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Abstract
We recall that a consistent description of the Thomas precession and Thomas–Wigner rotation is impossible without in-

troducing a “tracking rule” into the structure of the special theory of relativity (STR), as we have shown in our publications
(A.L. Kholmetskii and T. Yarman. Eur. Phys. J. Plus 132, 400 (2017); A.L. Kholmetskii, O.V. Missevitch, T. Yarman, and M. Arik.
Europhys. Lett. 129, 3006 (2020)). The purely phenomenological origin of this rule in the framework of STR allows assuming
the existence of a more general theory of empty space–time than STR, where the “tracking rule” is intrinsically incorporated
into its structure. We find a possible way of developing such a generalized theory of empty space–time, where the “tracking
rule” naturally arises, and propose an experimental scheme for its verification.
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1. Introduction
As is known, the Thomas precession of the electron spin

has been introduced in ref. [1] in the framework of the semi-
classical model of a hydrogenlike atom to explain the emer-
gence of the multiplier ½ (“Thomas half”) in the expression
for the spin–orbit interaction in atoms. Historically, it played
an important role in the validation of the entire hypothesis
on the electron spin [2].

Later, the problem of spin–orbit interaction in the hydro-
genlike atoms was successfully solved through the quantum
electron theory of Dirac [3], which though did not diminish
the significance of the Thomas precession, especially in its
applications to macro-scale phenomena (see, e.g., [4–6]).

Since that time, numerous papers and books have been
published on the Thomas precession and its implications,
both on the micro- and macro-scales, and an extended review
of these works can be found, e.g., in ref. [7].

Recently, we have analyzed some important features of the
Thomas–Wigner rotation and Thomas precession [8–14] and,
in particular, emphasized [12] that the known expression for
the frequency of Thomas precession ωT of the axis of a point-
like gyroscope (e.g., the spin of a classical electron), given as

ωT =
(

1 − 1
γ

)
v × v̇

v2
(1)

is valid only if the velocity v of the co-moving electron’s frame
Ke in the laboratory frame K corresponds to the rotation-free
Lorentz transformation between K and Ke at any time mo-
ment. Here v̇ stands for the acceleration of the electron, and
γ is its Lorentz factor, defined in the frame K. Otherwise, the

Lorentz transformation of the frequency (1) between differ-
ent inertial observers is not fulfilled.

What is more, we concluded that a relativistically consis-
tent description of the Thomas precession is possible only in
the case when the rotation-free Lorentz transformation set-
ting between the laboratory frame K and the co-moving elec-
tron’s frame Ke(t) at an initial time moment t = 0 is preserved
at any t > 0 during the subsequent motion of the electron
along any curved path.

This “tracking rule” [13], in particular, means that for an
electron moving along a curvilinear trajectory and associ-
ated with its proper frames Ke(t) and Ke(t + dt) at the consid-
ered time moments t and t + dt, respectively, the frequency
of the Thomas precession of its spin should be calculated
through a sequence of Lorentz transformations K→Ke(t),
K→Ke(t + dt), but not through a set of subsequent transfor-
mations K→Ke(t)→Ke(t + dt), as, for example, was adopted in
the historical paper by Thomas [1] and some other familiar
papers and books (see, e.g., [15]).

For the convenience of the readers, in Section 2, we refer to
the “tracking rule” [12, 13] and emphasize that its introduc-
tion into STR on a phenomenological basis does, in general,
contradict the common opinion about STR as the most fun-
damental physics theory.

Indeed, the establishment of the “tracking rule” in the de-
termination of the frequency of Thomas precession [13] sig-
nifies the existence of a more fundamental theory of empty
space–time than STR, where this rule, being introduced into
STR as a phenomenological one, should logically follow from
the basic points of this general theory.

In Section 3, we explore the ways to develop such a gen-
eralized theory named “Manifested relativity theory” (MRT),
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which, like STR, completely agrees with all experimental data
collected up to date in the physics of empty space–time; at
the same time, it always ensures the Lorentz transformation
for the frequency of Thomas precession between different in-
ertial observers and naturally explains the physical origin of
the “tracking rule”.

In Section 4, we discuss the principal implications of MRT
and propose the principal scheme for its experimental test.
Finally, we conclude in Section 5.

2. Thomas–Wigner rotation and the
“tracking rule”

The “tracking rule” has been found in ref. [13] when an-
alyzing the well-known configuration historically used in
the derivation of the Thomas precession [1], where a semi-
classical electron e with spin s orbits around an immovable
heavy nucleus with charge Ze. For this configuration, Thomas
pointed out that successive Lorentz transformations from the
rest frame of the nucleus K to the frame Ke(t) co-moving with
the electron at the considered moment t and then from Ke(t)
to Ke(t + dt) entail a spatial rotation of the coordinate axes of
the system Ke(t + dt) with respect to the system K (later called
the Thomas–Wigner rotation). The time derivative of this an-
gle yields a frequency equal to half the frequency of the Lar-
mor precession ωL of the electron’s spin. Therefore, the mea-
sured spin–orbit interval in the hydrogen atom should be
twice smaller than the value associated with the frequency
of the Larmor precession of the electron spin, in full agree-
ment with the experimental data.

Here, we especially point out that Thomas [1] used a se-
quence of rotation-free transformations K→Ke(t)→Ke(t + dt).
At the same time, in some other publications (e.g., in the
textbook [16]), the Thomas precession is analyzed in another
situation, where the rotation-free Lorentz transformations
are applied according to the scheme K→Ke(t), K→Ke(t + dt),
where the frames Ke(t) and Ke(t + dt) are no longer related
by the rotation-free Lorentz transformation, unlike the adop-
tion by Thomas [1].

This finding motivated us to analyze the available publica-
tions on the Thomas precession, which can indeed be divided
into two groups:

– the first group, where, following Thomas, a sequence of
rotation-free Lorentz transformations K→Ke(t)→Ke(t + dt)
is applied, which corresponds to the Thomas–Wigner rota-
tion between the systems K and Ke(t + dt) (see, e.g., refs. 1,
2, 5, 21, 23–26 of [13]); and

– the second group, where another sequence of rotation-free
Lorentz transformations K→Ke(t), K→Ke(t + dt) is adopted,
which corresponds to the Thomas–Wigner rotation be-
tween the systems Ke(t) and Ke(t + dt) (e.g., refs. 22, 27–29
of [13]).

One should note that none of the authors of both groups
of publications presented any comments with respect to the
choice of the applied sequence of Lorentz transformations;
the absence of such comments can perhaps be explained by

the same value of the frequency of Thomas precession for
both sequences of transformations, as seen by a laboratory
observer.

However, for an inertial observer instantaneously co-
moving with the electron, the calculated precession fre-
quency of the electron’s spin occurs to be sensitive to the
choice of the sequences of Lorentz transformations men-
tioned above.

In particular, one can see that at the choice by Thomas,
corresponding to the sequence of rotation-free Lorentz trans-
formations K→Ke(t)→Ke(t + dt), an observer in Ke(t) sees a
fixed spatial orientation of the axes of the frame Ke(t + dt)
at any t and measures the ordinary Larmor precession of the
electron spin. Simultaneously, an observer in Ke(t + dt) sees
the rotation of the axes of the laboratory frame K at half of
the Larmor frequency and, hence, from his viewpoint, the
decrease of the frequency of the Thomas precession of the
electron spin by two times in the laboratory frame K rep-
resents an apparent effect for a laboratory observer, result-
ing from the precession of the coordinate axes of his frame
K [13].

It is obvious that this explanation is wrong from a physi-
cal viewpoint, since “the Thomas half” in the expression for
the precession of the electron’s spin is measured just in the
laboratory frame.

In contrast, with an alternative choice of successive trans-
formations K→Ke(t), K→Ke(t + dt), an observer in the elec-
tron’s co-moving frame Ke(t) sees a fixed spatial orientation
of the axes of the laboratory frame K0 and a spatial rotation of
the axes of the frame Ke(t + dt) at half the Larmor frequency
of the electron spin, so that both observers in the laboratory
frame K and in the frame Ke(t) do agree with respect to the
value of the frequency of rotation of the electron spin, which
is twice smaller than the Larmor frequency [13].

Thus, we conclude that only the choice of successive trans-
formations K→Ke(t), K→Ke(t + dt) according to the “track-
ing rule” provides a physically consistent explanation of the
Thomas precession both in the laboratory frame K and in the
electron’s co-moving frame Ke(t).

Moreover, we have shown [13] that the “tracking rule” has
a general character and emphasized its application to the
Bargmann–Michel–Telegdi equation [17], where it represents
a necessary condition for a consistent description of a parti-
cle with spin, no matter that this fact was not emphasized by
the authors of [17].

Next, it is important to indicate an important implication
of the “tracking rule”, which, in fact, requires that the ve-
locity v in the expression for the frequency of Thomas pre-
cession (1) should always be associated with the rotation-
free Lorentz transformation. As we have shown in ref.
[12], this simultaneously represents the necessary and suf-
ficient condition to fulfill a relativistic transformation of
the Thomas precession frequency between different inertial
frames.

Here we notice a recent comment by Lambere [18] on our
paper [13], where the author argued against the “tracking
rule” and claimed that both alternative sequences of the
Lorentz transformation K0→Ke(t)→Ke(t + dt) and K0→Ke(t),
K0→Ke(t + dt) are equally applicable to the analysis of Thomas
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precession. Furthermore, Lambere also argued against our
assertion that the velocity v in the expression for the fre-
quency of Thomas precession (1) should always be associated
with a rotation-free Lorentz transformation, which, in fact, is
closely related to the “tracking rule”.

However, in our Reply [19] to the Comment [18], we have
shown that the claim by Lambare against the unique appli-
cation of the “tracking rule” contains errors related to his ig-
norance of the difference between the rest (non-inertial) elec-
tron frame Ke and the set of inertial frames Ke(t) co-moving
with the electron at different time moments t. In addition, we
have shown that the argumentation by Lambare against our
assertion that the velocity v in eq. (1) is always associated with
a rotation-free transformation is also erroneous, because in
his consideration of successive Lorentz transformations be-
tween three inertial reference frames with non-collinear rela-
tive velocities, Lambare ignored the Thomas–Wigner rotation
of their coordinate axes [18], which made his conclusions er-
roneous.

Moreover, now we highlight the general character of the
“tracking rule”, which is applicable not only to the motional
equation of the electron spin but also to any macroscopic gy-
roscopes. In this respect, we indicated [13] the possibility of
developing new astrophysics methods based on the “tracking
rule”, which could determine the most fundamental modes
of the motion of the Earth in the universe.

It is even more important that the “tracking rule” asserts
that, in general, we are no longer free to set a sequence of
rotation-free Lorentz transformations between different in-
ertial frames according to our arbitrary choice, as was com-
monly implied. Namely, dealing with two inertial frames K1

and K2 and establishing the Lorentz transformation between
them,1 we have, in general, to address the pre-history of their
motion in the past, to judge the possibility of applying (or not
applying) the rotation-free Lorentz transformation between
them, and, correspondingly, to calculate the Thomas preces-
sion frequency of any gyroscope located in K2.

This obviously falls outside the facilities of the standard
mathematical apparatus of STR and indicates the possible ex-
istence of a more general theory than STR, where the “track-
ing rule” is naturally incorporated into its structure.

It seems that the explicit formulation of this problem,
which we approached in our previous publications [8, 9, 12,
13], has never been done in the scientific literature before,
and the challenge of the possible existence of a more gen-
eral theory than STR——where the “tracking rule” would be
explained——looks indeed inspiring.

Such a generalized theory, like STR, should be based on
the same general properties of homogeneity and isotropy of
empty space–time and agree with all experimental facts col-
lected to date in the physics of empty space–time. At the same

1 Hereinafter, speaking about the possibility to establish rotation-
free Lorentz transformations between two inertial reference
frames, we always imply the case of non-collinear velocities of K1

and K2 in the frame of observation K0 and, by default, exclude the
trivial case of collinear velocities of K1 and K2 in K0, where special
Lorentz transformations commutate with each other and do not
include additional spatial rotation.

time, its wider framework should provide an unambiguous
explanation of the “tracking rule”. A way to construct such a
general theory is presented in the next section.

3. Generalization of postulative basis of
STR in the “manifested relativity
theory”

As is well known, the postulates of STR directly lead to the
Minkowskian metric of empty space–time, and now we high-
light the exclusive property of the Minkowskian geometry,
where we can always achieve the coincidence of any mea-
sured values with their true (“physical”) magnitudes using op-
timal measurement procedures, which should satisfy the re-
quirements of definiteness, reversibility, and transitivity (see,
e.g., [20]). As is also well known, Einstein and other relativists
often used this property of Minkowskian geometry in expla-
nation of familiar relativistic effects in different inertial ref-
erence frames, and, in fact, the adopted identity of “physical”
and “measured” four-vectors in any inertial reference frame
can also be considered as the basic postulate of STR.

In view of this property of the Minkowskian geometry, it
becomes clear that any generalization of STR in the frame-
work of the principle of general covariance should go beyond
the above postulate, where we can admit that even in empty
space–time, for an observer in an arbitrary inertial frame,
“physical” and “measured” values may differ from each other
and obey different space–time transformations.

At the same time, to ensure the compatibility of such
a generalized theory with all the available experimental
facts collected to date in the physics of empty space–time,
one should construct this generalized theory in such a way
where the measured space–time coordinates and their func-
tions are always subject to Lorentz transformations in empty
space–time, regardless of the choice of transformations in
the empty physical space–time, which thus becomes non-
observable.

In such a case, a crucial question arises: can we prescribe
real meaning to such physical space–time in an arbitrary in-
ertial reference frame, even if it cannot be directly accessed?

The general answer to this question, which will be sub-
stantiated below, is as follows: even under the impossibility
to directly measure the physical space–time four-vectors, the
recognition of their existence eliminates any arbitrariness in
the choice of sequence of rotation-free Lorentz transforma-
tions between different inertial frames. Moreover, as we will
show below, a negation of the postulate of STR about the iden-
tity of physical and measured values and the adoption of spe-
cial properties for the physical space–time can provide unam-
biguous rules with regard to the order of implementation of
successive Lorentz transformations for measured space–time
four-vectors between arbitrary inertial reference frames.

Before clarifying these points, we have, first of all, to solve
a purely technical problem and determine special properties of
the empty physical space–time, which ensure Lorentz transforms for
the measured space–time four-vectors.

In mathematical language, this problem can be formulated
as follows.
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Consider an arbitrary inertial frame, where we suppose
that the empty physical space–time, which is characterized
by the metric tensor gμν (μ,ν = 0…3), does differ, in general,
from Minkowskian space–time, and the expression for the
space–time interval generally reads as

ds2 = gμνdxph
μdxph

ν (2)

where xph
μ is a physical four-vector. We also assume that the

physical four-vectors belong to a set of “admissible”, where
the known inequalities

g00 > 0, gαβdxαdxβ < 0 (α = 1, 2, 3) (3)

are fulfilled. As is known, inequalities (3) mean that the frame
of observation is realizable in nature [15].

Next, we demand that the empty physical space–time sat-
isfy the principles of homogeneity and isotropy. The isotropy
principle, in particular, means the existence of at least one
inertial reference frame K0 (excluding trivial rotations and
translations of space), where the “physical” (x′μ

ph) and “mea-
sured” (x′μ

m) four-vectors coincide with each other and with
the Minkowskian four-vector x′μ

L , i.e.,

x′μ
ph =̇ x′μ

m =̇ x′μ
L (4)

Hereinafter, the primed space–time coordinates belong to
the frame K0, while the unprimed coordinates belong to an
arbitrary inertial frame K.

Now, we look for the specific properties of the physical
space–time, which would ensure the Lorentz transformation

(xm)μ = Lμν (v)
(
x′

m

)ν (5)

for the measured space–time coordinates between the frame
K0 and an arbitrary inertial reference frame K, moving in K0

with a constant velocity v.
Solving this problem, we first notice that space–time ho-

mogeneity requires a linear form of the relationship xm and
xph in the frame K,

(xm)μ = Mμν (v)
(
xph

ν
)

(6)

where the coefficients Mμν depend only on the velocity v of K
in K0 and do not depend on the space–time coordinates.

At this point, it is worth noticing that in STR, the matrix
M (which we named the “manifest matrix” for reasons clar-
ified below) is tacitly adopted to be equal to the unit matrix
due to the identity of the measured and physical values in
any inertial reference frame. In this case, equality (4) can be
immediately extended to all inertial reference frames, which
thus become equivalent to each other.

Therefore, eq. (6) can indeed be considered as a necessary
step towards the generalization of STR, where we assume
that, in general, M is not represented by a unit matrix, and
its coefficients may depend on the velocity v of K in K0.

A theory with such a non-unit matrix M(v) can be named
the “manifested relativity theory” (MRT), and our next goal

Fig. 1. Schematic of a possible experiment for testing MRT
via observation of the Thomas–Wigner rotation of a moving
rod in the laboratory (rod oscillates just to get repetitive mea-
surements).

is to determine its physical meaning and principal implica-
tions.

In this way, one has to first emphasize that the assumed de-
pendence of the coefficients of the matrix M on the velocity
v of K in K0 signifies that the physical four-vector xμ

ph can-
not be directly accessible through measurements carried out
in the frame K. Indeed, the reverse claim would imply that
the physical four-vectors xμ

ph and the measured four-vectors
xμ

m could be represented through each other in a linear form
with constant coefficients independent of the velocity v of K
in any other inertial frame. However, this result would con-
tradict eq. (6), where the coefficients of the manifest matrix
M are assumed to be velocity-dependent.

Nevertheless, even if direct access to the physical four-
vectors xμ

ph in an arbitrary inertial frame K is impossible, we
will show below that the most fundamental problem——to de-
scribe the space–time kinematics of the outer world using the
measurement tools available only in frame K——remains, as in
STR, unambiguously solvable with application of the “track-
ing rule”, which, as we will show below, is naturally incorpo-
rated into the mathematical structure of MRT.

Namely, we will show in Section 4 that the Lorentz transfor-
mation between two arbitrary inertial frames Ki and Kj is im-
plemented as the sequence of the two rotation-free Lorentz
transformations via the frame K0 (i.e., Ki→K0→Kj), which can
be utilized as a tool for the determination of the physical four-
vectors in these frames and thus for experimental verifica-
tion of MRT. A particular realization of this algorithm will be
presented below in Fig. 1. This makes the physical content
of this theory no poorer than the physical content of STR, at
least on a principal level.

For further progress, one has to determine the properties
of the matrix M, which, being different from the unit ma-
trix, would nevertheless always ensure the coincidence of the
measured four-vectors xμ

m and the Minkowskian four-vectors
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xμ

L in an arbitrary inertial reference frame K, regardless of the
choice of admissible transformations in physical space–time
xμ

ph between different inertial frames. For such a matrix M,
one can indeed claim that all known experimental data in
the physics of empty space–time, supporting STR, can also be
considered in support of MRT.

Exploring the general properties of the matrix M, we ex-
plicitly introduce the metric tensor of the physical space–
time (gph)μν , so that the space–time interval in physical co-
ordinates xph reads as

ds2 = (
gph

)
μν

dxμ

phdxν
ph (7)

Combining (6) and (7), we express the space–time inter-
val through the measured space–time coordinates and de-
mand that the geometry of space–time for the measured four-
vectors be Minkowskian, i.e.,

ds2 = (
gph

)
μν

(
M−1)μ

η
dxη

m

(
M−1)ν

η
dxη

m = Eμνxμ
mxν

m (8)

where Eμν is the metric tensor of the Minkowskian space–
time.

Thus, our next problem is to determine the properties of
the matrix M, which would ensure equality (8).

We find the solution to (8) as

(
gph

)
μν

(
M−1)μ

η

(
M−1)ν

σ
= Eησ (9)

which leads to the following expression for the metric of
physical space time:

(
gph

)
μν

= MμηMη
ν (10)

Further on, we notice that the relationship between phys-
ical coordinates xph and Minkowskian four-vectors xL can be
written, by analogy with the known expression of the general
theory of relativity, as [15]

dxL
0 = √

g00dxph
0 + g0idxph

i

√
g00

(11)

	dxL
2
i =

(
−gij + g0ig0j

g00

)
dxph

idxph
j (12)

where i, j = 1…3.
Substituting (10) into (11), (12), and using equality Mi

j =
EikMkj, we obtain a relationship between the four-vectors xL

andxph as follows:

dxL0 =
√

(M00)2 −
∑

i

(Mi0)2dx0
ph +

(
M00Mi0 − Mj0Mji

)
dxi

ph√
(M00)2 −

∑
i

(Mi0)2
, (13)

	(dxLi )
2 =

⎡
⎢⎢⎣−MμiM

μ

j + (M00M0i − MkMki )
(
M00M0j − Mk0Mkj

)
(M00)2 −

∑
i

(Mi0)2

⎤
⎥⎥⎦

× dxi
phdxj

ph (14)

Next, we point out that the transformation (6) belongs to
the type of transformations acting within the same inertial

frame of references, i.e.,

x′0 = x′0 (
xi) , x′i = x′i (xj)

and the second equality signifies that

Mi0 = 0 (15)

at any i. Thus, substituting (15) into (13) and (14), and using
eq. (6), one gets:

(dxL)0 = M00dx0
ph + M0idxi

ph = (dxm)0 (16a)

	(dxLi )
2 =

[
−MμiM

μ

j + M0iM0j

] (
dxph

)i(dxph
)j

= MkiMkjdxi
phdxj

ph = 	(dxmi )
2 (16b)

The obtained eqs. (16a) and (16b) indicate that for any lin-
ear relationship (6) between xm and xph, as required by space–
time homogeneity, complemented by constraint (4), as re-
quired by space–time isotropy, the measured space–time coordi-
nates xm always coincide with the Minkowskian coordinates xL and
therefore do obey the Lorentz transformation, regardless of the par-
ticular choice of admissible space–time transformations in physical
space–time, which thus cannot be directly observed.

More specifically, we are free, in general, to assume any ad-
missible linear transformation of the empty physical space–
time between any inertial reference frames realizable in na-
ture; nevertheless, regardless of our particular choice, the
measured geometry of such an inertial reference frame will
always manifest itself as Minkowskian, where the spatial and
temporal interval obey the Lorentz transformation——and this
fact explains the name “manifest matrix” for the matrix M in
eq. (6).

Nevertheless, even in this situation, the properties of
the physical space–time can be indirectly manifested in
the Lorentz transformations between two arbitrary inertial
frames Ki and Kj, which in MRT are implemented through a
sequence of rotation-free transformations Ki→K0→Kj. Then
the corresponding Thomas–Wigner rotation of the axes of Ki

and Kj (considered in STR only as a purely kinematical effect
resulting from the general group properties of Lorentz trans-
formations and not requiring its physical interpretation) ac-
quires a direct physical meaning in MRT in terms of physical
space–time, as we will show below with the particular config-
uration in Fig. 1 for the proposed experimental test of MRT
in Section 4.

What is more, one can realize that the sequence of rotation-
free transformations established in MRT between two arbi-
trary inertial frames as Ki→K0→Kj naturally explains the
“tracking rule”, which we disclosed in ref. [13] under calcu-
lation of the Thomas precession frequency in eq. (1). There-
fore, unlike STR, this rule is naturally incorporated into the
mathematical structure of MRT.

Next, we explicitly determine the matrix M for a particular
choice of admissible space–time transformations in physical
space–time with constraint (3) on its metric coefficients.

Being free in the choice of such an admissible transforma-
tion in the physical space–time, it is natural to consider first
the simplest case of the admissible Galilean transformation
G between the frame K0 defined by eq. (4) and an arbitrary
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inertial frame K, moving in K0 at a constant velocity v, i.e.,(
xph

)
μ

= Gμν (v) x′ν
ph (17)

here the primed coordinates belong to the frame K0, and the
non-vanishing coefficients of the matrix of the Galilean trans-
formation are defined by the equalities

G00 = G11 = G22 = G33 = 1, Gi0 = −vi (18)

Note that constraints (3) and (4) ensure the finite light ve-
locity c in the frame K0 independently of the choice of trans-
formations in the physical space–time.

Addressing eq. (4) for the frame K0, and introducing the
matrix of Lorentz transformation Lμν between the measured
space–time four-vectors xm in different inertial frames, we
obtain the following expression for the matrix Mμν in frame
K:

Mμν (v) = (
G−1)η

μ
(v) Lην (v) (19)

Combining (18), (19), and using the known form of the
Lorentz transformation matrix L (see, e.g., [15]), we arrive
at an explicit presentation of the manifest matrix M in the
frame K as a function of its velocity v in K0:(

M−1)
00 = γ , Mi0 = 0,

(
M−1)

0i = γ
vi

c2
,

(
M−1)

ij = δij + vivj

c2

(
1 − 1

γ

) (20)

where δij is the Kronecker symbol.
Substituting (20) into (6), and taking into account the obvi-

ous equality xL = xph at v = 0, resulting from eq. (4), we obtain
the following expressions for the spatial and temporal inter-
vals in the frame K as functions of its velocity v in K0:

rph (v) = rph (v = 0) + v
v2

(
rph (v = 0) · v

) (
1
γ

− 1
)

(21)

tph (v) = γ tph (v = 0) + γ

(
rph (v = 0) · v

)
c2

(22)

where γ = (1 − v2/c2) − 1/2 is the Lorentz factor.
Formally, eqs. (21) and (22) look analogous to equations of

STR; however, the physical meaning of these equations in
both theories is different.

Namely, in STR, the value r(v = 0) in (21) determines the
length and spatial orientation of the rod, measured in its
rest frame, whereas r(v) determines the length and spatial ori-
entation of the same rod, measured in another inertial frame,
wherein the rod moves with a constant velocity v.

In contrast, in MRT, the rph(v) and rph(v = 0) in (21) repre-
sent the physical lengths of the rod, defined simultaneously
in all inertial frames of observations (including the frame K0

defined by eq. (4)); rph(v) corresponds to the case when this rod
moves in the frame K0 with a constant velocity v, while rph(v
= 0) corresponds to the case where the rod rests in frame K0.

To clarify the physical meaning of these equations, we first
address eq. (21), which yields the following relationships:

(
rph (v) · v

) =
(
rph (v = 0) · v

)
γ

(23)

(
rph (v) × v

) = (
rph (v = 0) × v

)
(24)

Equations (23) and (24) show that the component of vector
rph, which is collinear to v, is contracted by γ times, while
the component of rph, which is orthogonal to v, remains un-
changed. Hence, when we recognize the frame K0 defined by
equality (4) as a preferable one, we reveal that eqs. (23) and
(24) describe the well-known Fitzgerald-Lorentz contraction
hypothesis of the Lorentz ether theory (see, e.g., [15]).

At the same time, it was well understood by Lorentz and
his followers that the contraction of the scale in the frame K
as a function of its velocity v in K0 is non-observable due to
the proportional contraction of the unit scale in K.

Furthermore, addressing eq. (22), we obtain for the time
interval in a fixed spatial point (rrh = 0) of an arbitrary inertial
frame K:

tph (v) = γ tph (v = 0) (25)

This equation again looks similar in form to the corre-
sponding equation of STR; however, its physical meaning is
different. Namely, MRT eq. (25) describes the effect of a dila-
tion of physical time for a clock moving in the frame K0 with
the constant velocity v, and this effect takes place for all iner-
tial observers, including the observer in K0. Here, the physical
value tph(v = 0) corresponds to the case when the clock is at
rest in frame K0.

We remind you that the absolute dilation of time (25) was
also adopted in the late version of the Lorentz ether theory
[15]. At the same time, the effect (25), like the effect of con-
traction of scale (23), (24) in the physical space–time, is also
unobservable in any inertial frame K due to proportional di-
lation of time for the standard clock located in K.

Next, comparing the rate of two clocks separated by a dis-
tance rph and introducing the standard Einstein procedure
for their synchronization [15], we have to keep in mind that
the adoption of the Galilean space–time transformation (17)
in the physical space–time leads to the Galilean law of veloc-
ity composition between the frames K and K0 for the physical
light speed, i.e.,

cph (v) = c − v (26)

Therefore, the application of the Einstein method of syn-
chronization of two spatially separated clocks of an arbi-
trary inertial frame K (or any other admissible synchroniza-
tion method in K that meets the requirements of definite-
ness, reversibility, and transitivity [20]) leads to some sys-
tematic “error” of such synchronization; however, one can
straightforwardly show that it is exactly balanced by the sec-
ond term on the rhs of eq. (22). As a result, the light velocity
anisotropy in the physical space–time of the frame K becomes
non-observable, and the measured light speed is always equal
to c.

Thus, in the framework of MRT, we seem to confirm the
known assertion [15] that no experimental tools exist that
could discriminate between STR and the Lorentz ether the-
ory.

However, as we will see below, this claim is valid only in
the particular case of rotation-free Lorentz transformations,
when the relative velocities of all inertial frames under con-
sideration are collinear to each other. As is known, in this
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case, successive Lorentz transformations commute with each
other, and the “tracking rule” becomes unimportant.

Since the latter case was implied in most experimental at-
tempts to detect the “ether wind speed”, the application of
the Lorentz ether postulates to explain the “null” results of
all such experiments has always been successful [15].

Moreover, due to the general character of eqs. (16a) and
(16b), the latter claim is extended to any admissible space–
time transformations in the physical space–time (which re-
place the Galilean matrix in eq. (17)), given that successive
Lorentz transformations for the measured space–time four-
vectors are carried out at collinear velocities between differ-
ent inertial frames.

Thus, we conclude that any experimental test of MRT
should be based on a motional diagram of the inertial ref-
erence frames under consideration, where their velocities in
K0 are not collinear with each other and the corresponding
Lorentz transformations are not rotation-free.

At the same time, let us prove that the Lorentz transforma-
tion for the Minkowskian four-vectors xL from an arbitrary
inertial frame Ki to the frame K0 should always be rotation-
free to ensure equality (4) in K0.

To prove the latter claim, we use the freedom of choice
of admissible transformations in physical space–time, and
choose such a transformation that constitutes a sub-group
without spatial rotations, e.g., the admissible Galilean trans-
formations (17) considered above. Then, one can see that the
coincidence (4) of the physical xph and the measured (xm≡xL)
space–time four-vectors in the frame K0 is implemented
only in the case when the Lorentz transformations for the
measured spatial and temporal intervals between frames Ki

and K0 are also rotation-free. This is what we wanted to
prove.

Due to the arbitrary choice of frame Ki, we obtain that for
any other inertial frame Kj, we again have to demand the
rotation-free Lorentz transforms between the Minkowskian
four-vectors xL in Kj and K0. Therefore, we conclude that the
rotation-free Lorentz transformation from Ki to Kj for mea-
sured space–time coordinates should be carried out as a se-
quence of two transformations implemented through the
frame K0, i.e., L(Ki→K0)L(K0→Kj). Hence, according to the
general properties of the Lorentz group, the direct Lorentz
transformation from Ki to Kj is no longer rotation-free but is
accompanied by the Thomas–Wigner rotation of the coordi-
nate axes of Ki and Kj at angle [15]

Ω ≈ |vi × vj|/2c2 (27)

(ignoring terms of order c−3 and lower), where vi and vj denote
the corresponding velocities of Ki and Kj in K0.

Thus, the frame K0 defined by (4) represents a single iner-
tial reference frame (excluding as before any trivial transla-
tions and rotations in space), which ensures a rotation-free
Lorentz transformation to any arbitrary inertial frame Ki,
moving at a constant velocity in K0, whereas a Lorentz trans-
formation between two arbitrary inertial frames Ki to Kj is
accompanied by a Thomas–Wigner rotation of their coordi-
nate axes by the angle (27), depending on the velocities of
these frames in K0.

In fact, with respect to the measured four-vectors xm≡xL

(i.e., with respect to all observations in empty space–time),
this is a single difference between the kinematics of MRT and
STR, where the sequence of rotation-free inertial reference
frames can be set arbitrarily.

In the next section, we discuss some consequences result-
ing from this difference between STR and MRT.

4. Basic implications of manifested
relativity theory and possibility of its
experimental test

First of all, we emphasize the principal result of MRT:

– As soon as we adopt the linear relationship (6) between the
physical xph and the measured xm four-vectors in any iner-
tial frame K, as required by the space–time homogeneity,
and demand the equality (4) at least for one inertial refer-
ence frame K0, as required by the space–time isotropy, we
always obtain Lorentz transformations for the measured
space and time intervals (see eqs. (16a) and (16b)), regard-
less of the particular choice of transformation in the phys-
ical space–time between different inertial frames.

Such a particular choice does affect the specific form of
the manifest matrix M, and we have shown above that in
the illustrative case of admissible Galilean transformations
(17) for physical four-vectors xph, the matrix M is defined by
eq. (19) with an explicit presentation of its coefficients via
(20). At the same time, the dependence of the matrix M on
the choice of admissible space–time transformations in the
physical space–time does not seem to be so significant, since
the physical space–time is anyway obscured from direct ob-
servations due to eqs. (16a) and (16b). Therefore, the actual
problem goes to comparing the predictions of STR and MRT
for the measured space–time four-vectors xm, which always
obey the Lorentz transformation, regardless of the choice of
transformation for xph.

In this respect, we highlight the fundamental feature of
MRT, which does not allow an arbitrary choice of rotation-
free Lorentz transformations for the measured four-vectors
xm between two arbitrary inertial frames and determines a
unique inertial frame K0, defined by eq. (4), which ensures a
rotation-free Lorentz transformation for xm to any arbitrary
inertial frame Ki.

One can realize that this result straightforwardly leads to
the “tracking rule”, which defines the sequence of Lorentz
transformation between three inertial reference frames,
moving with non-collinear velocities.

By such a way, we arrive at a result of the principal impor-
tance: the “tracking rule”, introduced in STR as a phenomeno-
logical one, acquires its natural explanation in MRT; more-
over, the introduction of this rule concurrently eliminates
any ambiguities in the determination of the frequency of
Thomas precession (1), where the velocity parameter should
always be associated with the rotation-free Lorentz transfor-
mation.
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On a conceptual level, it is even more important to stress
that the derivation of the “tracking rule” in MRT does har-
monize two facts with each other, which, from a historical
viewpoint, have so far been considered strongly antagonis-
tic: the proven validity of the Lorentz transformation for any
measured spatial and temporal intervals in the empty space
between inertial frames and the existence of a preferable in-
ertial frame K0 defined by eq. (4).

At this point, one has to specially emphasize that the frame
K0 is defined exclusively through the rotation-free Lorentz
transformation to any other inertial reference frame and is
not associated with any kind of “ether”. Rather, one can imag-
ine K0 as the very first inertial frame, as soon as space and
time were created just after the Big Bang. Then, due to the im-
plementation of the “tracking rule”, the rotation-free Lorentz
transformation was kept between K0 and any other inertial
frames associated with any objects created during the evo-
lution of the universe. If this scenario was actually realized,
then it seems natural to identify K0 with the frame of isotropy
of the cosmic relic radiation Kc. In such a way, in the frame-
work of the MRT, we find fundamentally important proper-
ties of the cosmological frame Kc:

– It is the sole inertial frame wherein equality (4) is imple-
mented;

– It is the sole inertial frame that is related to all other iner-
tial frames in the universe by rotation-free Lorentz trans-
formations.

The latter property of the cosmological frame can, at least
in principle, be subjected to experimental testing. Indeed,
taking two inertial frames Ki and Kj, which are related to Kc

through the rotation-free Lorentz transformations, we find
that a direct Lorentz transformation between Ki and Kj should
be accompanied by a Thomas–Wigner rotation due to the
general properties of the Lorentz group, and thus, one may
hope to measure, at least in principle, the angle of Thomas–
Wigner rotation (27) in a properly designed experimental
scheme. We especially emphasize that such measurements
can be carried out using only “internal” measurement pro-
cedures, without any communication with the outer world,
with an unambiguous determination of the velocity of the
frames Ki and Kj in the cosmological frame Kc.

To be more specific, we may introduce in the labo-
ratory frame Ki an elongated macroscopic object (rod)
with its proper frame Kj, which moves in Ki with a ve-
locity u (see Fig. 1), and thus we can observe, at least
in principle, the rotation of the elongated object at the
angle

Ω ≈ |v × u|/2c2 (28)

with respect to the axes of Ki by measuring the time differ-
ence between the moments of arrival of short signals to the
time analyzer from two clocks Cl1 and Cl2, which sharply
strike the opposite ends of the oscillating object.

Then, assuming the velocity v of Ki in the cosmological
frame K0 equal to 10−3c (typical velocity of Galaxy objects),
and taking the velocity of Kj in Ki u ≈ 1 m/s, we obtain the
angle � ≈ 10−12, which is indeed a tiny value for any moving

macroscopic object. At the same time, by realizing repeated
measurements of the time difference, we can expect a corre-
lation of such measurements with the daily self-rotation and
the annual orbital rotation of Earth due to a variation in the
direction of v, which, thus, could simplify the data processing
procedure for evaluating its numerical value.

Next, we find it important to emphasize three principal
points related to this experimental proposal.

First, the scheme of the experiment in Fig. 1 represents
a particular demonstration of the “tracking rule”, where
we must adopt that the frames Ki, Kj, which we have at-
tached with the resting clocks and the oscillating rod, cor-
respondingly, are not related to each other through rotation-
free Lorentz transformations, but rather through a sequence
Ki→K0→Kj, as is required by the “tracking rule”. This indeed
looks at odds with the “natural” choice of the direct rotation-
free transformation Ki→ Kj, as it would be implied in STR for
this configuration.

Second, this experimental scheme demonstrates that MRT
and STR can indeed be distinguished from each other at the
level of measured quantities, such as the nonzero indica-
tions of the time analyzer in Fig. 1, which could vary syn-
chronously over days and years with the motion of the Earth
in the cosmological frame K0. Here it should be especially
emphasized that such a nonzero indication of the time an-
alyzer in Fig. 1 does not contradict the mathematical struc-
ture of STR, where, in general, the choice of a sequence of
Lorentz transformations Ki→K0→Kj is also possible. How-
ever, the preservation of the same sequence of transforma-
tions Ki→K0→Kj during the daily self-rotation of the Earth
and its annual revolution around the Sun looks somewhat
artificial in STR, where the implementation of the “tracking
rule” is not mandatory. On the contrary, in MRT, the indi-
cated sequence of transformations Ki→K0→Kj is unambigu-
ous and directly stems from the requirement of the “tracking
rule”.

Third, even under the impossibility to directly measure the
“physical” space–time four-vectors xph, the expected depen-
dence (28) of the measured angle � on the velocity v of the
Earth in the cosmological frame K0 still admits its interpre-
tation in terms of the physical space–time. Let us show how
this can be done with the simplest choice of an admissible
Galilean transformation (17).

Indeed, consider the case where the velocity v of Earth
in the cosmological frame K0 lies along the axis x. Hence,
one can find that the contraction of the length of the os-
cillating rod along the velocity v (see eqs. (23) and (24)) in-
duces its rotation with respect to the axis x by the angle
� ≈ − uv/2c2 to the accuracy c−2. Taking into account the
anisotropy of the physical light velocity (26) along the axis x of
the laboratory frame Ki, we obtain the indication of the time
analyzer as

�t = L
√

1 − v2/c2�

u
+ L

√
1 − v2/c2

c − v
− L

√
1 − v2/c2

c − v
≈ Lv

2c2
(29)

to the accuracy c−2.
What is more, having repeated measurements of �t at dif-

ferent spatial orientations of the setup in Fig. 1——which in
terrestrial conditions is naturally achieved due to the daily
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rotation of the Earth——we can determine through eq. (29) the
value and spatial orientation of the vector v at any fixed time
moment, which describes the motion of the laboratory frame
Ki in the frame K0. Further on, using equality (4) for the frame
K0, we get the physical spatial and temporal intervals in the
laboratory frame, even if they cannot be directly measured
in this frame.

In such a way, the problem of describing the space–time
kinematics of any object in an arbitrary inertial frame, using
only the measurement tools available in this frame, occurs in
MRT and is fully solvable.

At the moment, such measurements lie on the edge of
modern experimental capabilities, and the proposed design
of the experiment in Fig. 1 serves only to demonstrate the
principal possibility of measuring the velocity of the Earth in
the cosmological frame Kc through the “tracking rule”. The
actual experimental scheme for such measurements can be
substantially different, although the general idea——to deter-
mine the velocity v of the laboratory frame Ki in the cosmo-
logical frame Kc by measuring the Thomas–Wigner rotation
between the axes of Ki and another inertial frame Kj, mov-
ing with a finite velocity u in Ki——remains the same. As an
example of such a realistic experimental scheme, we men-
tion the paper [21], where the proposed experimental idea——
to measure the geometry of a rapidly spinning disc in the
Lorentz ether theory——also perfectly fits for testing the “track-
ing rule”, which implies the sequence of Lorentz transforma-
tions K→Kc→Ka, where K denotes the laboratory frame K,
and the frame Ka is attached to a resonant absorber at the
edge of a spinning rotor. As shown in ref. [21], such a choice
of successive Lorentz transformations leads to the relative en-
ergy shift between an emitted and an absorbed resonant line
of about 10−14 (at v ≈ 10−3c) which can be reliably measured
using the Mössbauer effect on a rotating resonant absorber
irradiated by resonant gamma-quanta of the appropriate syn-
chrotron radiation.

5. Conclusion
Our previous [12, 13] and present analysis of the Thomas–

Wigner rotation and Thomas precession allow revealing the
“tracking rule”, which should be fulfilled to ensure a consis-
tent description of these relativistic effects.

We further emphasized that the “tracking rule” is intro-
duced into STR on a phenomenological basis [13], which al-
lows assuming the existence of a more general theory than
STR, where this rule must be naturally incorporated into its
structure.

We argued that a single reasonable (and, perhaps, the only
possible) way to develop such a general theory of empty space
is to assume that the physical space–time four-vectors xph

do not necessarily coincide with the measured space–time
four-vectors xm, but are related through a non-unit matrix
M (see (6)). At the same time, to ensure the compatibility of
such a theory with numerous experimental facts confirming
the validity of the Lorentz transformations for the measured
space–time four-vectors, we have, first of all, to determine
the conditions that lead to the Lorentz transformations for
xm. Among these conditions, we assumed the isotropy of the

empty space–time reflected in eq. (4), and the homogeneity
of the empty space–time reflected in eq. (6) through the inde-
pendence of the coefficients of the matrix M from the space–
time coordinates.

Then, we find that the adopted eqs. (4) and (6), along
with the natural constraint (15)——reflecting the fact that
transformation (6) is carried out within the same frame of
references——are sufficient to prove that the measured space–
time coordinates xm of empty space–time always manifest
through the four-vectors xL, which obey the Lorentz transfor-
mation between different inertial frames, while the physical
space–time four-vectors xph are, in general, not directly ob-
servable. Correspondingly, we named the matrix M, linked
the physical xph, measured xm≡xL four-vectors as a manifest
matrix, and called our approach “manifested relativity the-
ory” (MRT).

Next, we have shown that in the MRT, the measured space
and time intervals of inertial frame K0, defined by eq. (4),
should be linked with the measured space and time inter-
vals of any other inertial reference frames Ki through the
rotation-free Lorentz transformation. Therefore, considering
the Lorentz transformation between two arbitrary inertial
reference frames Ki and Kj, we find that the rotation-free
Lorentz transformations between these frames should be car-
ried out through the sequence Ki→K0→Kj. Therefore, ac-
cording to the general properties of the Lorentz group, a di-
rect transformation from Ki to Kj should include a Thomas–
Wigner rotation in the case where the velocities of Ki in K0

and Kj in K0 are not collinear to each other, and such a ro-
tation, at least in principle, represents a measurable effect in
the frames Ki and Kj. This finding allows, at least in principle,
to determine the velocity of Ki in K0 in the Gedanken experi-
ment, schematically presented in Fig. 1, and in a real experi-
ment for measurement of the Mössbauer effect on a rotating
resonant absorber irradiated with resonant gamma-quanta of
the synchrotron beam [21].

Thus, both theories——STR and MRT——can indeed be distin-
guished at the experimental level, and this is the most im-
portant outcome resulting from our generalization of special
relativity.

We further emphasize that in MRT, the preferable frame K0

is defined only by the fact of the rotation-free Lorentz trans-
formation of the measured space and time intervals to any
other inertial reference frame and does not require to imag-
ine any “ether”. Therefore, no specific characteristic of the
“ether” should be involved in space–time transformations,
which thus in the general case remain ten-parametric (i.e.,
four initial space–time coordinates, three rotational angles,
and three components of a relative velocity between two in-
ertial frames), which ensures the general covariance of the
space–time kinematics of an empty space [15]. Rather, one
can assume K0 as the very first inertial frame in the universe,
representing a frame of isotropy of the cosmic relic radiation
Kc, and the fact of the rotation-free Lorentz transformation to
any other inertial frame can be linked with the validity of the
“tracking rule” entering into force along with the creation of
space–time, thanks to the Big Bang.

Thus, exemption from the vague hypothesis of the “world
ether” in determination of the properties of the preferable
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Table 1. Comparison of STR and MRT in terms of key aspects of space–time.

STR MRT

The physical and measured space–time four-vectors coincide
with each other in all inertial reference frames

The physical and measured space–time four-vectors, in general, are not
identical to each other in an arbitrary inertial reference frame

All inertial reference frames are equivalent to each other There is a single inertial reference frame K0 (except for rotations and
translations in space), where the physical and measured space–time
four-vectors are identical to each other

Spatial and temporal intervals in different inertial frames
Ki, Kj obey the Lorentz transformations at any i, j

For any admissible choice of transformations in physical space–time, the
measured spatial and temporal intervals in the difference inertial frames
Ki, Kj obey the Lorentz transformations at any i, j

Rotation-free Lorentz transformation can be set between
two arbitrary inertial reference frames Ki and Kj

Rotation-free Lorentz transformations for the measured space–time
four-vectors are carried out between the frames K0, Ki and K0, Kj. The
direct Lorentz transformation between Ki and Kj is no longer rotation-free
and includes the Thomas–Wigner rotation of the spatial axes of these
frames

“Tracking rule” is introduced on a phenomenological basis “Tracking rule” is always fulfilled in the rotation-free Lorentz
transformations K0→Ki, K0→Kj for any i, j

Thomas–Wigner rotation represents a purely kinematical
effect, which does not require its explanation

Thomas–Wigner rotation between the axes of Ki and Kj under rotation-free
Lorentz transformations K0→Ki, K0→Kj admits its interpretation in terms
of the physical space–time, even if it is not accessed in frames Ki and Kj

frame K0 defined by eq. (4) once again confirms the correct-
ness of the basic claim of MRT about the possibility to de-
scribe the space–time kinematics of the outer world in a
given inertial frame K using only measurement instruments
of K. From this angle of view, the experimental scheme in
Fig. 1 can be considered as a particular demonstration of the
validity of this general assertion.

Finally, we notice that, with respect to any ordinary practi-
cal applications, the tiny Thomas–Wigner rotation angle (27)
between terrestrial inertial frames Ki and Kj is hardly observ-
able in the vast majority of problems.

Thus, in ordinary laboratory practice, we can well ignore
the effect (27) and apply rotation-free Lorenz transformations
between the chosen inertial frames according to our own ar-
bitrary choice, as is customarily done in STR.

Finally, in Table 1, we compare STR and MRT in terms of
the key aspects of space–time discussed above.

Acknowledgements
The authors thank the referees for their helpful remarks and
comments, which allowed us to improve the paper.

Article information

History dates
Received: 23 March 2023
Accepted: 13 August 2023
Accepted manuscript online: 19 September 2023
Version of record online: 17 October 2023

Copyright
© 2023 The Author(s). Permission for reuse (free in most
cases) can be obtained from copyright.com.

Data availability
The article does not report data.

Author information

Author ORCIDs
Alexander L. Kholmetskii https://orcid.org/
0000-0002-5182-315X

Author contributions
Conceptualization: ALK
Formal analysis: OVM, TY
Investigation: OVM
Writing – original draft: ALK
Writing – review & editing: TY

Competing interests
The authors declare there are no competing interests.

References
1. L.H. Thomas. Nature, 117, 514 (1926). doi:10.1038/117514a0.
2. G.E. Uhlenbec and S. Goudsmit. Nature, 117, 264 (1926). doi:10.1038/

117264a0.
3. P. A. M. Dirac. Proc. R. Soc. Lond. A, 117, 610 (1928).
4. C.W. Misner, K.S. Thorne, and J.A. Wheeler. Gravitation. W.H. Free-

man and Company.
5. V.A. Brumberg. Essential relativistic celestial mechanics. Taylor and

Fracis Group.
6. A.P. Lightman, W.H. Press, R.H. Price, and S.A. Teukolsky. Problem

book in relativity and gravitation. Princeton University Press.
7. G.B. Malykin. Physics-Uspekhi, 49, 837 (2006). doi:10.1070/

PU2006v049n08ABEH005870.
8. A.L. Kholmetskii and T. Yarman. Can. J. Phys. 92, 1232 (2014). doi:10.

1139/cjp-2014-0015.
9. A.L. Kholmetskii, O.V. Missevitch, and T. Yarman. Can. J. Phys. 92,

1380 (2014). doi:10.1139/cjp-2014-0140.
10. A.L. Kholmetskii and T. Yarman. Can. J. Phys. 93, 503 (2015). doi:10.

1139/cjp-2014-0340.
11. A.L. Kholmetskii and T. Yarman. Ann. Phys. 384, 155 (2017). doi:10.

1016/j.aop.2017.06.022.
12. A.L. Kholmetskii and T. Yarman. Eur. Phys. J. Plus 132, 400 (2017).

doi:10.1140/epjp/i2017-11692-4.
13. A.L. Kholmetskii, O.V. Missevitch, T. Yarman, and M. Arik. Europhys.

Lett. 129, 3006 (2020). doi:10.1209/0295-5075/129/30006.
14. A.L. Kholmetskii and T. Yarman. Eur. J. Phys. 41, 055601 (2020).

C
an

. J
. P

hy
s.

 D
ow

nl
oa

de
d 

fr
om

 c
dn

sc
ie

nc
ep

ub
.c

om
 b

y 
N

O
R

T
H

 C
A

R
O

L
IN

A
 S

T
A

T
E

 U
N

IV
E

R
SI

T
Y

 o
n 

12
/1

6/
24

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 

http://dx.doi.org/10.1139/cjp-2023-0083
https://marketplace.copyright.com/rs-ui-web/mp
https://orcid.org/0000-0002-5182-315X
http://dx.doi.org/10.1038/117514a0
http://dx.doi.org/10.1038/117264a0
http://dx.doi.org/10.1070/PU2006v049n08ABEH005870
http://dx.doi.org/10.1139/cjp-2014-0015
http://dx.doi.org/10.1139/cjp-2014-0140
http://dx.doi.org/10.1139/cjp-2014-0340
http://dx.doi.org/10.1016/j.aop.2017.06.022
http://dx.doi.org/10.1140/epjp/i2017-11692-4
http://dx.doi.org/10.1209/0295-5075/129/30006


Canadian Science Publishing

Can. J. Phys. 102: 43–53 (2024) | dx.doi.org/10.1139/cjp-2023-0083 53

15. C. Møller. The theory of relativity. Clarendon Press, Oxford. 1973.
16. J.D. Jackson. Classical electrodynamics. 3rd ed. Wiley, New York.

1998.
17. V. Bargmann, L. Michel, and V.L. Telegdi. Phys. Rev. Lett. 2, 435 (1959).

doi:10.1103/PhysRevLett.2.435.
18. J.P. Lambare. Europhys. Lett. 142, 50004 (2023). doi:10.1209/

0295-5075/acd79d.

19. A.L. Kholmetskii, O.V. Missevitch, T. Yarman, and M. Arik. Europhys.
Lett. 142, 50005 (2023). doi:10.1209/0295-5075/acd79f.

20. L. Mandelstam. Lectures on optics, relativity theory and quantum me-
chanics. Nauka, Moscow. 1972(in Russian).

21. W. Potzel, A.L. Kholmetskii, U. van Bürck, R. Röhlsberger, and E.
Gerdau. Nucl. Phys. B Proc. Suppl. 221, 386 (2011). doi:10.1016/j.
nuclphysbps.2011.10.037.

C
an

. J
. P

hy
s.

 D
ow

nl
oa

de
d 

fr
om

 c
dn

sc
ie

nc
ep

ub
.c

om
 b

y 
N

O
R

T
H

 C
A

R
O

L
IN

A
 S

T
A

T
E

 U
N

IV
E

R
SI

T
Y

 o
n 

12
/1

6/
24

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 

http://dx.doi.org/10.1139/cjp-2023-0083
http://dx.doi.org/10.1103/PhysRevLett.2.435
http://dx.doi.org/10.1209/0295-5075/acd79d
http://dx.doi.org/10.1209/0295-5075/acd79f
http://dx.doi.org/10.1016/j.nuclphysbps.2011.10.037


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Sheetfed Coated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /RelativeColorimetric
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 99
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 225
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 225
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


