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ABSTRACT
In this work, SbxSy thin films were grown on glass substrates for the first time 
using the chemical molecular beam deposition method in the atmospheric pres-
sure hydrogen flow. The structural, morphological and optical properties of SbxSy 
thin films grown at different substrate temperatures of 300 °C, 350 °C, 400 °C 
and 450 °C were studied. XRD results showed that the SbxSy thin films grown at 
different substrate temperatures have an orthorhombic crystal structure. Phase 
analysis indicated a weakening of Sb-S bonds with increasing substrate tem-
perature. Also, the grain sizes of all obtained thin films ranged from 0.5 to 3 µm. 
The increase in temperature caused the grains to grow and the spaces between 
them to increase. Optical experiments reveal that as the substrate temperature 
increases, the optical band gap energy of the films increases from 1.52 eV to 
1.73 eV, as well as an increase in the Urbach energy from 0.11 eV to 0.44 eV. The 
experimental values of the band gap for Sb2S3 films are near the optimum value 
for photovoltaic conversion.

1 Introduction

Metal chalcogenides, including CdTe, Cu(In,Ga)Se2 
(CIGS) as well as MAPI perovskite thin films, have 
achieved relatively high efficiency as light harvesting 
materials due to their high absorption coefficients and 
excellent optoelectronic properties. However, the scar-
city and high cost of Te, In, and Ga, and the toxicity of 

Cd and Pb elements may prevent long-term large-scale 
implementation of PV technologies [1–3]. Hence, sci-
entists worldwide are researching new types of benign 
and abundant elements in the Earth’s crust instead of 
these materials. Scientists are showing great interest in 
the elements antimony (Sb), selenium (Se), and sulfur 
(S) as materials that meet the aforementioned criteria.
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heating furnaces for the Sb2S3 binary compound were 
activated and brought to the required evaporation 
temperatures. The evaporation process for the Sb2S3 
granules was carried out within the temperature range 
of 650–700 °C, while the substrate temperature ranged 
from 300 °C to 450 °C. The hydrogen carrier gas flow 
was ~ 20 cm3/min.

At the Sb2S3 evaporation temperatures of 
650–700 °C, granules transfer into the vapour phase 
and dissociates to Sb and S2:

S2 (g) reacts with hydrogen, and hydrogen sulfide 
is formed [18]:
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Currently, a lot of research has been done on the 
thin film of Sb2X3 (X = Se,S), which is used as an 
absorbing in various studies. One of the main reasons 
for this is its competitive physical properties [4–8]. 
Sb2X3-thin films were grown by several methods 
(vapor transport deposition, close spaced sublima-
tion, chemical bath deposition, sputtering and etc.) 
[9–13]. The primary goal of the ongoing research is 
to optimize the physical properties of Sb2X3 thin films 
and obtain a solar cell with high efficiency.The qual-
ity of the obtained films depends on their structural, 
morphological and optical properties. The crystal ori-
entation of Sb2S3 thin films plays a crucial role in the 
performance of the solar cells as it provides valuable 
information about the charge carrier transport and the 
formation of useful grain boundaries [14]. A thin film 
of Sb2X3 can crystallize during growth in horizontal 
(hkl, l = 0) or vertical (hkl, l ≠ 0) directions, depending 
on the type and temperature of the substrate. The ver-
tical crystallization of Sb2S3 ribbons along the c-axis 
to the substrate is considered useful for the transport 
of charge carriers through the absorber film [14, 15].

Recently, we have discussed fabrication of SbxSey 
films by chemical molecular beam deposition (CMBD) 
method in the atmospheric pressure gas flow from Sb 
and Se precursors [16] and their characteristics [17].

Fabrication of thin films Sb2S3 by CMBD (Fig. 1) 
in the atmospheric pressure hydrogen flow and their 
characterizations are discussed in this paper.

2 �Experiments

2.1 �Synthesis of Sb2S3

The process involved utilizing semiconductor-grade 
granules of Sb2S3 (purity: 99.999%), sourced from 
Chemsavers (USA), as the initial material. These gran-
ules were then placed into containers, and the system 
was activated and purged with hydrogen to eliminate 
atmospheric polluting gases. Soda-lime glasses (SLG) 
were used as substrates. The SLG substrates under-
went a cleaning process involving detergent, acetone, 
ethanol, and deionized water in an ultrasonic bath, 
followed by drying with a stream of N2 gas. Conse-
quently, the outer oven of the reaction chamber was 
activated. The heating level is determined by the set 
deposition temperatures, which are controlled by 
chromel–alumel thermocouples. When the substrate 
reached the required temperature level, individual 

Fig. 1   Scheme of CMBD device. 1. Substate 2. Thermocou-
ples 3. External heater 4.  Source material 5. Reaction chamber 
6. Reactor 7. Source heater 8. Thermocouples 9. Gas inlet and 
outlet
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Sb and S atoms and H2S molecules cover the surface 
of the substrate, and Sb2S3 films are formed as a con-
sequence of their interaction:

The deposition process was carried out for 30 min-
utes. Four samples were used for each experiment, 
and the dimensions of the samples were 2.0 × 2.0 cm2. 
The deposited samples were replicated 5 times (20 
samples) at each substrate temperature. The morpho-
logical characteristics (average grain size), structural 
features (main crystallographic growth orientations), 
and optoelectronic properties (band gap, Urbach 
energy) of the samples within each group exhibited 
nearly indistinguishable similarities. In this way, high-
quality Sb2S3 films were obtained at various substrate 
temperatures.

2.2 �Films characterization

The elemental (chemical) composition of the synthe-
sized Sb2S3 films was determined by X-ray spectral 
microanalysis (XMA) using an energy-dispersive 
nitrogen-free spectrometer Aztec Energy Advanced 
X-Max 80. Surface morphology features were exam-
ined using scanning electron microscopy (SEM) with 
an electron microscope LEO1455VP in secondary 
electrons mode. Surface topography analysis was con-
ducted using a SOLVER NANO atomic force micro-
scope (AFM), employing semi-contact mode scanning 
with a probe featuring a tip radius of 10 nm at a reso-
nant frequency of 178 kHz.

Using a high-resolution diffractometer Rigaku 
Ultima IV in the geometry of a sliding beam, diffrac-
tion patterns were captured within the angle range 
2θ = 10–60° using CuKα radiation with a wavelength 
of 0.15418 nm. Raman spectra were measured at room 
temperature on a Nanofinder HE confocal spectrom-
eter (LOTIS TII). A solid-state laser with a wavelength 
of 532 nm was used; laser radiation with a power of 
60 μW was focused on the surface of the samples into 
an area with a diameter of about 0.7 μm. The signal 
accumulation time was 30–60 s. The spectral resolution 
was no worse than 2.5 cм−1. Specular optical reflec-
tion and transmission spectra were recorded with a 
spectral resolution of no worse than 5 nm in the wave-
length range 400 ÷ 3000 nm in unpolarized light using 
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a Photon RT multifunctional scanning spectrophotom-
eter (EssentOptics). The optical radiation beam size 
on the sample surface measured approximately 2 × 6 
mm2.

The thickness of the deposited films was deter-
mined using micro weighing on an FA 120 4C balance 
(with an accuracy of 0.1 mg) and was about ~ 2 μm.

3 �Results and discussion

Figure 2 shows XRD images of Sb2S3 thin films grown 
at various substrate temperatures (300 °C, 350 °C, 
400  °C and 450  °C). At all substrate temperatures 
(except 450 °C), the XRD analysis revealed distinct 
peaks corresponding to horizontal growth directions 
such as (020), (120), (130), (240), and (211), (221), (301) 
which is favorable for solar cells [19, 20] indicating 
its orthorhombic structure as per JCPDS pdf 00–006-
0474. Additionally, peaks corresponding to Sb were 
observed at (012), (104), and (110) planes in the Sb2S3 
thin films, consistent with JCPDS pdf 01–085-1322, 
across all substrate temperatures. Notably, at the 
highest substrate temperature of 450 °C, the intensity 
of Sb2S3 peaks notably diminished, particularly (020), 
(120), (130), (211), (221), and (501). While the intensity 
of peaks corresponding to Sb, such as (012), (110) and 
(202), remained with notable portion between 400 °C 
and 450 °C. This observation suggests that excessively 
high substrate temperatures are unfavorable for Sb2S3 
thin film formation. The consistent presence of Sb 
peaks in all samples indicates a high proportion of Sb 
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Fig. 2   XRD patterns of SbxSy thin films at different substrate 
temperatures
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within the Sb2S3 thin film composition. Peaks such as 
(211) and (221), which exhibit better electrophysical 
properties in thin layers, reached a maximum value 
at a substrate temperature of 350 °C, and the intensity 
of these peaks showed relatively low values at other 
substrate temperatures.

For SbxSy thin films, phase analysis was carried out 
in order to check the bonding of Sb with S. (Fig. 3). 
Raman spectroscopy analysis showed that intensity 
peaks at 110 cm−1, 150 cm−1, 237 cm−1, 280 cm−1, and 
310 cm−1 are present in all Sb2S3 thin films. This con-
firms that the main lattice structure is preserved in the 
grown samples. It can be seen from the figure that the 
intensity of the 280 cm−1 and 310 cm−1 peaks increases 
with the decrease of the substrate temperature. These 
peak values correspond to Sb-S vibration phases [21]. 
The intense peak at 237 cm−1 is almost unchanged with 
the change of the substrate temperature. The band at 
237 cm−1 corresponds to symmetric S-Sb-S bending 

modes [22, 23]. Intense peaks at 110 cm−1 and 150 cm−1 
indicate the presence of Sb-Sb phases in thin films [24]. 
In addition, there are several intense peaks at 80, 189, 
372, 252, and 450 cm−1 in Sb2S3 thin films, and these 
peaks correspond to Sb2O3 phases [25]. It can be seen 
that peaks at 80, 252, 372 and 450 cm−1, which were 
not detected in the other films, appeared at the sub-
strate temperature of Tsub = 300 °C. The intensity of 
72 cm−1 peak, corresponding to the Sb2O4 phase [26], 
decreased with the increase of substrate temperature.

Morphological properties of SbxSy thin films grown 
by CMBD method were studied using scanning elec-
tron microscopy (SEM) and atomic force microscopy 
(AFM) (Figs. 4 and 5). SEM micrographs (Fig. 4) show 
that SbxSy thin films have a microcrystalline structure, 
which appearance depends on the substrate tempera-
ture. SbxSy thin films prepared at substrate temper-
atures of 300 °C and 350 °C have a much smoother 
surface. SbxSy films are cylindrical in shape with a 
length of 1–2 μm and a diameter of 500 nm. Some of 
the grains coalesced to form 2–3 µm large grains. Such 
associations were also observed in samples obtained 
by the vapor transport deposition (VTD) method [27]. 
The most uniform structure with a crystallite size of 
about 1 µm have films, grown with a substrate tem-
perature of 350 oC. The crystallites have a columnar, 
close to cylindrical shape. An increasing of the sub-
strate temperature leads to the appearance of some 
large crystallites, which quantity and size increase 
with increasing the substrate temperature [28]. At a 
temperature of 450 °C, the crystallite maximum size 
reached 3 microns, the gaps between them have grown 
significantly. At the same time, as the substrate tem-
perature increased, the proportion of crystallites with 
minimal dimensions decreased (Table 1).

As can be seen from the table, at a temperature 
of 350 °C, the asymmetry and kurtosis reach maxi-
mum values, which correlates with a change in 
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Fig. 3   Raman spectra of SbxSy thin films at different substrate 
temperatures

Fig. 4   Surface morphology of SbxSy thin films at different substrate temperatures
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the morphology of the surface shown in the SEM 
images. At a temperature of 350 °C, the surface with 
the largest number of peaks is formed. However, for 
all films have Sku > 3, which indicates the formation 
at all substrate temperatures the surfaces with a lot 
of peaks.

Optical transmission (T) and reflection (R) spectra of 
Sb2S3 films deposited at Tsub = 350 °C and Tsub = 400 °C 
shown in Fig. 6. Using the optical transmission and 
reflection data, the absorption coefficient (α) of the 
films was determined by the following equation:

where d is the thickness of the films. Thickness of the 
films were around 2 μm.

For a direct- allowed transitions, bandgap of Sb2S3 
thin films can be determined by extracting the Tauc 
fitting, as shown in Fig. 6(c):

where hν is the incident photon energy and A is a 
constant. The band gap ranged from 1.52 to 1.73 eV 
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depending on the substrate temperature. The opti-
cal band gap energy of Sb2S3 thin films increases 
as the substrate temperature increases, which may 
be attributed to the difference in morphology and 
crystallinity of the obtained samples [29, 30]. The 
obtained band gap values indicate that the synthe-
sized Sb2S3 films may be very promising for applica-
tions in solar energy and optoelectronics [31].

To study the structural disorder of SbxSy films, the 
Urbach energy (EU) was also calculated. The value of 
EU indicates the level of crystallinity and structural 
defects present in the films. In the low photon energy 
range, an exponential variation in the absorption edge 
followed the Urbach empirical equation:

where α0 is a constant. The value of EU can be obtained 
from the inverse slope of the linear plot of ln(α) vs 
hν as shown in Fig. 6d. The values of the Urbach EU 
energy increase from 0.11 eV to 0.44 eV as the sub-
strate temperature increases. A low EU value indicates 
a sufficiently low defect rate of the films.

4 �Conclusion

The effect of substrate temperature on the structural, 
morphological, and optical properties of SbxSy thin 
films grown by the CMBD method was studied. 
The XRD analysis revealed an orthorhombic crystal 
structure for the films grown at different substrate 
temperatures. At a substrate temperature of 350 °C, 
the peaks of the preferred orientations (211) and 
(221) showed better value than other samples. Raman 
spectroscopy confirmed the preservation of the main 

(6)� = �
0
exp

[
h�

E
U

]
,

Fig. 5   2D topography obtained on an AFM of the surface of SbxSy thin films at different substrate temperatures

Table 1   Surface roughness parameters of SbxSy thin films at dif-
ferent substrate temperatures

Tsub, ºC 300 350 400 450

Average roughness Sa, μm 0.25 0.32 0.73 0.77
RMS roughness Sq, μm 0.32 0.42 0.91 0.97
Skewness Ssk 0.86 0.91 0.74 0.52
Kurtosis Sku 4.37 4.82 3.25 3.20
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lattice structure across all samples, with variations in 
peak intensities attributed to Sb-S vibration phases 
and symmetric S-Sb-S bending modes. The weaken-
ing of Sb-S bonds with increasing substrate tempera-
ture was observed. SEM and AFM analysis provided 
insights into the morphological properties, reveal-
ing changes in grain size and surface roughness 
with increasing substrate temperature. The surfaces 
of thin films obtained at the substrate temperature 
of 350 °C were compact and had the best uniform-
ity. Additionally, optical characterization indicated 
an increase in the band gap energy with increasing 
temperature. Overall, these findings contribute to 
our understanding of the growth parameters influ-
encing the properties of SbxSy thin films and provide 
valuable insights for optimizing their performance in 
various applications.
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