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Abstract. In this paper, we discuss some of the important qualitative properties of
solutions of second-order hyperbolic equations, whose coefficients of the terms involving
the second-order derivatives are independent of the desired function and its derivatives.
Solutions of these equations have a special property called the curvilinear parallelogram
identity (or the mean-value property), which can be used to solve some initial-boundary
value problems.

1 Introduction

The terms “mean value theorem”, “mean value property”, “mean formula”, and “mean
value” are quite common in mathematics (e. g., real and complex analysis, probability
theory, partial differential equations) and physics. But they may pertain to diverse
phenomena.

In the theory of partial differential equations, mean value theorems for harmonic
functions and solutions of various elliptic equations are best known. They include the
classical mean value property for harmonic functions [12] and the results obtained in
works [9, 7, 8, 27] for more general elliptic equations and elliptic operators. Similar
theorems are formulated for (hypoelliptic) parabolic equations [16, 17, 18].

Such facts can be established not only for elliptic and parabolic equations but
also for hyperbolic ones. First of all, we should mention the classical Asgeirsson’s
mean value theorem [3, 6] the ultrahyperbolic differential equation, and the mean
value theorem of Bitsadze and Nakhushev for the wave equation [2]. Spherical means
can be used to solve initial-value problems as it’s done in the work [10] for the wave
equation and the Darboux equation. Using a symbolic approach [28] several results
[24, 22, 23, 30, 25, 31, 29, 26, 33, 32] connected with mean values of solutions of
various differential equations were obtained in works of Polovinkin and Meshkov et al.
It should also be said that in these works, the parallelogram identity (parallelogram
rule) for the wave equation (which the authors call ‘difference mean-value formula’) was
generalized to the following cases: a (nonstrictly) hyperbolic equation with constant
coefficients of third-order [24], fourth-order [22], higher-order [32], an equation with
constant coefficients and with the operator represented by the product of the first
order hyperbolic operators and the second-order elliptic operators [29]. These results
can be used to obtain analytical and numerical solutions to differential equations as it
was done in [12, 14, 11, 20, 21]. However, these results are given mainly for equations
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with constant coefficients because of the methods used (Fourier transform, search for
accompanying distribution with compact support).

Moreover, the characteristic parallelogram of differential equations has some appli-
cations in hydrodynamics [19].

In this paper, we derive the identity of a curvilinear characteristic parallelogram
for a general semilinear second-order hyperbolic equation using the method of char-
acteristics [12]. This identity can be considered as the mean value theorem in some
sense.

2 Semilinear hyperbolic equation

In the domain Ω ⊆ R
2 of two independent variables x = (x1, x2) ∈ Ω ⊆ R

2, consider
the semilinear hyperbolic equation of second-order

Au(x1, x2) = f(x1, x2, u(x1, x2), ∂x1u(x1, x2), ∂x2u(x1, x2)), (2.1)

where the operator A is defined as

Au(x1, x2) := a(x1, x2)∂
2
x1
u(x1, x2) + 2b(x1, x2)∂x1∂x2u(x1, x2) + c(x1, x2)∂

2
x2
u(x1, x2),

and is hyperbolic (this means b2(x)− a(x)c(x) > 0 for any x ∈ Ω).
Eq. (2.1) has two families of characteristics: γ1(x1, x2) and γ2(x1, x2), which are the

first integrals of the ordinary differential equation [12]

a(x)(dx2)
2 − 2b(x)dx1dx2 + c(x)(dx1)

2 = 0, (2.2)

and solutions of the equation of characteristics [12]

a

(
∂γi
∂x1

)2

+ 2b
∂γi
∂x1

∂γi
∂x2

+ c

(
∂γi
∂x2

)2

= 0, i = 1, 2. (2.3)

It is well known [12] that Eq. (2.2), in general, can be decomposed into two equations

a(x)dx2 − (b(x)±
√
b2(x)− a(x)c(x))dx1 = 0, if a(x) 6= 0,

or
c(x)dx1 − (b(x)±

√
b2(x)− a(x)c(x))dx2 = 0, if c(x) 6= 0,

or
dx1dx2 = 0, if a(x) = c(x) = 0.

Therefore, we can assume that γ1 and γ2 are the first integrals of different differen-

tial equations and they are functionally independent since the Jacobian

∣∣∣∣
∂(γ1, γ2)

∂(x1, x2)

∣∣∣∣ is

nonzero [12].

If the curves γi, i = 1, 2, have a parametric representation (x
(i)
1 (t), x

(i)
2 (t)), where

x
(i)
j , j = 1, 2, are some twice continuously differentiable functions, then the equation

holds [4]

a
(
Dx

(i)
2

)2
− 2bDx

(i)
1 Dx

(i)
2 + c

(
Dx

(i)
1

)2
= 0, i = 1, 2,

where D is the operator of the ordinary derivative.
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3 Curvilinear characteristic parallelogram

Definition 1. Curvilinear characteristic parallelogram of the hyperbolic differential
equation (2.1) is a set Π = {x | γ1(x) ∈ [l1, l2] ∧ γ2(x) ∈ [r1, r2]}, where l1, l2, r1,
r2 are some real numbers and γi, i = 1, 2 are two different functionally independent
characteristics.

Remark 1. Definition 1 is correct. It is known [1] that any other first integral (2.2) has
the form q ◦ γ1, where q is some continuously differentiable function. If γ1(x) ∈ [l1, l2],

then, due to the continuity of q, q(γ1(x)) ∈ q([l1, l2]) = [l̃1, l̃2]. Thus, the curvilinear
characteristic parallelogram does not depend on the considered characteristics.

x1

x2

A

B

C

D

γ1(x) = l1

γ1(x) = l2

γ2(x) = r1

γ2(x) = r2

Fig. 1. Curvilinear characteristic parallelogram

Definition 2. Vertices of the curvilinear characteristic parallelogram Π = {x | γ1(x) ∈
[l1, l2] ∧ γ2(x) ∈ [r1, r2]} are points x such that γ1(x) = li ∧ γ2(x) = rj, (i, j) ∈
{1, 2} × {1, 2}.

Remark 2. Definition 2 is correct. We should show that q ◦ γ1, where q is some
continuously differentiable function, maps [l1, l2] into [l̃1, l̃2] and ∂([l1, l2]) into ∂([l̃1, l̃2]).
If the function q is increasing or decreasing, these mappings must be true. But if
the function q does not satisfy these conditions, then there exists at least one point
l0 ∈ (l1, l2) such that q′(l0) = 0. Due to the continuity of q, there exists a point x ∈ Π
such that γ1(x) = l0 ∈ (l1, l2) This implies

∣∣∣∣
∂(q ◦ γ1, γ2)

∂(x1, x2)

∣∣∣∣ (x) =
∣∣∣∣
q′(γ1(x))∂x1γ1(x) q′(γ1(x))∂x2γ1(x)

∂x1γ2(x) ∂x2γ2(x)

∣∣∣∣ = 0 when γ1(x) = l0.

But we only consider characteristics with nonzero Jacobian. The correctness is proved.



4 V. I. Korzyuk, J. V. Rudzko

Definition 3. Opposite vertices of the curvilinear characteristic parallelogram Π =
{x | γ1(x) ∈ [l1, l2]∧γ2(x) ∈ [r1, r2]} are its vertices x1 and x2 such that γ1(x1) 6= γ1(x2)
and γ2(x1) 6= γ2(x2).

Point transformation of variables of the form y1 = γ1(x1, x2), y1 = γ2(x1, x2) is
invertible [34], i.e., there is an inverse change of variables x1 = γ−1

1 (y1, y2), x2 =
γ−1
2 (y1, y2).

Lemma 3.1. Let Π = {x | γ1(x) ∈ [l1, l2] ∧ γ2(x) ∈ [r1, r2]} is a curvilinear char-
acteristic parallelogram and the conditions a ∈ C2(Π), b ∈ C2(Π), c ∈ C2(Π), and
f ∈ C1(Π × R

3) be satisfied. The function u belongs to the class C2(Π) and satisfies
Eq. (2.1) if and only if it can be represented as

u(x) = g1 (γ1(x)) + g2 (γ2(x)) +

+

γ1(x)∫

l(0)

dz1

γ2(x)∫

r(0)

1

2 (a∂x1γ1∂x1γ2 + b (∂x2γ2∂x1γ1 + ∂x2γ1∂x1γ2) + c∂x2γ1∂x2γ2) (γ
−1
1 (z), γ−1

2 (z))
×

×
[
f
(
γ−1
1 (z), γ−1

2 (z), u
(
γ−1
1 (z), γ−1

2 (z)
)
,

∂x1u
(
γ−1
1 (z), γ−1

2 (z)
)
, ∂x2u

(
γ−1
1 (z), γ−1

2 (z)
))

−

−Aγ1
(
γ−1
1 (z), γ−1

2 (z)
) (
∂x1u

(
γ−1
1 (z), γ−1

2 (z)
)
∂y1γ

−1
1 (z) +

+ ∂x2u
(
γ−1
1 (z), γ−1

2 (z)
)
∂y1γ

−1
2 (z)

)
−

−Aγ2
(
γ−1
1 (z), γ−1

2 (z)
) (
∂x1u

(
γ−1
1 (z), γ−1

2 (z)
)
∂y2γ

−1
1 (z) +

+ ∂x2u
(
γ−1
1 (z), γ−1

2 (z)
)
∂y2γ

−1
2 (z)

)]
dz2, (3.1)

where l(0) ∈ [l1, l2], r
(0) ∈ [r1, r2], and the functions g1, g2 belong to the classes

C2(D(g1)), C
2(D(g2)) respectively.

Proof. Let the function u ∈ C2(Π) satisfy Eq. (2.1). Making the nonlinear nonde-
generate change of independent variables y1 = γ1(x1, x2), y1 = γ2(x1, x2) and denoting
u(x1, x2) = v(y1, y2) we obtain the new differential equation

2 (a∂x1γ1∂x1γ2 + b (∂x2γ2∂x1γ1 + ∂x2γ1∂x1γ2) + c∂x2γ1∂x2γ2)
(
γ−1
1 (y), γ−1

2 (y)
)
×

× ∂y1∂y2v(y) + Aγ1
(
γ−1
1 (y), γ−1

2 (y)
)
∂y1v(y) + Aγ2

(
γ−1
1 (y), γ−1

2 (y)
)
∂y2v(y) =

= f
(
γ−1
1 (y), γ−1

2 (y), u
(
γ−1
1 (y), γ−1

2 (y)
)
, ∂x1u

(
γ−1
1 (y), γ−1

2 (y)
)
,

∂x2u
(
γ−1
1 (y), γ−1

2 (y)
))

= f
(
γ−1
1 (y), γ−1

2 (y), v(y), ∂y1v(y)∂x1γ1
(
γ−1
1 (y), γ−1

2 (y)
)
+

+ ∂y2v(y)∂x1γ2
(
γ−1
1 (y), γ−1

2 (y)
)
, ∂y1v(y)∂x2γ1

(
γ−1
1 (y), γ−1

2 (y)
)

+ ∂y2v(y)∂x2γ2
(
γ−1
1 (y), γ−1

2 (y)
))
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Let us integrate it twice to obtain the equation

v(y) = g1 (y) + g2 (y)+

+

y1∫

l(0)

dz1

y2∫

r(0)

1

2 (a∂x1γ1∂x1γ2 + b (∂x2γ2∂x1γ1 + ∂x2γ1∂x1γ2) + c∂x2γ1∂x2γ2) (γ
−1
1 (y), γ−1

2 (y))
×

×
[
f
(
γ−1
1 (z), γ−1

2 (z), u
(
γ−1
1 (z), γ−1

2 (z)
)
,

∂x1u
(
γ−1
1 (z), γ−1

2 (z)
)
, ∂x2u

(
γ−1
1 (z), γ−1

2 (z)
))

−

− Aγ1(γ
−1
1 (z), γ−1

2 (z))∂y1v(z)− Aγ2(γ
−1
1 (z), γ−1

2 (z))∂y2v(z)
]
dz2,

Returning to the variables x1 and x2, we obtain Eq. (3.1). This also implies that the
functions gj belong to the class C2(D(g1)), j = 1, 2.

Substituting the representations (3.1) into Eq. (2.1), we verify that the function u
satisfies this equation in Π.

Remark 3. Under some additional conditions on the functions f , a, b, c, g1, g2, we
can show the solvability of the integro-differential equation (3.1) using the methods
proposed in the works [5, 13, 35].

For the convenience of further presentation, we introduce the notation

β = 2 (a∂x1γ1∂x1γ2 + b (∂x2γ2∂x1γ1 + ∂x2γ1∂x1γ2) + c∂x2γ1∂x2γ2) ,

K(z, p, q, r) = f(γ−1
1 (z), γ−1

2 (z), p, q, r)−

−Aγ1(γ
−1
1 (z), γ−1

2 (z))(q∂y1γ
−1
1 (z) + r∂y1γ

−1
2 (z))−

−Aγ2(γ
−1
1 (z), γ−1

2 (z))(q∂y2γ
−1
1 (z) + r∂y2γ

−1
2 (z)),

K̃(z, p, q, r) = (β(γ−1
1 (z), γ−1

2 (z)))−1K(z, p, q, r)

4 Curvilinear parallelogram identity

Theorem 4.1. Let the conditions a ∈ C2(Ω), b ∈ C2(Ω), c ∈ C2(Ω), f ∈ C1(Ω×R
3),

and b2(x) − a(x)c(x) > 0 be satisfied, and let the function u belong to the class
C2(Ω) and be a solution of the hyperbolic equation (2.1). Then for any curvilinear
characteristic parallelogram Π = {x | γ1(x) ∈ [l1, l2] ∧ γ2(x) ∈ [r1, r2]} ⊆ Ω with
vertices A(γ−1

1 (l1, r1), γ
−1
2 (l1, r1)), B(γ−1

1 (l1, r2), γ
−1
2 (l1, r2)), C(γ

−1
1 (l2, r2), γ

−1
2 (l2, r2)),

(γ−1
1 (l2, r1), γ

−1
2 (l2, r1)), the equality holds

u(A)− u(B) + u(C)− u(D) =

=

l2∫

l1

dz1

r2∫

r1

K̃
(
z, u

(
γ−1
1 (z), γ−1

2 (z)
)
, ∂x1u

(
γ−1
1 (z), γ−1

2 (z)
)
,

∂x2u
(
γ−1
1 (z), γ−1

2 (z)
))
dz2.

(4.1)
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Proof. According to Lemma 1, the function u can be represented in the form

u(x) = g1(γ1(x)) + g2(γ2(x)) +

+

γ1(x)∫

l1

dz1

γ2(x)∫

r1

K̃
(
z, u

(
γ−1
1 (z), γ−1

2 (z)
)
, ∂x1u

(
γ−1
1 (z), γ−1

2 (z)
)
,

∂x2u
(
γ−1
1 (z), γ−1

2 (z)
))
dz2.

(4.2)

where gi ∈ C2(D(gi)), i = 1, 2. Using the expression (4.2), we compute

u(A) = g1(l1) + g2(r1), u(B) = g1(l1) + g2(r2), u(D) = g1(l2) + g2(r1),

u(C) = g1(l2) + g2(r2) +

+

l2∫

l1

dz1

r2∫

r1

K̃
(
z, u

(
γ−1
1 (z), γ−1

2 (z)
)
, ∂x1u

(
γ−1
1 (z), γ−1

2 (z)
)
,

∂x2u
(
γ−1
1 (z), γ−1

2 (z)
))
dz2. (4.3)

Substituting (4.3) into (4.1) gives the correct equality.

Theorem 4.2. Let the conditions u ∈ C2(Ω), a ∈ C2(Ω), b ∈ C2(Ω), c ∈ C2(Ω),
f ∈ C1(Ω × R

3), and b2(x) − a(x)c(x) > 0 be satisfied. If for any curvilinear
characteristic parallelogram Π = {x | γ1(x) ∈ [l1, l2] ∧ γ2(x) ∈ [r1, r2]} ⊆ Ω with
vertices A(γ−1

1 (l1, r1), γ
−1
2 (l1, r1)), B(γ−1

1 (l1, r2), γ
−1
2 (l1, r2)), C(γ

−1
1 (l2, r2), γ

−1
2 (l2, r2)),

(γ−1
1 (l2, r1), γ

−1
2 (l2, r1)), where γi, i = 1, 2 are solutions of Eqs. (2.2) and γ−1

i are
defined as before, the equality (4.1) is satisfied, then the function u is a solution of
Eq. (2.1).

Proof. Let l2 = l + l1, r2 = r + r1. So, we can write the coordinates of points A, B, C
and D in the form

A(γ−1
1 (l1, r1), γ

−1
2 (l1, r1)), B(γ−1

1 (l1, r + r1), γ
−1
2 (l1, r + r1)),

C(γ−1
1 (l + l1, r + r1), γ

−1
2 (l + l1, r + r1)), D(γ−1

1 (l + l1, r1), γ
−1
2 (l + l1, r1)).

Let’s consider the expression

u(A)− u(B)

r
=
u(γ−1

1 (l1, r1), γ
−1
2 (l1, r1))− u(γ−1

1 (l1, r + r1), γ
−1
2 (l1, r + r1))

r
−−→
r→0

−−→
r→0

−∂ru(γ
−1
1 (l1, r1), γ

−1
2 (l1, r1)).

In the same way

u(C)− u(D)

r
−−→
r→0

∂ru(γ
−1
1 (l1 + l, r1), γ

−1
2 (l1 + l, r1)).

Now since

∂ru(γ
−1
1 (l1 + l, r1), γ

−1
2 (l1 + l, r1))− ∂ru(γ

−1
1 (l1, r1), γ

−1
2 (l1, r1))

l
−−→
l→0

−−→
l→0

∂l∂ru(γ
−1
1 (l1, r1), γ

−1
2 (l1, r1)),
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we obtain lim
(r,l)→(0,0)

(lr)−1(u(A)− u(B) + u(C)− u(D)) = ∂l∂ru(γ
−1
1 (l1, r1), γ

−1
2 (l1, r1)).

Similarly, we get

lim
(r,l)→(0,0)

1

lr

l+l1∫

l1

dz1

r+r1∫

r1

K̃
(
z, u

(
γ−1
1 (z), γ−1

2 (z)
)
, ∂x1u

(
γ−1
1 (z), γ−1

2 (z)
)
,

∂x2u
(
γ−1
1 (z), γ−1

2 (z)
))
dz2 =

= K̃
(
z = (l1, r1), u

(
γ−1
1 (z), γ−1

2 (z)
)
, ∂x1u

(
γ−1
1 (z), γ−1

2 (z)
)
, ∂x2u

(
γ−1
1 (z), γ−1

2 (z)
))
.

Thus

lim
(r,l)→(0,0)

1

lr

(
u(A)− u(B) + u(C)− u(D)−

−

l+l1∫

l1

dz1

r+r1∫

r1

K̃
(
z, u

(
γ−1
1 (z), γ−1

2 (z)
)
, ∂x1u

(
γ−1
1 (z), γ−1

2 (z)
)
, ∂x2u

(
γ−1
1 (z), γ−1

2 (z)
))
dz2

)
=

= lim
(r,l)→(0,0)

u(A)− u(B) + u(C)− u(D)

lr
−

− lim
(r,l)→(0,0)

1

lr

l+l1∫

l1

dz1

r+r1∫

r1

K̃
(
z, u

(
γ−1
1 (z), γ−1

2 (z)
)
, ∂x1u

(
γ−1
1 (z), γ−1

2 (z)
)
,

∂x2u
(
γ−1
1 (z), γ−1

2 (z)
))
dz2 = ∂l∂ru(γ

−1
1 (l1, r1), γ

−1
2 (l1, r1))−

−
K
(
z = (l1, r1), u

(
γ−1
1 (z), γ−1

2 (z)
)
, ∂x1u

(
γ−1
1 (z), γ−1

2 (z)
)
, ∂x2u

(
γ−1
1 (z), γ−1

2 (z)
))

β(γ−1
1 (l1, r1), γ

−1
2 (l1, r1))

.

This means that the function u satisfies at the point
(γ−1

1 (z = (y1 = l1, y2 = r1)), γ
−1
2 (z)) the differential equation

β(γ−1
1 (z), γ−1

2 (z))∂y1∂y2u(γ
−1
1 (z), γ−1

2 (z)) =

= f
(
γ−1
1 (z), γ−1

2 (z), u
(
γ−1
1 (z), γ−1

2 (z)
)
,

∂x1u
(
γ−1
1 (z), γ−1

2 (z)
)
, ∂x2u

(
γ−1
1 (z), γ−1

2 (z)
))

−

−Aγ1
(
γ−1
1 (z), γ−1

2 (z)
) (
∂x1u

(
γ−1
1 (z), γ−1

2 (z)
)
∂y1γ

−1
1 (z) +

+ ∂x2u
(
γ−1
1 (z), γ−1

2 (z)
)
∂y1γ

−1
2 (z)

)
−

−Aγ2
(
γ−1
1 (z), γ−1

2 (z)
) (
∂x1u

(
γ−1
1 (z), γ−1

2 (z)
)
∂y2γ

−1
1 (z) +

+ ∂x2u
(
γ−1
1 (z), γ−1

2 (z)
)
∂y2γ

−1
2 (z)

)
,

(4.4)

where x1 = γ−1
1 (y1, y2), x2 = γ−1

2 (y1, y2). By virtue of the arbitrariness of Π ⊆ Ω, Eq.
(4.4) is true for any point (x1 = γ−1

1 (z = (l1, r1)), x2 = γ−1
2 (z = (l1, r1))) ∈ Ω.

Making the change of variables x1 = γ−1
1 (y1, y2), x2 = γ−1

2 (y1, y2) in Eq. (4.4), we
obtain Eq. (2.1).

Note that formula (4.1) can be considered as a kind of mean value theorem.
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5 Applications

5.1 Wave equation

Let’s consider Au(x1, x2) = ∂2x1
u(x1, x2)−a

2∂2x2
u(x1, x2), where a > 0 (for definiteness).

Then we have γ1(x1, x2) = x2−ax1, γ2(x1, x2) = x2+ax1, γ
−1
1 (y1, y2) = (y2−y1)/(2a),

γ−1
2 (y1, y2) = (y1 + y2)/2, Aγ1 ≡ 0, Aγ2 ≡ 0.

5.1.1 Parallelogram identity

Let f ≡ 0. In this case, formula (4.1) transforms to

u

(
r1 − l1
2a

,
l1 + r1

2

)
− u

(
r2 − l1
2a

,
l1 + r2

2

)
+

+ u

(
r2 − l2
2a

,
l2 + r2

2

)
− u

(
r1 − l2
2a

,
l2 + r1

2

)
= 0, (5.1)

where l1, l2, r1 and r2 are some real numbers. Eq. (5.1) is the well-known parallelogram
identity for the wave equation.

5.1.2 Goursat problem

Let’s consider the Goursat problem [15]

{
(∂2x1

− a2∂2x2
)u(x) = f(x), 0 < x1,−ax1 < x2 < ax1,

u(x1, x2 = ax1) = φ(1)(x1), u(x1, x2 = −ax1) = φ(1)(x2), x1 > 0,
(5.2)

where f ∈ C1({x | 0 6 x1,−ax1 6 x2 6 ax1}), φ
(1) ∈ C2([0,∞)), φ(2) ∈ C2([0,∞)) and

φ(1)(0) = φ(2)(0). We can write the classical solution of (5.2) using the formula (4.1).

If we choose C(x1, x2), B

(
ax1 + x2

2a
,
ax1 + x2

2

)
, D

(
ax1 − x2

2a
,
x2 − ax1

2

)
, A(0, 0) and

apply (4.1), we obtain

u(x1,x2) = u(C) = φ(1)

(
ax1 + x2

2a

)
+ φ(2)

(
ax1 − x2

2a

)
− φ(1)(0)−

−
1

4a2

x2−ax1∫

0

dy1

x2+ax1∫

0

f

(
y2 − y1
2a

,
y1 + y2

2

)
dy2, 0 < x1,−ax1 < x2 < ax1.
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x2

x1

x2  a x1

x2  -a x1

C (x1,x2)

A(0, 0)

B

a x1 + x2

2 a

,
a x1 + x2

2

D

a x1 - x2

2 a

,
x2 - a x1

2

Fig. 2. To the Goursat problem (5.2).

5.1.3 Mixed problem

Let’s consider the first mixed problem [12]






(∂2x1
− a2∂2x2

)u(x) = f(x), x ∈ (0,∞)× (0,∞),
u(0, x2) = φ(x1), ∂x1u(0, x2) = ψ(x2), x1 > 0,
u(x1, 0) = µ(x1), x2 > 0,

(5.3)

where f ∈ C1([0,∞)× [0,∞)), φ ∈ C2([0,∞)), ψ ∈ C1([0,∞)), µ ∈ C2([0,∞)).

If x2 − ax1 > 0, then the solution of (5.3) at the point (x1, x2) can be defined by
d’Alembert formula

u(x1, x2) =
φ(x2 − ax1) + φ(x2 + ax1)

2
+

1

2a

x2+ax1∫

x2−ax1

ψ(ξ) dξ +

+
1

2a

x1∫

0

dτ

x2+a(x1−τ)∫

x2−a(x1−τ)

f(τ, ξ)dξ, x2 − ax1 > 0, x1 > 0, x2 > 0.

(5.4)

If x2−ax1 < 0, then we can use the parallelogram identity (4.1) to derive the solution

of (5.3) at the point (x1, x2). We can choose C(x1, x2), B
(
x1 −

x2
a
, 0
)
, D
(x2
a
, ax1

)
,

A (0, ax1 − x2), apply (4.1) and obtain
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u(x1, x2) = µ
(
x1 −

x2
a

)
+
φ (ax1 + x2)− φ (ax1 − x2)

2
+

1

2a

ax1+x2∫

ax1−x2

ψ(ξ) dξ +

+
1

2a

x2
a∫

0

dτ

ax1+x2−aτ∫

ax1−x2+aτ

f(τ, ξ)dξ −
1

4a2

x2−ax1∫

ax1−x2

dy1

ax1+x2∫

ax1−x2

f

(
y2 − y1
2a

,
y2 + y1

2

)
dy2,

x2 − ax1 < 0, x1 > 0, x2 > 0.
(5.5)

x1

x2

x2  a x1

C (x1,x2)

A(0, a x1 - x2)

uA  ϕ(a x1 - x2)

Bx1 -
x2

a
, 0

u(B)  μx1 -
x2

a

 

 D

x2

a

, a x1

x2 - a x1 > 0

x2 - a x1 < 0

Fig. 3. To the first mixed problem (5.3).

Using the representations (5.4) and (5.5), we can easily derive the necessary and suf-
ficient matching conditions µ(0) = φ(0), µ′(0) = ψ(0) and µ′′(0) = a2φ′′(0) + f(0, 0)
under which the solution u of the first mixed problem (5.3) will be classical.

5.2 Nonlinear wave equation

For convenience, we will present equations in divergence form later in this section. Let’s
consider Au(x1, x2) = ∂x1∂x2u(x1, x2). Then we have γ1(x1, x2) = x1, γ2(x1, x2) = x2,
γ−1
1 (y1, y2) = y1, γ

−1
2 (y1, y2) = y2, Aγ1 ≡ 0, Aγ2 ≡ 0.

5.2.1 Darboux problem

Let’s consider the second Darboux problem for a nonlinear wave equation in divergence
form [11]

{
∂x1∂x2u(x) + λg(x, u(x)) = f(x), 0 < x1, αx1 < x2 < βx1,
u(x1, x2 = αx1) = u(x1, x2 = βx1) = 0, x1 > 0,

(5.6)

where λ ∈ R, 0 < α < 1 < β < ∞, f ∈ C1({x | 0 6 x1 ∧ αx1 6 x2 6 βx1}),
g ∈ C1({x | 0 6 x1 ∧αx1 6 x2 6 βx1}×R), |g(x1, x2, z)| 6 L1 +L2|z|, L1 > 0, L2 > 0.
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We want to obtain an expression for the classical solution u of the problem (5.6)
at the point P0(x1, x2). Let us denote by P1M0P0N0 the characteristic parallelo-
gram, whose vertices N0 and M0 lie, respectively, on the segments x2 = αx1 and
x2 = βx1, that is: N0 := (x1, αx1), M0 := (β−1x2, x2), P1 := (β−1x2, αx1). Since
P1 ∈ {x | 0 < x1 ∧ αx1 < x2 < βx1}, we construct analogously the characteristic
parallelogram P2M1P1N1 whose vertices N1 and M1 lie, respectively, on the segments
x2 = αx1 and x2 = βx1. Continuing this process, we obtain the characteristic par-
allelogram Pi+1MiPiNi for which Ni ∈ {x | x2 = αx1}, Mi ∈ {x | x2 = βx1}, and

Ni :=
(
x
(i)
1 , αx

(i)
1

)
, Mi :=

(
β−1x

(i)
2 , x2

)
, Pi+1 :=

(
β−1x

(i)
2 , αx

(i)
1

)
if Pi :=

(
x
(i)
1 , x

(i)
2

)
.

x2

x1

M0

M1

M2

M3

N0

N1

N2

N3

P0

P1

P2

P3

x2  β x1

x2  α x1

Fig. 4. To the second Darboux problem (5.6).

By (4.1) and (5.6), we have

u(Pi) = u(Mi) + u(Ni)− u(Pi+1) +

∫∫

Pi+1MiPiNi

[f(z)− λg(z, u(z))]dz =

= −u(Pi+1) +

∫∫

Pi+1MiPiNi

[f(z)− λg(z, u(z))]dz, i ∈ N ∪ {0}.

It follows that

u(x1, x2) = u(P0) =

∫∫

P1M0P0N0

[f(z)− λg(z, u(z))]dz− u(P1) =
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= u(P2) +

∫∫

P1M0P0N0

[f(z)− λg(z, u(z))]dz−

∫∫

P2M1P1N1

[f(z)− λg(z, u(z))]dz =

= (−1)nu(Pn) +
n−1∑

i=0

(−1)i
∫∫

Pi+1MiPiNi

[f(z)− λg(z, u(z))]dz.

It is clear that lim
n→∞

u(Pn) = u
(
lim
n→∞

Pn

)
= u(0, 0) = 0. Hence, passing to the limit, as

n→ ∞, we obtain the following integral representation

u(x1, x2) =
∞∑

i=0

(−1)i
∫∫

Pi+1MiPiNi

[f(z)− λg(z, u(z))]dz. (5.7)

The further solution of the problem (5.6) is connected with the study of the solvability
of Eq. (5.7), and it is given in the work [11]. It turns out that under the conditions
given in the statement of the problem (5.6), it has a unique classical solution. But we
still notice that in the linear case, i.e., when λ = 0, the formula (5.7) transforms into

u(x1, x2) =
∞∑

i=0

(−1)i
∫∫

Pi+1MiPiNi

f(z)dz, (5.8)

The series in the right-hand side of equality (5.8) is uniformly and absolutely convergent
[11]. Thus, in the linear case, there exists the solution u of (5.6) written in the explicit
analytic form (5.8).

5.3 Linear second-order hyperbolic equation

As in the previous subsection, we consider Au(x1, x2) = ∂x1∂x2u(x1, x2). Then we have
γ1(x1, x2) = x1, γ2(x1, x2) = x2, γ

−1
1 (y1, y2) = y1, γ

−1
2 (y1, y2) = y2, Aγ1 ≡ 0, Aγ2 ≡ 0.

5.3.1 Goursat problem

Let’s consider the Goursat problem for a linear second-order hyperbolic equation [12]





∂x1∂x2u(x) + a(x)∂x1u(x) + b(x)∂x2u(x) + c(x)u(x) = f(x), x
(0)
1 < x1, x

(0)
2 < x2,

u(x1 = x
(0)
1 , x2) = φ(x2), x2 > x

(0)
2 ,

u(x1, x2 = x
(0)
2 ) = ψ(x1), x1 > x

(0)
1 ,

(5.9)

where f ∈ C({x | x
(0)
1 6 x1 ∧ x

(0)
2 6 x2}), φ ∈ C1([x

(0)
2 ,∞)), ψ ∈ C1([x

(0)
1 ,∞)) and

φ(x
(0)
2 ) = ψ(x

(0)
1 ). We can write the classical solution of (5.9) using the formula (4.1).

If we choose C(x1, x2), B(x
(0)
1 , x2), D(x1, x

(0)
2 ), A(x

(0)
1 , x

(0)
2 ) and apply (4.1), we obtain

u(x) = u(C) = φ(x2) + ψ(x1)− ψ(x
(0)
2 ) +
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+

x1∫

x
(0)
1

dy1

x2∫

x
(0)
2

[f(y)− a(y)∂x1u(y)− b(y)∂x2u(y)− c(y)u(y)]dy2. (5.10)

A representation of the solution in the form of the integro-differential equation (5.10)
is obtained. Under the conditions specified in the formulation of the problem (5.9),
Eq. (5.10) will be solvable [12], and the function u will have the required smoothness.
It proves the solvability of the problem (5.9).

6 Conclusion

In this paper, we have generalized the parallelogram rule for the wave equation to the
case of a semilinear hyperbolic equation of the second order. This identity connects not
only the values of the points at the vertices of the parallelogram but also the continuum
of function values on the parallelogram, in contrast to the linear cases with constant
coefficients considered earlier. We have shown how the obtained results can be used in
combination with other methods to solve various mixed problems.
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