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Graphene quantum dots (GQDs) are assumed to be a perspective systems for quantum
computing. The simplest one can be considered as a circular dot described by two-dimensional
Dirac-like equation within the known graphene model of massless pseudo-Dirac fermions. The
system admits an analytical treatment with a stair-case confining potential. The existence of
quasi-bound states for such systems has been declared in a series of papers, an opposite point
of view has been proposed by us in [H. Grushevskaya & G. Krylov J NPCS,25 21(2022)].
Detailed analysis of eigenfunctions and possibility of quasi-bound states for monolayer and
bilayer graphene circular quantum dots with a step like potential is the goal of the current
research. It has been demonstrate that anomalous density of states emerge in bilayer graphene
cases for the real energies in the vicinity of the point of vanishing determinant of the linear
algebraic system for matching eigenfunctions and their derivative at the boundary of the
quantum dot. The effect is stipulated by the significant contribution of the Bessel Km

function at the distance up to several dot’s radii.
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1. Introduction

Unique electronic properties of graphene
already observed experimentally put it forward
as a prominent candidate material for future
nanoelectronics. Among numerous more or less
sophisticated approaches to the theoretical
description of this material (see e.g., [1] and
references therein) the simplest one is based on
known massless pseudo-Dirac fermion model [2].
In this approach in the vicinity of the so called
Dirac points the matrix Hamiltonian in tight bind
approximation has the form of two-dimensional
Dirac one for massless fermion excitations [1] that
is Ĥ = vF (~p · ~σ) where ~p is two-dimensional (2D)
momentum, ~σ is a 2D vector of Pauli matrixes
(σx, σy), vF is the Fermi velocity. To model a
monolayer graphene quantum dot (MGQD) one
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can add a confining scalar potential V (~r) to
above mentioned Hamiltonian. If this potential
is invariant on respect to arbitrary rotation that
is V (r) (r = |~r|) the problem admits variables
separation in polar coordinates [5]. The simplest
exactly solvable case with such a symmetry
corresponds to step-like potential of the form
V (r) = V0θ(r − R) where θ is the Heaviside
function, R is the radius of the dot. Investigation
of this model will be primary goal of the first
part of the paper whereas in the second part we
consider a model of the bilayer graphene quantum
dot (BGQD).

The structure of the paper is the following.
In Section 2 we start with the MGQD and
construct eigenstates and eigenvalues. Continuity
conditions for the spinor wave function on the
boundary of the quantum dot leads to a linear
system (we call it as matching system in what
follows) relating expansion coefficients of the
wave function on eigensolutions in inner and
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outer regions in respect to the dot. Situation,
when the determinant of this system vanishes at
definite values of the energy ε∗ (we call it as a
exceptional point), is the so-called quasi-bound
state condition proposed in [5, 6]. We consider
choice of real or complex energies and see what
results it leads for the energy values strictly in
exceptional points and in their vicinity.

Section 3 starts with a short description of
the BGQD Hamiltonian. The analysis similar to
Section 2 will be performed for the BGQD with
the same geometry and the confining potential
as for MGQD. Discussion and conclusion section
finalizes our treatments.

2. Monolayer GQD

Accounting circular symmetry of the
problem and with the use of the following
representation of the spinor wave function(

Ψ1

Ψ2

)
=

(
eımφ ψ1(ρ)

ı eı(m+1)φ ψ2(ρ)

)
, (1)

the eigenproblem for the MGQD leads to the
following system for a pair of radial functions a, b

ξa(ρ) = −b′(ρ)− (m+ 1)b(ρ)

ρ
, (2)

ξb(ρ) = a′(ρ)− ma(ρ)

ρ
(3)

where more convenient variables for the radial
distance ρ = r/R and the energy ε = RE/vF have
been introduced, and the parameter ξ = ε−V (ρ)
is a local constant in two regions ρ < 1 (inner
region of the quantum dot) and ρ > 1 (outer
region) [5].

It is evident from the local constancy of the ξ
that the solutions in both the regions correspond
to a free particle wave function with only different
energies. It is easily to obtain the second order
equation for the only one function, e.g. b(ρ)

b′′ +
1

r
b′ +

(
ξ2 − m+ 1/2

r2

)
b(ρ) = 0 (4)

which is the equation for the Bessel functions,
so that the general solution of the system (2),(3)
reads

a(ρ) = c1Jm−1/2(ξρ) + c2Ym−1/2(ξρ), (5)

b(ρ) = ı(c1(−Jm+1/2(ξρ))− c2Ym+1/2(ξρ)). (6)

Here c1, c2 are arbitrary constants, J, Y Bessel
functions of the first and second kind respectively.

In [3, 4] and in several later publications
[8, 9] authors used absolute value |ξ| instead of
the original variable and this is a subtle error,
but only for the consideration of the problem in
complex domain of ε. Let us demonstrate this
explicitly by an example. We choose ξ = (1 +
ı)/
√

2, then |ξ|2 = 1, ξ2 = ı and substituting the
last into eq. (4) we just do not obtain the ordinary
Bessel functions on ρ as solutions. The reason why
some authors did this mistake is that for complex
energies and with |ξ| the spatial behavior of the
solutions will be finite at infinity.

Further, we construct a solution of radial
scattering problem as in [5, 6], then we find radial
eigenfunctions on the semi-axis and discuss their
behavior. In all cases we need to match solutions
on the dot boundary ρ = 1 to provide continuity
property.

Let us to do this for the scattering case.
Then, we have to find a solution which behaves
as a scattering wave (oscillating and decaying as
ρ−

1
2 at infinity) in two dimensional space. For

such one, the only possible choice is the Bessel
function H2

m(ξρ) (with real ξ) [5], but as we
have already mentioned this is not true if ξ is
complex. In the last case all Bessel functions of
complex argument gain exponential component
due to imaginary part of the ξ, either growing or
decaying one. In fact, with this remark been done,
the so-called resonance condition [5] and concept
of quasi-bound state [5, 6] with complex values of
the energy should not be used.

Let us construct eigenfunctions of the
problem for real values of ξ. The condition of
finiteness of the solution in the origin requires
vanishing coefficient at function Ym(ξρ), that
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is c
(i)
2 = 0. Continuity of the radial spinor

eigenfunction at ρ = 1 leads to the following
relations for remaining inner domain coefficient
c
(i)
1 and outer domain ones c(o)1 , c(0)2

c
(i)
1 Jm−1/2(ε) = c

(o)
1 Jm−1/2(V0 − ε) + c

(o)
2 Ym+1/2(V0 − ε), (7)

c
(i)
1 Jm+1/2(ε) = c

(o)
1 (−Jm+1/2(V0 − ε)) + c

(o)
2 Ym+1/2(V0 − ε), (8)

where we took into account the different constant values for ξ inside and outside the quantum dot.
Due to linearity of the system (2),(3) the normalization of the solutions should be added in some

way, e.g., by putting one of the coefficient c(i)1 = 1. The latter does not lead to a finite norm of the
spinor wavefunction, but is one of possible choice. Then the determinant of the matching system reads

det(ε) = Jm+ 1
2
(V0 − ε)Ym− 1

2
(V0 − ε)− Jm− 1

2
(V0 − ε)Ym+ 1

2
(V0 − ε) (9)

and it is strictly non-zero in the interval ε ∈
[0, V0]. It also diverges at the right end of the
interval because Y function is divergent in the
origin.

Another variant emerges if one chooses the
following normalization condition: c(o)i = 1 either
for i = 1 or for i = 2 for outer region coefficients.
As for an incident wave of the original problem
one should use the plane wave exp{ıkx}, then the
known expansion with the Bessel functions [11]

exp{ıkr} =
∞∑

n=−∞
ınJn(kr) (10)

leads to a constant value of the expansion
coefficient for partial radial scattering problem
for a given m. This precisely corresponds to the
choice been done above.

Then, one finds that the system determinant

det(ε) = Jm+ 1
2
(ε)Ym− 1

2
(V0 − ε)

−Jm− 1
2
(ε)Ym+ 1

2
(V0 − ε) (11)

may possesses non-trivial real roots ε∗ so that
det(ε∗) = 0. As for example we demonstrate this
for the following parameters V0 = 5,m = 1/2 in
Fig. 1. It can be checked that the linear system
(7),(8) is inconsistent for this root.

The absence of the solution of the system
(7),(8) does not lead to paradox at ε∗, it simply
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FIG. 1: Energy dependence of the matching
system determinant for m = 1/2, V0 = 5.

means that the term with the coefficient c
(i)
1

which we put to unity, is negligible in respect
to the rest ones. This can be understood from
the consideration when ε is in the vicinity of
the point ε∗. Indeed, one component of the
outer region solution with the Bessel function J
turned out to be very small on the respect to all
other components, whereas the large components
diverge at ε → ε∗. It means that the original
choice of the normalization condition was poor.

In [12] it has been shown that the same
situation of system’s inconsistency takes place for
the scattering case for ε = ε∗ and for complex
values for the energy. In the vicinity of such a
point the coefficients are high but finite. As it
was already mentioned, for complex energy values
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at least one term in the outer region solution
diverges at ρ → ∞ due to properties of the
Bessel functions that breaks the construction of
the quasi-bound state in the considered case.

Now, we switch to BGQD and demonstrate
that in the vicinity of real valued ε∗ a whole band
of states looking like a quasi-bound ones appears.

3. Bilayer GQD

The Hamilton operator in two component
wave function approximation reads [5, 10]

Ĥ =
1

2

(
V (~r) p̂2−
p̂2+ V (~r)

)
(12)

where the operators p̂± are given by the relation
p̂− = −i ∂∂x −

∂
∂y , p̂+ = −i ∂∂x + ∂

∂y , the scalar
potential V (~r) is of the same form as for MGQD.

Eigenproblem for a spinor function (A,B)
leads to the system

(V (r)− E)A(x, y) =
1

2
p̂2−B(x, y), (13)

(V (r)− E)B(x, y) =
1

2
p̂2+A(x, y), (14)

that can be transform into an equation for a single
function e.g., A as

1

4
p̂2+p̂

2
−A = (V (r)− E)2A (15)

In a similar manner as for the MGQD, the
eigenproblem is separable in polar coordinates.
After variable separation of the following form:
A = a(r) exp(ımφ) and B = b(r) exp(ı(m+ 2)φ),
the 4th-order differential equation for a single
function a(r) reads [5]

[
1

2

d2

dρ2
+

1

2ρ

d

dρ
+

(
ξ − m2

ρ2

)][
1

2

d2

dρ2
+

1

2ρ

d

dρ
+

(
−ξ − m2

ρ2

)]
a(ρ) = 0 (16)

with the same designation of locally constant ξ as
for MGQD in the internal and outer regions.

The most interesting feature of eq. (16)
is that the two operators representing content
of every square bracket commute and every of
them separately admits the Bessel functions as
its eigenfunctions. For the left operator these
are ordinary Bessel functions Jm(κρ), Ym(κρ),
for the right one the appropriate eigenfunctions
are the Bessel functions of imaginary argument
Im(κρ),Km(κρ) with κ =

√
2ξ. We also will use

and additional prime for the κ constant in the
outer region. A linear combination of all these four
functions is the general solution of the problem,
so that the eigenfunctions both for a(r) and b(r)
are expressed through them. To construct an
eigenstate we have to match the eigenfunctions
and their derivatives at the dot boundary ρ = 1.
One more aspect should be taken into account

is that in both regions we have to discard some
functions which have singular behavior therein
provided working with real energies. Then for the
interior region (ρ < 1) of the dot we discard
the Bessel functions Ym, Im as singular ones in
the origin and arrive to the following form of the
eigenstate inside the dot

a(ρ) = c1Jm(κρ) + c2Im(κρ), (17)
b(ρ) = c1Jm+2(κρ) + c2Im+2(κρ). (18)

The formula for b has been obtained from the
system (13),(14) after the substitution of eq. (17)
into eq. (14).

With above mention arguments, for the
outer region with r ≥ 1 we omit the only one
Bessel function Im+2 as singular at infinity and
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arrive at the following form for the eigenstate

a(ρ) = C1Jm(κ′ρ) + C2Ym(κ′ρ), (19)
b(ρ) = sign(ε− V0)(C1Jm+2(κ

′ρ),

C2 + Ym+2(κ
′ρ) + C3Km+2(κ

′ρ) (20)

where the sign function is introduced in the

second equation of the system.
Both eigenfunctions and their derivatives

should be continuous on the dot’s boundary.
Therefore, there exist the following four matching
conditions for the coefficients c1, c2, C2, C3 (we
again put the coefficient at Ym to unity as
normalization for outer region):

c1Jm(κ) + c2Im(κ)− C2Ym(κ′)− C3Km(κ′)− Jm(κ′) = 0, (21)
1

2
c1κ(Jm−1(κ)− Jm+1(κ)) +

1

2
c2κ(Im−1(κ) + Im+1(κ))− 1

2
C2κ

′(Ym−1(κ
′)− Ym+1(κ

′)) (22)

−1

2
C3κ

′(−Km−1(k
′)−Km+1(κ

′))− 1

2
κ′(Jm−1(κ

′)− Jm+1(κ
′)) = 0,

c1Jm+2(κ) + c2Im+2(κ) + sign(E − V0)(C2Ym+2(κ
′) + C3Km(κ′) + Jm+2(κ

′)) = 0, (23)
1

2
c1κ(Jm+1(κ)− Jm+3(κ)) +

1

2
c2κ(Im+1(κ) + Im+3(κ)) + sign(E − V0)

(
1

2
C2κ

′ (24)

×(Ym+1(κ
′)− Ym+3(κ

′)) +
1

2
C3κ

′(−Km−1(κ
′)−Km+1(κ

′)) +
1

2
κ′(Jm+1(κ

′)− Jm+3(κ
′))

)
= 0.

In the monolayer GQD case, we were
interested in the condition of vanishing
determinant of the matching system. This is
assumed as a condition of the existence of quasi-
bound states. This can be done for the system
under investigation step by step for definite
values of m, V0 numerically. Let us do it for
m = 0, V0 = 1. In Fig. 2, we demonstrate the
dependence of the matching system determinant
upon the energy. As one can see, the root is at
ε∗ = 0.87.

It turns out that as for the monolayer GQD
case, the matching system is also inconsistent
in the point ε∗, that there is no solution at all.
Now we try to look at the solution behavior near
the root, e.g., let us define the deviation δε from
the root ε∗. Then we expand the system (21-24)
into a series on δε near the point ε∗, keep only
linear terms. In this way, we find for c1, c2, C2, C3
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FIG. 2: Energy dependence of the matching
system determinant for m = 0, V0 = 5.

divergent at δε→ 0 formula of the form

c1 = 0.8169δε2+0.2367δε+0.01245
δε2+0.02751δε

(25)

c2 =
0.3993(0.1637δε2+0.0091δε+0.00017)

(δε+0.07022)(δε2+0.02751δε)
(26)

C2 =
(0.0011δε2+0.000024de+1.6886×10−7)

0.000377δε2+3.731×10−6δε
(27)

C3 = 0.25432δε2+0.0264951δε+0.0007
0.0977δε2+0.0019δε

(28)

Let us demonstrate eigenfunction for some
value of δε. In Fig. 3 the radial dependence of the
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FIG. 3: Spinor eigenfunction (A(ρ), B(ρ) for the energy e = e∗ + de, de = 1.0× 10−6, m = 1, V0 = 1.

spinor components of eigenfunction is shown for
m = 1, V0 = 1. It is clear that the eigenstate does
not have a finite norm and belong to continuous
spectrum, as Bessel functions J, Y oscillate but
do not decrease quickly enough at infinity. But
as one can see in the Fig. 3, inside the quantum
dot and up to ten of its radius the eigenfunction
module is enormous due to c1 in the inner region
and C3 outside the dot. The component with K
Bessel function can be viewed as some sort of
the bound state (with a finite norm). In fact, all
near region to ε∗ will demonstrate such a behavior
of the eigenstates that can be interpreted as “a
resonance band” rather than a single quasi-bound
state level.

One could suppose that it is possible to
construct a real bound state using the only K
component in the outer region of the dot. But
this it is not possible because one has to request
the continuity properties not only for the spinor
function but for its derivative as well. And the
last lead to more conditions than can be satisfied
even when one try to include system’s parameters
(e.g. V0) as variables to be adjusted.

4. Discussion and conclusion

Let us summarize our findings. For the
MGQD, complex value of the energy always leads
to divergent behavior of at least one of radial
eigenfunctions at large distances that spoils the
concept of quasi-bound states introduced for this
system in some earlier publications. The energy
value for which the determinant of the matching
system vanishes for real energies that can take
place when one fixes the value of an incident radial
wave function amplitude, leads to inconsistent
matching system in this point. But this does
not give serious problems as simply means a
poor choice of the normalization condition. In
the vicinity of this point one observes regular
scattering with no resonant effects revealed.

For the BGQD, the presence of the
Bessel function of imaginary argument K with
exponentially decaying behavior at infinity among
solutions leads to a new quasi-resonant band of
states near real energy values corresponding the
condition of the vanishing determinant of the
matching linear system. Whereas at the strict zero
value of the determinant, the matching system is
inconsistent, near to this point, the eigensolutions
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may gain giant contribution of the K function to
the wavefunction. As a result one observes the
behavior very similar to a bound states with the
density concentrated within a distance of several
dot radii.
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