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Abstract. Herein, we investigate systems of nonautonomous differential equations with generalised coefficients using
the algebra of new generalised functions. We consider a system of nonautonomous differential equations with generalised
coefficients as a system of equations in differentials in the algebra of new generalised functions. The solution of such
a system is a new generalised function. It is shown that the different interpretations of the solutions of the given systems
can be described by a unique approach of the algebra of new generalised functions. In this paper, for the first time in the
literature, we describe associated solutions of the system of nonautonomous differential equations with continuous gene-
ralised coefficients in the space L(T).

Keywords: algebra of new generalised functions; differential equations with generalised coefficients; functions of finite
variation.

Introduction

In this paper, we will consider the following system of equations with generalised coefficients on 7 € [0, a] cR:
. q .. . . —
()= £t x(1) (1), i=1, p, (1)
j=1

x(0)=x0, ()

where f% i=1, p, j=1, g, are some functions; x(1)= [xl(t), (), ..., x”(t)] and I/ (1), j = 1, ¢, are a conti-
nuous function of finite variation on 7. L/(¢) are derivatives in the distributional sense or we can say that L/ (¢)
are derivatives in the Schwartz space. In general, since L/ (t) is the distribution and f U(t, x(t)) not smooth
functions, the products /¥ (t, x(t))Lj (t) are not well defined and the solution of system (1) essentially depends

on the interpretation. System (1) can describe the model of the rocket flight process or the model of the control
problems with impulse actions. Let us recall some approaches to the interpretation of system (1).

The first approach is concerned with considering the system of equations in the framework of the distri-
bution theory. According to this approach, once the product of distributions from some classes is defined, then
one tries to find the solution of the system of equations (1) in these classes of distributions. For example,
in papers [1; 2] the product of some distributions and discontinuous functions was defined. See also mono-
graph [3] for another definition. Notice that the solutions of system (1) obtained using the products from [1-3]
are different.

The second approach is to interpret system (1) as the following system of integral equations:

q 12
x'(t)=xq + Z J.f” (s, x(s))Lj (s)i=1 p,
j=10
where the integrals are understood in the Lebesgue — Stieltjes, Perron — Stieltjes sense, etc. [4; 5]. But in this
approach the solution of the system of integral equations depends on the interpretation of the integral and the
definition of the functions x'(#) in the discontinuity points of Z/(¢).

The third approach is based on the idea of the approximation of the solution of system (1) by the solutions
of the system of ordinary differential equations, which are constructed using the smooth approximation of the
functions 1/ (t) In monograph [3], it is shown that in this case the limit of the solutions of the smoothed equa-
tions exists.

In this paper, we will consider system of equations (1) using the algebra of new generalised functions from [6].
Thus we will interpret system of equations (1) as a system of equations in the differentials in the algebra of new
generalised functions. Such interpretation says that the solution of system (1) is a new generalised function.

We investigate the system of nonlinear differential equations, the coefficients of which are generalised de-

rivatives of the continuous function of finite variation L/ (t) In previous papers [7-11] the general view of sys-
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tem (1) was considered. The coefficients in such systems are generalised derivatives of arbitrary functions of

finite variation L/ (t) Using the given sequence of numbers 4, — 0 we construct a sequence of approximating
equations, and the generalised solution is defined as the limit of a sequence of the solutions of approximating equa-
tions. It is found that generalised solution exists only under some additional conditions for the behaviour of
the sequence /, in the case of discontinuous functions Z/(#) and different generalised solutions exist for different
sequences £,

The main purpose of this article is to prove that the generalised solution exists for all sequences 4, — 0, it
is the solution of system of integral equations (1) and it is independent of the choice of 4, in the case of con-

tinuous functions I/ (t)

The algebra of new generalised functions
In this section, we recall the definition of the algebra of new generalised functions from [6]. First, we define an
)., X, €R,Vn eN} be
a set of real sequences. We call two sequences {x, } € R and {y, } € R equivalent if there is a natural number N

such that x, =y, for all n > N. The set R of equivalence classes is called the extended real line, and any of the
classes is named as a generalised real number.

It follows that R < R as one may associate a class containing a stationary sequence with x, = x with any
ordinary number x € R. The product Xy of two generalised real numbers is defined as the class of sequences

equivalent to the sequence {xn Y, }, where {xn} and { Y, } are the arbitrary representatives of the classes X and 7,

extended real line R using a construction typical for nonstandard analysis. Let R = {(x

n

respectively. It is evident that R is an algebra. For any segment 7' = [O, a] C R one can construct an extended
segment 7 in a similar way.
Consider the set of sequences of infinity differentiable functions { ];(x)} on R. We name two sequences

{£,(x)} and {g,(x)} equivalent if for each compact set K < R there is a natural number N such that f,(x)=
= gn(x) for all » > N and x € K. The set of classes of equivalent functions is denoted by S(R) and its elements
are called new generalised functions. Similarly, one can define the space S(T ) for any interval 7 = [0, a]. Ifwe
endow all these spaces with the natural operations of addition and multiplication they become algebras.

For each distribution / we can construct a sequence { f; } of smooth functions such that f, converges to /

(i. e., one can consider the convolution of f with some d-sequence). This sequence defines the new generalised
function that corresponds to the distribution f. Thus the space of distribution is a subset of the algebra of new
generalised functions. However, in this settings, the infinite set of new generalised functions corresponds to
one distribution (for example, by taking a different 5-sequence). We will say that the new generalised function

f = [{ £ }] is associated with a function f from some topological space if f, converges to f in this space.

Let f= [{ f }] and g= [{ g, }] be new generalised functions. Then there is a composition defined by f o & =
= [{ A gn(x))}J € 3(R). In the same way, one can define the value of the new generalised function f at the

generalised real point ¥ = [{xn}] eRas f(¥)= [{ﬁ,(xn )}]
Let H denote the subset of % of nonnegative «infinitely small numbers»:

H:{heﬂ%:h:[{hn}], iy >0,¥neN, lim h,=0;.

For each E:[{hn}] e H and ]7:[{];}] e 3(R) we define a differential d;jeS(R) by d};f:[{fn(x +
+ hn) -1, (x)}] The construction of the differential was proposed by N. V. Lazakovich [6].

Main results

In this section, we will formulate the main results of this paper. The proof of the theorem will be given in
the next section.

Using the introduced algebras we can now give an interpretation of system of equations (1). We replace
ordinary functions in system (1) by the corresponding new generalised functions and then write the system of

equations in differentials in the algebra S(R). So we have

4,7 ()= X 777, #(7))d, (7). i=1, p, 3)
j=1
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with the initial value f‘[éaﬁ):f%, where h=[{h,}|e H,7=[{t,}]eT, 2=[{x,}]. F=[{£i}] % =[{x}]

and [ = [{Ln}} are elements of S(R) Moreover f and L are associated with / and L, respectively. If ¥ is as-

sociated with some (generalised) function x then we say that x is a solution of system (1).

It was shown in [12] that under some minor restrictions on the initial conditions there exists a unique
solution of (3). The purpose of the present article is to investigate when the solution X (3) converges to some
ordinary function and to describe all possible limits.

Let I/ (t), j= 1,_q, tel= [0, a], be a continuous function of finite variation. We will assume that 1/ (t) =
= L(a) if t>a and Lj( )— L( ) if £ < 0. Denote the total variation of the function L = [Ll, I’ ..., Lq} on the

interval T by Var L Z Var LJ A continuous function f'is said to be Lipschitz continuous function with

respect to its second Varlable x € R if there exists a constant M/ > 0 and for all x, x,e Rand ¢t T:

|f t,x)—f(1 x2)|SM|x1—x2|. 4)

In this paper, we consider specific types of representatives of the new generalised functions. We take the
following convolutions with 8-sequence as representatives of L from system (3):

1

L) =(1 #p, )(1)= [ /(1 ), (5)ebs,

1
where p, e C*(R), p, >0, supp, Q[O, %}, fpn(s)ds:l and f,=f*p,, p=0, f)n(xo, Xpy oee xp):n””() X
0

x(nxo, nxl,...,nxp),ﬁecw(RpH), J. ﬁ(xo,...,xp)dxo...dxpzlandSUpﬁg[O, %:|p+1'

p+1
{:O, l:|
n

By using representatives we can rewrite system (3) as follows:

X (14 hy) - Zf”(t x () L+ h,) =L ()] i=1, p, (5)

t)‘[o, h,,)ZXOn(t)' (6)

The solution of (5) is constructed inductively starting from the interval [0, hn) where the initial condi-
tions are given. Let ¢ be an arbitrary point of 7. There exist m, € N and t, € [O, hn) such that # =1, + m,h,. Set
t,=1,+kh, for k=0, 1, ..., m, Then the solution of system (5) can be written as

WI,—

%, (£)=x0, (7 i:: Z:: (tk’ )[qu (tk+l) - L (4 )], i=1, p. (7)

Thus, we will understand the associated solution of (3) as a solution of the system of nonautonomous dif-
ferential equations (1), (2). Therefore, we have to investigate a limiting behaviour of (5), (6).
In order to describe the limits of the sequence x,, we consider the following system of integral equations:

t

+Z_:j s))dL/(s), i=1, p. (8)

Here and below all integrals are understood in the Lebesgue — Stieltjes sense. As it was shown in [13] there
exists a unique solution of (8) if f is Lipschitz continuous function.
The following theorem from [12] gives necessary and sufficient conditions for the existence and uniqueness
of the solutions of system (3). o .
Theorem 1. If the following equality holds for some representatives {];” } e f" {L{,} el {x;} ex,
{xén} e X, for all sufficiently large n € N and for all [ = 0,1, ...:
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W (dz (5= 50)] - Z G ) 100 - Lﬁ(f’m:“

t—>0" dt

then a solution of system (3) exists and it is unique.
Lemma 1. Let for alln=0, 1, 2, ... the following inequality holds:

Z,  SA+ Y A+ BZ, )
k=1 k=1

where A, A;, B, are some nonnegative constants and Z, >0, k=1,2, ..., n. Then

ZnHS(AJan:Ak}eXp(inJ. (10)

k=1 k=1

Proof. Let us successively apply inequality (9):

n-1
Zn+1_A+ZAk+ZBka+BZ
k=1 k=1

n n—1 n-1 n—1
sA+ZAk+Bn[A+ D A+ ZBka}JrZBkZ =
k=1 k=1 k=1 k=1
—A+2Ak+B{A+2AkJ (B, +1 ZBka_

k=1 k=1

k=1 k-1

. +Bl(1+Bz(1+ (1+B,H(1+Bn))))AS [A+ Zn:Akjll[(lJan).

Let Z, , , =0 then inequality (10) holds, if 4 + z A, = 0. In other cases we take the logarithm left and right
k=1

Inz,, < [[ Z }H1+Bn)]=
=11’1{A+iAkJ-i-iln(lﬁ-Bn)Sln(A-f-iAkj-i-iBn.

k=1 k=1 k=1 k=1

parts of the chain of inequalities

Z B,
Then we obtain Z, , | < (A + Z Ak]ek ' . The proof is completed.
k=1

Lemma 2. Let the function [ be Lipschitz continuous with constant M satisfying (4). Then for the solu-
tions x and x,, of (8) and (5), respectively, the following inequalities hold for all t,t, € T, t > t, and [, n € N.

1. |x(t)|SC(1+ |x0|), xn(t)|SC( X0(T )) andueve(lzrb L(u).
2. |x(l)— x(1 )|SMu;/ﬁlr’t]L(u).

3. |xn(t+lhn) —xn(t)|SM var L(u).
ue[r,tﬁhn +%}

Proof. Let us prove the first inequality. For this purpose we will consider

|x <|x0|+”f s, x(s))d var L(u )<|x0|+M var L(s)<C(1+]x))-

ue[O s] [O t]
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If we rewrite the solution of system (5) in the vector form, we will get

G R AR W) PRI EVATAI E

Xno (Tt )| +

(tk’ x,(#, )[Ln(tk+l)_[’n(tk)]

where we used the equality var L, (u)= var L(u), derived from the definition L,.
ueT

uel

N+M var L(s)= C(

se[O t]

an(Tt)

),

In the same way, we will get the second inequality

|x(t)—x(tl)|=xo+jf(s, x(s ))dL - —If s, x( dL( )=

<M var L(u)

uelt, 1]

|7t ey

It follows the third inequality from the second one

x,(t+1h,)—x,(¢ SM var L (u)<M var L(u),
(i) xS, g LS M G

where we used the inequality var L ( ) var _L (u), derived from the definition L,. The proof is completed.

ool " L]

Then we will define the module of the x :[xl x% .., xF } as |x| Z‘ ‘ and module of ( p X q)-mat-

rix as | f | Z Z‘ £ ‘ We denote variation of the vector-function L = [Ll . Lq] on A by Vag1 L( ):
i=1j= ue

q
ZvarLJ ), var L(u)= lim var L(u).

~ 4 uela,b) 6—0" uca,b—e]

Theorem 2. Let [V i=1, p pJj= Lg q, be Lipschitz conlmuous functions satisfying (4) and LJ( ) j=1,_q, be
continuous functions of finite variation. Suppose that hL _[ |x 0 xo|dt —>0asn—>o, h,—>0 forallteT
then the solution xn(t) of (5), (6) converges to the solu;’oon x(t) from (8) in the Lebesgue space LI(T).

Proof of the main theorem

In this section we will prove theorem 2.
Proof. Let fix ¢ € T, then using (7) we obtain

-2 s r(e)ar ) 2 J s (s )+
<38 )2l - i)
+ zl ko P9 (10 3 (1) - Eis) —':Z(:f”(tk, x(t)) L t) =2 () | +
+ ,i ':'_01 Pt () E (1) - 2 (1)) - I SV (s, x(s))al (s) =
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q
=L(1)+ D] (I{ ()+ 1 () +H(t)+ 1] (t))
j=1
We denote the constant C which depends only on M, |T | It does not depend on n, 4, and ¢ € T and its

value can change from one formula to another. Since f” are Lipschitz continuous functions, satisfying (4)
and bounded for i =1, p, j=1, g, functions r (t), j=1, g, are continuous functions of finite variation, then
I/(1)<C var I/(t).
{()<C yar L'(1)
Using the view of j;*/ and inequality (4), we obtain

I3(1)=

m,—1

Z (ﬁqu (tk’ X, (tk )) - fY (tkﬂ x(tk )))|:L{q(tk +1 ) - L{z(tk )]

< Ctiol(|xn(fk) =) + %)

To estimate term 7§ (t), Jj= L_p, we will divide the sum into two parts. Then we will make replacement of
indexes of summation in the first part. We will use (4), the view of x(t) and lemma 2:

<

Li(tk+1) _Li(tk)"

ORI AN IS RIS A IS1 B
S e 1) 2 )] S ) 20 -2
|3l ) 0)] - A ) 20 -2 0] -

_ z( P w6t ) = (e s 20)  26)] (1 (0 1)) ¢

<

<[ = (1))~ 17 e ) 20(5) - ()]

scmil var D(0)(|Je(r )= x(e)| + )+ € var D()+C var D(1)<
k=1te tk,tk+%} te r,,r,+ﬂ te[zm,,tmtJrﬂ

<C max var Lj(t)+Chn.

hhel, te[n, b

1
lh-n]<-

Denote §(s)=1,, s € [tk, 4o ), and using the properties of Stieltjes integral we have

1(1)=

r:z:‘;flj(tk’ x(tk))[U(tkH)_Lj(tk)] _ jflj(s’ x(s))dLj(S)

/4

7 (36 <(30) = £ (s, x(5)) |t/ (5)

L€ T g LE| 1 T i

sc':::[[ var x(t)+hnj var Lf(t)}s

<C max var Lj(t)varx(t)+ChnSC max var L' (t)+ Ch,.
htyeT, ten,b)] teT hheT, tet,b]

\zl—tz\s%Hz,, \tl—tz\S%Jrhn
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Then
q m—1 ) qg m—1 1
(1) =5 (1) [who(r,) = x|+ €D Y var K(1)+CY [xn(tk) x(t )|+ j
Jovizelom) J=1k=0
q
J J
(’k+1) Ln(tk)‘+CJZ_1 max, te\[?,rtz]L (¢)+ Ch,.
‘tl—t2‘3%+hn
We obtain similar inequality for others x|, i = l,_
. g m—1 ) q m—1 1
(1) =¥ (1) <[rio(v) = x|+ € D var D()+CY (x,,(tk)-x(tk)|+_]x
Jotko1 el0h) j=1k=0

x‘L,’;(tkH)—L,’;(tk)hCZ max  var L/(t)+Ch,.

htyeT, ten, ]

o —t2‘£%+hn

%, (1) x(1)| < z

h,hel, te[n,n)]

q
r;(tk+1) —Lf;(tk )‘ + CZ max var Lj(t)+ Ch,.
_l\t] —tz\s%w,,,

Lemma 1 implies the following estimation for the last equation:

x, (1) = x(r) <]

x0|+CZ var [/(t +CZ max  var L/(t)+Ch,.

ze()h - nhel, te[h,n]
\—Qs%+m
Then
jxn(t) —x(t)|dt£f X0(7,) x0|dt+ CI Vglrh L(t)dt+
te
T T
+C max var L( dt+CIh dt
htyeT, te[n, b))
\zl—tz\s%Hzn
and

J

a

X0(T,) — x0|dt +C var L(1)+C max var L(t)+ Ch,.

1e[0, h,) htyeT, te[n, b))

x, (1) = x(t)|de < |
! [ETAEE )
n n

Let n — o, h, = 0. Since r (t), j= I,_q, are continuous on the 7 and therefore are uniform continuous on

it we have hL I X0(T,)— x0|dt — 0. The proof'is completed.
n 0
Similar results for the system of autonomous differential equations in other space were obtained in [9; 14].

Theorem 3. Under the condition of theorem 1, let f" i= I,_p j=1, q, be Lipschitz continuous functions

h
. RS 1 4
satisfying (4) and L’ (t) are continuous functions of finite variation (j=1, q ). Suppose that h_'[ xno(rt) -

n 0

- x0|a’t — 0 than the associated solution of (3) is the solution of (8) as n — o, h, — 0.

Proof. This is immediate consequence of the definition of the associated solution of (3) and theorem 1.

Thus, the class of the integral equation to which the associated solutions of systems of the nonautonomous
differential equations satisfy, containing the generalised derivatives of continuous functions, is described by
system (8).
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It should also be noted that from the proof of the theorems in the case of discontinuous functions 1/ (l) the

proof of the main theorem of this article doesn’t follow, because the associated solutions of (3) are obtained in
a different topological space.

It was shown in [6; 8; 11] that the solution of system (1) in the sense of the integral and approximate approa-
ches can be obtained from the solution of the system in differentials in the algebra of new generalised functions.
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