—xt)2)2—l (12+(xt_2—xt)2) 2(x[_z—xt)—
1 L
L?cjtzcer t=§(4n71_1)+3 - (12+(l—xt_1—xt)2)2—l (12+(l—xt_1—xt)2) 2(l—xt_l—xt) =
comer | m=1,2,3,..)
L (xt—Z_xt)z(xt—Z_xt)
=-n (xt+xt+1)_ ]2+(xt72_xt)2
1 L
mx, + k (xt_1+xt)— (12+(xl_2—xt)2) -1 (12+(xt_2—xt)2) (xt_z—xt)—
Lower n 1 1
crcifil;r (n=i=2?3,,,,) - (12+(l—xt_3—xt)2)2—l (12+(l—xt_3—xt)2) H-x 5-x)|=
- (;‘ct1+xt)_(xt‘j_xt)2<xt—2_2xt)
/ +(xt72—xt)

Then we study the motion equations (table 3) of the four elements in the center of the system which are
shown in fig. 16.

wy&.\ L @
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L

Fig. 16. The four elements in the center

54



TeopeTnueckasi 1 NPUKJIATHASI MEXaHHKA
Theoretical and Practical Mechanics

Table 3

Equation of motion for four elements in the center

Location "l;)l}ee?eunr;nel:ir Equation of motion
1 L
mX, + k (xt71+xt)— (12+(xt72—xt)2)2—l (12+(xt72—xt)2) (xtfz—xt)—
1 L
B e e B L i (R (S SRR SRS
2 .
o] (5 ) L )
lz—i-(xle—xt)
1 1
mX, + k (xt+xt+1)— (12+(xt72—xt)2)2—l (lz—i-(xtfz—xt)z) 2(xtfz—xt)+
1 1
2\; 2\
+ 12+[xt—x9 2] -1 12+[xt—x9 2J [xt—x9 2}—
U 20/ ., 5175 55 55
pper t=—(4 —1)+7
right 3
n=2,3,4,..) 1 !
- (12+(1—xl,1—xt)2) 1 (12+(1-xt,1—xt)2) M1-x - x)+
2 . .
+{x3 1+xtJ =-1 (J'ct+5ct+1)_(xt_2_xt) (xt_z_zxt)
575 12+(xt_2—xt)
. -
mX, + k (xl_1+xt)+ (l2+(xt—xt+2) ) / (12+(xt—xt+2) ) (xt—tz)—
1
2\, 273
- 12+[x3 z—xt] -1 12+[x3 2—xt] (x3 ) xtJ—
Lower | +_ 28 -2 777 777 777
t="o(4""-1)+10
left 3

(n=2,3,4,..)

(T ) IS LS

2
(xt - xt+2) (xt - xt+2)

& ’
X X2

+ [xt+ x9t+1J =- ()'ct_1+ )'ct)+

77
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Ending of the table 3

The number

Location of element Equation of motion
. 2 AVY 2 2\
mx, + k (xt71+xt)+ (l +(xt—xt+2)) / (l +(xt—xt+2) ) (xt—xuz)—
1
23 2\ 72
- 12+(x5t_2—xtj -1 12+[x5t_2 xtj (xs _Z—xtj
Lower t:§(4n—1_1)+3 o9 o9 o9
right 3
n=2,3,4,...)

(P P [P s ) =)+

(5105
9 9

2
(xt_xt+2) (xt_xt+2)

& ’
X~ X2

-n (xt + xt+1)+

Simulation when system consists of 64 elements. We have studied the situation when there are 4 (n = 1)
and 16 (n = 2) elements. Now we calculate and verify the motion state of the system when n =3, 4, 5, and
simulate the four elements in the center of the system.

When n = 3, then the total number of amount is k = 64 (fig. 17).
In order, we calculate the Lagrangian equations of motion for the four elements in the center (fig. 18, table 4).
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Fig. 17. The system whenn =3
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Fig. 18. The four elements in the center of the system
when there are totally 64 elements



TeopeTnueckasi 1 NPUKJIATHASI MEXaHHKA
Theoretical and Practical Mechanics

Table 4

Equation of motion for four elements in the center when n=3

Location "I;hfeeileunril:;letr Equation of motion
1 1
. 2 2
mx ¢ + k[(xls +X6) — [(12+ (x4 — x6) )2 - IJ(12+ (x4 — X16) ) (x4 = x6) —
Upper 1 1
2 2
1123% t=16 _((Zer(l_xls_xm) )Z_IJ(lz“L(l_xls‘xm) ) z(l—xn—xm)J:
=-1M [(315 + X ) - (x142_ e )2 ().CH - 2).616)}
I~ + (x14 - xlé)
1 1
my, + k[(x27 + x28) - ((12+ (x25 — Xy )2 )2 - ZJ(12+ (x25 — Xy )2) 2(x25 - x27) +
1 1
2 2
+ [(124— (x27 - x49) )2 - IJ(IZ + (x27 - x49) ) 2(x27 - x49)—
Upper t=27
right B 1 _L
- {(12+ (l — Xy — x27)2)2 - l}(l2 + (l — Xy — x27)2) 2(1 — Xy — x27) + (x16 + x27)}=
2. .
= —T]((Xﬂ + dg) = (xzsz_ ) G _23527)J
I+ (x25 - x27)
1
Mg + k{(x37 + x38) + {(12+ (x38 - x40)2 )2 - l](12+ (x38 - x40)2) 2(x38 - x40) -
1 L
2 2
- {(12"' (xlé - x38) )2 - IJ(ZZ + (xlé - x38) ) 2(x16 - x38)_
Lower
left t=38 1 1
- [(FJF (1= x5 =) ) - z](z2 (1= g = 009 )) 21 = g = ) + (g + x49)J:
2. .
= _n{(x37 + x38) + (X382_ X4O) (X38 _;40)]
I“ + (x38 - x40)
1 1
.. 2 2
mi g + k[(}c49 + X5 ) + [(124- (x40 — X51) )2 - l]([2+ (x40 — X51) ) * (249 — x51) —
1 _
2 2
- {(12+ (x27 - x49) )2 - l}(lz + (x27 - x49) ) 2()‘27 - x49)—
Lower
right =49 1 1

B {(12 + (1= = x55) )5 B IJ(ZZ + (1= x4 = x5 )2 )_E(l = Xy = X5y ) + (35 + Xy )} =

= —ﬂ[(?% + 5o ) + (a9 = 51 )” (g = xﬂ)}

P+ (x49 - x51)2
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Then we simulate the motion image of the four elements in the center of the system. The initial boundary
conditions are displacement, velocity and impulse as in the previous task.

Initial condition (displacement). For the variant where the initial condition is displacement, we reduce the
displacement from 0.5 to 0.05 m and finally reduce it to 0.005 m, in order to study the difference in the motion
of the model (table 5).

Table 5

The movement of the four elements in the center
under different initial displacement with total of 64 elements

The parameters and the initial conditions are
m=2kg, [=0.1m, k=100 N/m,c=05N-s/m,t=10s,x,=0.5m

t=0s t=1s t=2s| t=3s |t=4s t=5s t=6s t=7s t=8s t=9s t=10s

3223827238838 848

The parameters and the initial conditions are
m=2kg, [=0.1m, k=100 N/m,c=0.5N"-s/m,t=10s,x =0.05m

t=0s t=1s t=2s| t=3s |[t=4s t=5s t=6s t=7s t=8s t=9s

s Tasib-disiP =l

The parameters and the initial conditions are
m=2kg, [=0.1m, k=100 N/m,c=0.5N"-s/m,t=10s,x, =0.005 m

t=2s| t=3s |t=4s t=5s t=6s t=7s t=8s

sl eI A s

Initial condition (velocity). The parameters and the initial conditions are
m=2kg,[=0.1m, k=100 N/m,c=0.5N"-s/m,t=10s.
There is an initial velocity in the horizontal direction to any element which is shown in fig. 19, and in this

variant the initial velocity is v, = 0.5 m/s.

Fig. 19. The movement of the four elements in the center under the initial velocity with total of 64 elements
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Initial condition (impulse). The parameters and the initial conditions are
m=2kg, [=0.1m, k=100 N/m,c=0.5N"-s/m,t=10s.

There is an initial impulse in the horizontal direction to any element which is shown in fig. 20, and in this
variant the initial impulse with the function is the same as in the previous study.

Fig. 20. The movement of the four elements in the center under initial impulse with total of 64 elements
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Simulation when the system consists of 256 elements. When n = 4, then the number of amount is k = 256
(fig. 21).

As what we did in the previous study then we also simulate the motion image of the four elements in the center
of the system (fig. 22). The initial boundary conditions are displacement, velocity and impulse as in the previous
task (table 6).

. Fig. 22. The four elements in the center of the system
Fig. 21. The system when n =4 when there are totally 256 elements

Table 6

The simulation of four elements in the center of the system
which contains 256 elements under the different initial conditions

Initial condition (displacement):
m=2kg, [=0.1m, k=100 N/m,c=05N-s/m,t=10s,x=05m

3
d

Initial condition (velocity):

m=2kg, [=0.1m, k=100 N/m,c=0.5N"-s/m,t=10s, v, =0.5m/s

I3
<

{1

Initial condition (impulse):

m=2kg, [=0.1m, k=100 N/m,c=05N"-s/m,t=10s,
the impulse is the same as previous task

8¢
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3
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Simulation when the system consists of 256 elements. When n =5, then the number of amount is k = 1024
(fig. 23).

We already study the situation when n = 3 and n = 4. As what we did in the previous study then we also
simulate the motion image of the four elements in the center of the system (fig. 24). The initial boundary con-
ditions are displacement, velocity and impulse as in the previous task (table 7).
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Fig. 24. The four elements in the center of the system
Fig. 23. The system whenn =15 when there are totally 1024 elements

Table 7

The simulation of four elements in the center of system
which contains 1024 elements under the different initial conditions

Initial condition (displacement):
m=2kg, [=0.1m, k=100 N/m,c=05N"-s/m,t=10s,x,=0.5m

Initial condition (velocity):

m=2kg, [=0.1m, k=100 N/m,c=0.5N"-s/m,#=10s, v, =0.5 m/s

Initial condition (impulse):

m=2kg, [=0.1m, k=100 N/m,c=0.5N"-s/m,#=10s,
the impulse is the same as in the previous task

1] s
{
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Conclusions

This article introduces the application of numerical simulation methods in geomechanical engineering prob-
lems, relevant principles and lists specific situations under different boundary conditions. Finally, it points out
the development directions and problems that still exist in current numerical simulation experiments. The re-
search proposes a block element that can take into account its deformation capability under external loads.
Based on this type of block element, it seems promising to simulate the SSS of the rock mass region through the
discrete element method, since considering the rock mass region within the framework of the continuum model
is a rather «rough» approximation assumption. Another important fact is that the introduced block elements can
be used to study problems under static as well as dynamic loads.

For real geological and rock soil mechanics problems, the solution proposed in this article can be used as
a basic model construction method. In order to further improve the accuracy and practicality of the solution,
this can be achieved by changing the structure and size of the block units, as well as the density and connection
methods of various link keys between units. Developing codes that compute faster and more accurate models
is a direction for future research. With the increasing scale of geomechanical engineering, our requirements
for the level of scientific research and the accuracy of solutions in engineering construction are getting higher
and higher. That is the reason numerical simulation methods have become an effective solution. Numerical
simulation is of great significance for understanding the SSS and movement change of rock and soil blocks
in geomechanical engineering. It can also provide theoretical basis for actual engineering and play a role in
safety protection.
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