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Abstract: Flexible shrouded blades are commonly adopted in the last stages of steam turbines
where complicated dynamical behavior can be induced by dry friction force generated on contacting
interfaces between adjacent shrouds and the geometric nonlinearity due to the structural flexibility of
the blades. In this paper, combination resonance caused by contact and friction forces generated on
shroud interfaces is investigated, which is a concurrence of 1:3 internal resonance involving the first
and second modes in the flapwise direction and the primary resonance of the first flapwise mode.
The stiffness and damping at the contact interface are obtained by linearizing the contact and friction
forces between shrouds through the harmonic balance method. The vibrating blade is modeled as a
beam with a concentrated mass of which the responses under the combination resonance are solved
through the multiple-scale method. Sensitivities of response with respect to the angle of shrouds,
contact stiffness and rotation speed are illustrated, and the influences of these parameters on the
periodicity and amplitudes of steady responses are demonstrated. The parametric regions where
the combination resonance occurs are pointed out. Finally, parametric analyses are presented to
show how the amplitude–frequency relation of the multiple-scale solutions under the combination
resonance vary with detuning and design parameters. The present research provides a designing
basis for improving the dynamic performance of flexible shrouded blades and suppressing vibrations
of blades by adjusting structural parameters in practical engineering.

Keywords: flexible shrouded blade; combination resonance; contact and friction; harmonic balance
method; method of multiple scales

1. Introduction

Shrouds have been widely used by developers of multi-stage steam turbines to dis-
sipate vibratory energy and reduce the stress of rotating bladed blisks for the purpose of
improving their structural reliability [1]. To ensure the constant flow rate of the steam,
the blades mounted on the last-stage blisk are generally designed to be the longest with
considerable structural flexibility, which causes an effect of geometric nonlinearity that
cannot be ignored. On the other hand, there exists contact and dry friction on the contacting
interfaces between adjacent shrouds, which intensifies the nonlinear characteristics as far
as the dynamic of the shrouded blades is concerned.

Various studies were published previously devoted to modeling the shrouded blade of
turbines, covering the topics of modeling of blades as well as the contact force between adja-
cent shrouds. Single-blade modeling was adopted to understand the dynamical properties
of flexible turbine blades [2,3]. In some publications, the interaction between the reference

Machines 2024, 12, 59. https://doi.org/10.3390/machines12010059 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines12010059
https://doi.org/10.3390/machines12010059
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://doi.org/10.3390/machines12010059
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines12010059?type=check_update&version=1


Machines 2024, 12, 59 2 of 29

blade and the adjacent blades [4–6] was considered, while a few studies were aimed at the
vibration of the whole blade disk [7]. Zhou et al. [8] investigated the transverse vibration
of composite blades of a wind turbine using a generalized Timoshenko beam. Slender
blades that resembled the beam model and a rigid disk were integrated into a continuous
model by Shadmani [9] in modal analysis of a turbine blisk. As for the contacts between
adjacent shrouds, various models were published for evaluating the inter-shroud action of
friction and contact. The effects of macro- and micro-slip between the neighboring blades
were established by Griffin [10] and later publications such as [11,12]. Later, Yang and
Menq established a special model to predict the resonance of structural response possessing
a three-dimensional frictional constraint [13]. Nan et al. [14] translated the contact and
friction that acted on the shroud interfaces into an equivalent stiffness as well as damping
by means of the harmonic balance method.

In essence, the contact between the shrouds is physically nonlinear and has been
regularly simplified as a piecewise linear function of the blade motion. In the view of
dynamics, such contact force is attributable to complicated behaviors, e.g., self-excited
vibrations, bifurcation of motion, chaos and switch of stability [15]. He et al. [16] proposed
a full set of blades subjected to friction and impact forces due to shroud contacting and
demonstrated various types of periodic, quasi-periodic and even chaotic motions of the
blades. He et al. [17] studied the interaction of bending and torsional vibration of blades,
considering the rub and impact between shrouds. As for the nonlinear dynamics of full
blisks, achievements were made in mistuned disks, nonlinear resonance frequencies and
localization phenomena [18–23].

For the combination resonance of the turbine blade, most of the existing research
attended to the internal resonance [24–26], primary resonance [27,28] or combination reso-
nance with both internal and sub- or super-harmonic responses [29–31]. A few publications
were dedicated to the combination resonance consisting of the internal and primary res-
onances of the flexible turbine blade. Li et al. [32] investigated the nonlinear vibration
of a blade simultaneously undergoing two resonances (i.e., internal as well as primary),
considering aerodynamic force, damping and structural nonlinearity. Yuan and Wang
studied internal resonance, primary resonance and the combined multiple modal reso-
nances of a blade [33], where they demonstrated the contribution of primary and internal
resonances to the combination resonance in terms of frequencies and energy. It is worth
pointing out that, despite the existent works on the nonlinear vibrations of bladed blisks,
the combination resonance induced by contact and friction between neighboring blades has
yet to be thoroughly understood. Such understanding will provide a better understanding
of the dynamical behaviors of flexible shrouded blades and how shroud design influences
the blade vibration under the situation of combination resonance.

In the present study, the dynamics of a flexible blade mounted with a shroud are
investigated, focusing particularly on the combination resonance of blade vibration that
is induced by the contact as well as friction forces applied on the shroud. Firstly, the
equivalent stiffness and damping of the shroud due to the normal contact as well as the
friction are obtained through the method of harmonic balance, and the blade is simplified
as one single continuous beam attached by a concentrated mass. A steady response under
the combination resonance is presented through the multiple-scale method. Afterward,
influences of design parameters on periodicities and amplitudes are demonstrated for the
steady responses. Jumping of amplitude due to the primary resonance and the transfer of
vibration energy between resonance modes excited by the internal resonance are pointed
out. Finally, amplitude–frequency curves of the multiple-scale solutions under the com-
bination resonance are derived. Parametric analyses are presented to show the effect of
detuning and key design parameters on the first and second flapwise modes.

2. Governing Equations of Flexible Shrouded Blade

Figure 1 depicts the sketch of a perfectly tuned, rotating shrouded disk that is com-
monly used in steam turbines. For such a blisk, all of the shrouded blades are mounted
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circumferentially and separated in equal space [34]. Hence, the blisk can be considered to
have a cyclic symmetry. In addition, the blades of the final stage of the turbine generally
have a large span size to ensure the constant flow rate of the working medium, which will
enhance the flexibility of the blade.
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Figure 1. Mechanical model of shrouded rotating disk.

To focus on the overall dynamics of the blade, a macro-slip model is adopted in
the present work. The dimension of the shroud mounted at the tip of the blade is small
compared with the blade length and is generally rigid as opposed to the long and flexible
blade, which can be further treated as a single mass point. The normal contact force
between the adjacent shrouds is modeled by a linear spring [16]. Accordingly, the flexible
shrouded blade is modeled as a beam with an attached mass that is placed at the tip of the
blade, as shown in Figure 2. A Cartesian frame can be set up for the blade with the origin
placed at the center of gravity of the root and three axes of x (axial direction), y (flapwise
direction) and z (edgewise direction). α represents the tilting angle of the shroud, and Ω is
the rotation speed. L is the length of the blade. ks and δs are contact (normal) stiffness and
the circumferential gap between shrouds, respectively.
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2.1. Dynamic Model of Contact between Adjacent Shrouds

Prior to deriving the governing equation of the blade motion, it is necessary to describe
the contact action between adjacent shrouds, which is a contribution to the nonlinear
dynamics and combination resonance. Hereafter, the equivalent stiffness and damping of
the normal and friction between adjacent shrouds are established through the method of
harmonic balance.

In this research, the contact force is presumed to change as a piecewise linear function
of the relative displacement of two adjacent shrouds, whereas friction carries typical
nonlinear characteristics. The states of contact (e.g., separation, stick or slip) depend upon
relative displacements in both normal and tangential directions.

In Figure 3, the non-conservative forces on the shroud are aerodynamic force (Q),
normal contact force (Ns) and friction (Fs), where

Q = Q0sin(lΩt), (1)

with Q0 being the amplitude and l the number of guided vanes of the upstream inlet [27].
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The flapwise displacement of the blade, v, can be assumed as [14]

v = Bcos(lΩt − ϕ) = Bcos ϑ, (2)

where B and ϕ stand for the amplitude and phase angle of displacement v, respectively.
Then, the contact force between two adjacent shrouds is modeled as

Ns =


−ks(v − δs)sin α, v > δs

0, −δs ≤ v ≤ δs
−ks(v + δs)sin α v < −δs

(3)

As for the friction force between two neighboring shrouds, there are two possible
situations during one cycle of the vibration based on the change in the normal force
when the macro-slip model is adopted: (1) Ns is not zero and time varies during shroud
contacting, and (2) Ns is zero when two shrouds separate. The hysteretic loop of the friction
force Fs changes along with the tangential relative displacement are depicted in Figure 4.
Different from the hysteretic loop of the friction in [14], the influence of the normal force on
sliding friction is considered in this paper.

As depicted in Figure 4, the friction force between shrouds starts from point A (ϑ = 0)
and changes clockwisely according to the hysteresis loop. Section AB corresponds to the
phase of static friction. Then, from point B (ϑ = ϑ1) to point C (ϑ = ϑ2), the blade begins
to slide towards the opposite direction. The segment of BC corresponds to the phase of
sliding friction. The separation of adjacent shrouds takes place at point C, and the friction
declines to zero at D (ϑ = ϑ2). Subsequently, vt continues to decrease, and the state of
friction moves from D to D′ (ϑ = π − ϑ2) where the blade starts to contact the blade from
the other side. Section D′E′ also corresponds to the phase of static friction, where the blade
begins to slide at point E′ (ϑ = ϑ3). After that, the negative vt reaches the maximum at A′

(ϑ = π). Notably, the section A′A in the loop is symmetric with section AA′.
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Based on the aforementioned hysteretic behavior, the friction force can be modeled in
terms of the state of contact between adjacent blades:

Fs =



kt(vt − B cos α) + µks(v − δs) sin α, 0 ≤ ϑ < ϑ1, (A − B)
−µks(v − δs) sin α, ϑ1 ≤ ϑ < ϑ2, (B − C)

0, ϑ2 ≤ ϑ < π − ϑ2, (D − D′)
kt(vt + δs cos α), π − ϑ2 ≤ ϑ < ϑ3, (D′ − E′)

−µks(v + δs) sin α, ϑ3 ≤ ϑ < π, (E′ − A′)
kt(vt + B cos α) + µks(v + δs) sin α, π ≤ ϑ < π + ϑ1, (A′ − B′)

µks(v + δs) sin α, π + ϑ1 ≤ ϑ < π + ϑ2, (B′ − C′)
0, π + ϑ2 ≤ ϑ < 2π − ϑ2, (D′ − D)

kt(vt − δs cos α), 2π − ϑ2 ≤ ϑ < π + ϑ3, (D − E)
µks(v − δs) sin α, π + ϑ3 ≤ ϑ < 2π, (E − A)

, (4)

where kt and µ are shear stiffness and the friction coefficient of the contact surface of the
shroud. ϑ1, ϑ2 and ϑ3 are the phase angles of the friction force, defined as

kt =
2ks(1 − ν)

2 − ν
(5)

ϑ1 = cos−1
(

ktB + 2µksδstan α

ktB + 2µksBtan α

)
, ϑ2 = cos−1

(
δs

B

)
, ϑ3 = cos−1

(
− ktδs + µksδstan α

ktB + µksBtan α

)
(6)

To facilitate the dynamical analysis in the present study, the method of harmonic
balance (HBM) [35] is used to simplify contact (normal) and friction forces to obtain the
stiffness and damping at the shroud surface. For this purpose, one linearizes Ns as

Ns = Nkscos ϑ + Ncssin ϑ = knv + cn
dv
dt

, (7)

where
kn = − kssin α

Bπ
(2Bϑ2 + Bsin 2ϑ2 − 4δssin ϑ2). (8)

Based on Equation (3), the contribution of the blade velocity to the contact force is
negligible; hence, one assumes

cn = 0 (9)

The friction force between adjacent shrouds can be expressed as

Fs = Fkscos ϑ + Fcssin ϑ = k f v + c f
dv
dt

, (10)

where k f and c f represent the stiffness and damping of Fs, respectively.
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k f =
1

Bπ

 ktB cos α
[
(ϑ3 + ϑ2 + ϑ1 − π) + (sin 2ϑ3+sin 2ϑ2+sin 2ϑ1)

2 − 2 sin ϑ1

]
+2ktδs cos α(sin ϑ3 − sin ϑ2) + µksB sin α

(
ϑ1 +

B sin 2ϑ1
2

)
− 2µksδs sin α sin ϑ1

 (11)

c f =
1

−lΩBπ

 2ktB cos α
[
(cos ϑ1 − 1) + 1−cos 2ϑ1+cos 2ϑ2−cos 2ϑ3

4

]
−2ktδs cos α(cos ϑ3 + cos ϑ2)

+2µksδs sin α(cos ϑ1 − cos ϑ3 − 1)− µksB sin α cos 2ϑ1−1
2

 (12)

2.2. Governing Equations of Blade Vibration

The blade in the present study is modeled as a beam attached by a concentrated
shroud mass at the tip of the blade. For blades carrying small installation angles, their
torsional rigidities are sufficient; hence, the twisting movement of the rotating blade can be
effectively neglected. Thus, the edgewise deformation of the blade caused by the torsion
should be neglected. Additionally, the dynamic spanwise (axial) displacement can be
described as minor as opposed to the pre-stretching caused by centrifugal load on the
blade [32]. Therefore, the interaction between the flapwise and axial motions is fulfilled by
means of the centrifugal stiffening upon lateral vibration frequencies. Based on Figure 2,
the equation of the blade flapwise vibration is established, which reads

[ml + msδ(x − L)]
..
v + cv

.
v − [mlv + msδ(x − L)]Ω2v + (EIv′′ )′′ − (EAu′v′)′

−
(

1
2 EAv′3

)′
= (−Q + Nssin α + Fscos α)δ(x − L),

(13)

where v = v(x,t) is the dynamic displacement of the blade in the flapwise. u = u(x) is the
spanwise (axial) displacement generated by centrifugal force of the blade. The EI and EA
are bending and tensile stiffnesses of the blade, respectively. ml represents the linear mass
density of the blade. ms is the mass of shroud. The term EAv′3 is the outcome of geometric
nonlinearity due to the structural flexibility of the blade, and δ is the Dirac function of x.
The overhead dot and prime represent the partial derivatives of a physical quantity with
respect to time t and x, respectively, i.e.,

.
(·)
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�̈̄�𝑘 + �̄�𝑘,𝑘 �̇̄�𝑘 + �̄�𝑘,𝑘
2 �̄�𝑘 + �̄�𝑘,1�̄�1

3 + 3�̄�𝑘,2�̄�1
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∂(·)/∂t, and(·)′
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∂(·)/∂x (14)

Subsequently, the flapwise displacement of the blade is decomposed in the modal space

v(x, t) = ∑k γk(x)qk(t), (15)

where γk stands for the mode shape of order k of the beam under given boundary conditions
in the flapwise direction, and qk are the generalized (modal) coordinates of γk. Thus,
Equation (13) can be simplified using the Galerkin method considering the first- and
second-order modal coordinates, as

..
qk + ck

.
qk + ω2

k qk + gk,1q3
1 + 3gk,2q2

1q2 + 3gk,3q1q2
2 + gk,4q3

2 = fksin(lΩt), k = 1, 2, (16)

where ck, ωk, gk,j and fk are defined in Equations (A1)–(A8), Appendix A. Further, Equation (16)
can be rewritten with the introductions of non-dimensional notations:

qi =
qi
δs

and τ = Ωt, (17)

such that one has the compact governing equations
..
qk + ck,k

.
qk + ω2

k,kqk + gk,1q3
1 + 3gk,2q2

1q2 + 3gk,3q1q2
2 + gk,4q3

2 = f ksin(lτ), k = 1, 2, (18)

where ck, ωk, gk,j and f k are defined in Equations (A9)–(A15), Appendix A.



Machines 2024, 12, 59 7 of 29

3. Multiple-Scale Solutions under Combination Resonance

The multiple-scale method will be adopted in this section for solving Equation (18). To
construct the analytical solution of the problem, a small, artificial bookkeeping parameter
is introduced to order the quantities of dynamic displacements, damping and aerodynamic
forces before they are inserted into Equation (18). Thus, one has

qk = ε
∼
qk, ck,k = ε

∼
c k,k, f k = ε3

∼
f k, k = 1, 2 (19)

Herein, the regular scale of time is replaced with three temporal scales, i.e.,

T0 = t, T1 = εt, T2 = ε2t (20)

Then, q̃k is expanded using the power series of ε and the new scales

∼
qk = ∑2

j=0 εj∼qk,j(T0, T1, T2), k = 1, 2 (21)

Let Dj = ∂(·)/∂Tj and substitute Equations (19) and (21) back to Equation (18), then
equate their same orders of ε. In doing so, one obtains

order ε D2
0
∼
qk,0 + ω2

k
∼
qk,0 = 0 (22)

order ε2 D2
0
∼
qk,1 + ω2

k
∼
qk,1 = −2D0D1

∼
qk,0 −

∼
c k,kD0

∼
qk,0 (23)

order ε3 D2
0
∼
qk,2 + ω2

k
∼
qk,2 = Fk

(∼
q j,0,

∼
q j,1, l

)
, (24)

where k, j = 1, 2.
For Equation (22), let us assume that

∼
qk,0 = AkeiωkT0 + complex conjugate, k = 1, 2 (25)

and then substitute these back to Equation (23) to obtain

2D1 Ak +
∼
c k,k Ak = 0, k = 1, 2, (26)

which further leads to

∼
qk,1 = AkeiωkT0 + complex conjugate, k = 1, 2 (27)

The highest
∼
qk can be evaluated through the perpetual term of Equation (24).

A particular type of combination resonance is of present interest, i.e., when a particular
internal resonance takes places with ω2 = 3ω1 (“1:3”). To be specific, the frequencies of
the first-order flap mode are triple the second-order flapwise frequency, and alongside,
there is a primary resonance of the first flapwise mode (i.e., ω1 = l). Under this situation,
one can assume that εAk = 1/2αkeiβk . By introducing new phases γ1 = σ1T1 − β1,
γ2 = β2 − 3β1 − σ2T1, one obtains the equations of motion for the amplitudes of εAk

.
α1 = − c1,1

2
α1 −

3g1,2

8ω1
α2

1α2sin γ2 −
f1

2ω1
cos γ1 (28)

.
α2 = − c2,2

2
α2 +

g2,1

8ω2
α3

1sin γ2 (29)

and also for the phases of the motion

.
γ1 =

(
εσ2 +

c2
1,1

8ω1

)
− 3g1,1

8ω1
α2

1 −
3g1,3

4ω1
α2

2 −
3g1,2

8ω1
α1α2cos γ2 +

f1

2ω1
sin γ1 (30)
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.
γ2 =

(
3c2

1,1
8ω1

− c2
2,2

8ω2
− εσ1

)
−
(

9g1,1
8ω1

− 3g2,2
4ω1

)
α2

1 −
(

9g1,3
4ω1

− 9g2,4
4ω1

)
α2

2 +
3 f1

2ω1α1
sin γ1

−
(

9g1,2α1α2
8ω1

− g2,1α3
1

8ω1α2

)
cos γ2

(31)

The steady solutions for these responses are determined through vanishing the right
sides of Equations (28)–(31), which correspond to the fixed-point states of amplitudes of
the first and second flapwise modes as well as their phases. The stability of the steady
motion can be evaluated in terms of the eigenvalues of the following Jacobian matrix of the
fixed points

J =



∂
.
α1

∂α1

∂
.
α1

∂α2

∂
.
α1

∂
.
γ1

∂
.
α1

∂
.
γ2

∂
.
α2

∂α1

∂
.
α2

∂α2

∂
.
α2

∂
.
γ1

∂
.
α2

∂
.
γ2

∂
.
γ1

∂α1

∂
.
γ1

∂α2

∂
.
γ1

∂
.
γ1

∂
.
γ1

∂
.
γ2

∂
.
γ2

∂α1

∂
.
γ2

∂α2

∂
.
γ2

∂
.
γ1

∂
.
γ2

∂
.
γ2

, (32)

where the components of J are provided in Equations (A16)–(A19), Appendix A. The
response is said to be asymptotically stable if all of the eigenvalues possess negative
real parts.

Afterwards, the approximations of q1 and q2 can be obtained as

q1 = α1cos(lΩt − γ1) + O
(

ε3
)

(33)

q2 = α2cos(3lΩt − 3γ1 − γ2) + O
(

ε3
)

(34)

When the combination resonance happens, the steady responses are determined
through conditions[(

εσ1 + 3εσ2 +
c2

2,2
8ω2

)
6g1,2
ω1

α2
2 −

(
εσ1 +

c2
1,1

8ω1

)
2g2,1
ω2

α2
1 +

(
3g1,3g2,1
2ω1ω2

− 9g1,2g2,2
2ω1ω2

)
α2

1α2
2

+
3g1,1g2,1
4ω1ω2

α4
1 −

9g1,2g2,4
4ω1ω2

α4
2

2
]
=
(

f1g2,1α1
ω1ω2

)2
−
(

g2,1c1,1
ω2

α2
1 +

3g1,2c2,2
ω1

α2
2

)2 (35)

(
εσ1 + 3εσ2 +

c2
2,2

8ω2
−

2g2,2α2
1

4ω2
−

2g2,4α2
2

8ω2

)
=

(
g2,1α3

1
8ω2α2

)2

−
c2

2,2

4
(36)

Nonetheless, α1,2 are constrained by the inequalities

(
f1g2,1α1

ω1ω2

)2
−
(

f1g2,1c1,1

ω2
α2

1 +
3g1,2c2,2

ω1
α2

2

)2
≥ 0,

(
g2,1α3

1
4ω2α2

)2

−
c2

2,2

4
≥ 0 (37)

in order to assure the absolutes of sin γ1,2 and cos γ1,2 in Equations (28)–(31) are not greater
than 1.

In the solution procedure, a simulation is implemented using the Runge–Kutta method
with variable step size to obtain numerical results of Equation (18) and the analytical results
of the transient system (28)–(31), whereas the analytical steady Equations (35)–(36) are
solved through Newton’s iteration method. Nevertheless, it is necessary to solve the
amplitude of the steady response (i.e., B in Equation (2)) via iterations before the solution of
the governing equations begins. Such an iterative process for B is described in Appendix B.

4. Nonlinear Dynamics and Combination Resonance of Shrouded Blade

A flexible shrouded blade is used for examples and discussions. The major parameters
involving the blade design and operation are provided in Table 1. The natural frequencies
are ω1 = 0.7580 and ω2 = 2.9238 for the first-order and second-order modes in the flapwise
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direction. However, these frequencies become ω1 = 0.9993 and ω2 = 2.9954 when one
considers the action of contact and friction on the shroud. The condition for concurrence
of an internal resonance of type 1:3 between the two flapwise modes and the primary
resonance of the first flapwise mode is expected when considering the aforementioned
contact and friction.

Table 1. Major parameters of the blade.

Parameter Value Parameter Value

cv 10 N·s/m e 0.25 m
EI 5.41 × 104 N·m2 EA 1.08 × 109 N
ks 3.55 MN/m L 1.05 m
ml 40.13 kg/m ms 0.2 kg
Q0 50 α 60◦

δs 2.0 × 10−5 m l 1
µ 0.3 Ω 6900 r/min

To validate the proposed method, the steady responses of the original Equation (18) are
solved with the analytical, multiple-scale results qk through Equations (33)–(34), which are
obtained by computing Equations (28)–(31). As shown in Figure 5, these analytical solutions
are found in good agreement with their numerical counterparts. Their discrepancies
are inevitable, since higher order terms have been excluded from multiple-scale-based
expansions, and they appear more noticeable for the second flapwise mode than the first.
In summary, the proposed modeling and approximate approach are applicable for steady-
response solutions of the shrouded blade in the situation of combination resonance.
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Figure 5. Analytical and numerical steady responses. (a) First flapwise mode and (b) second
flapwise mode.

4.1. Steady Responses of Flexible Shrouded Blade

For flexible blades, the tilting angle and contact stiffness of the shroud are key to the
contact status of adjacent shrouds. Further, the blade rotating induces centrifugal load
and the subsequent spinning softening that reduces the axial stiffness of the blade. In the
following, the original governing Equation (18) is solved with various tilting angle, contact
stiffness and rotation speed values to reflect their influence on the response.

4.1.1. Effect of Tilting Shroud

The bifurcation diagram of the blade vibration is demonstrated using the tilting angle
of shroud varying between 0 and 90◦, Figure 6. Based on the characteristic of the steady
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response of the first-order and second-order flapwise modes, the range of the tilting angle
is divided into three stages, denoted by stage-I, -II and -III, respectively, with α1 = 38.96◦

and α2 = 83.65◦ being the dividing points that separate the stages.
The steady responses of the first-order mode q1 under variable α are shown in Figure 6a.

In stage-I, q1 is quasi-periodic motion. Then, q1 becomes periodic-1, and the resonance peak
of the primary resonance, ω1 = l, can be observed in stage-II. In addition, the jumping of
the amplitude and the phenomenon of so-called “hardening” can be seen for stage-II, owing
to the geometric nonlinearity originating from Equation (13). Finally, for stage-III, q1 is
converted back to quasi-periodic motion. It is worthwhile to mention the curving of the
resonance summit towards the side where the ratio between the frequency of external
excitation and natural frequency, l/ω1, goes up is defined as the hardening spring. In these
cases, the jumping of the amplitude and the unstable motion appear in the steady response.
However, the steady response is obtained through the Runge–Kutta method in Section 4.1,
by which only the stable motion can be observed.

Corresponding to the first flapwise mode, the periodicity of q2 is the same as that
of q1 in stage-I and -III, but q2 represents 3-periodic motion in stage-II, Figure 6b. In addition,
the jumping of amplitude and the hardening phenomenon caused by the primary resonance
can also be observed in stage-II. This is because the primary and internal resonances concur
as ω1 = l and ω2 = 3ω1, which leads to the desired combination resonance. Therefore,
the primary resonance is also observed in q2 due to the exchanges in energy between the
first-order and second-order modes in the flapwise direction.
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III), and the results are provided through Figures 7–10. As found in Figure 7, both �̄�ଵ and �̄�ଶ are quasi-periodic motions with spectra containing the aerodynamic frequency 𝑓ொ, the 
first flapwise frequency 𝑓q1  and the combined frequencies of 𝑓q1 + 2𝑓ொ , 2𝑓q1 + 𝑓ொ  and 3𝑓ொ. Further, the amplitude of �̄�ଵ is synchronous and π is out-of-phase against the ampli-
tude of �̄�ଶ. This implies that it is likely to have internal resonance when 𝛼 is small, since 
the curving of the resonance summit occurs as the blade appears hardened in this sce-
nario. The energy carried by the first order flapwise mode is able to transmit to the second 
flapwise mode and vice versa. 

 

 

Figure 6. Bifurcation of the blade under variable α. (a) q1 and (b) q2.

Further examinations are made focusing on the blade vibration carrying four different
tilts angle of shrouds: 4.07◦ (in stage-I), 40.28◦, 40.28◦ (in stage-II) and 85.48◦ (in stage-III),
and the results are provided through Figures 7–10. As found in Figure 7, both q1 and q2 are
quasi-periodic motions with spectra containing the aerodynamic frequency fQ, the first
flapwise frequency fq1 and the combined frequencies of fq1 + 2 fQ, 2 fq1 + fQ and 3 fQ.
Further, the amplitude of q1 is synchronous and π is out-of-phase against the amplitude
of q2. This implies that it is likely to have internal resonance when α is small, since the
curving of the resonance summit occurs as the blade appears hardened in this scenario. The
energy carried by the first order flapwise mode is able to transmit to the second flapwise
mode and vice versa.
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Figure 7. Steady responses of the blade with α = 4.07°. (a) Time history, (b) frequency spectra and 
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The steady responses of the blade with 𝛼 = 40.28° and 44.81° are shown in Figures 8 
and 9, respectively. �̄�ଵ and �̄�ଶ are identified as periodic-1 motion and periodic-3 motion, 
respectively, and both �̄�ଵ  and �̄�ଶ  are governed by 𝑓ொ  and its odd-fold multiples (i.e., 3𝑓ொ ,  5𝑓ொ  and so forth). The exchanges in energy between the modes can be observed 
clearly in Figure 8 but not in Figure 9. This is explained by the fact that the primary reso-
nance is subjected to a strong enhancement on the steady response, which happens when 𝛼 = 44.81°. Although the amplitude increases under primary resonance, the change in mo-
tion caused solely by internal resonance is minor and thus can hardly be observed in Fig-
ure 9. 
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Figure 7. Steady responses of the blade with α = 4.07◦. (a) Time history, (b) frequency spectra and
(c) phase diagram of q1; (d) time history, (e) frequency spectra and (f) phase diagram of q2.

The steady responses of the blade with α = 40.28◦ and 44.81◦ are shown in Figures 8
and 9, respectively. q1 and q2 are identified as periodic-1 motion and periodic-3 motion,
respectively, and both q1 and q2 are governed by fQ and its odd-fold multiples (i.e., 3 fQ, 5 fQ
and so forth). The exchanges in energy between the modes can be observed clearly in
Figure 8 but not in Figure 9. This is explained by the fact that the primary resonance is
subjected to a strong enhancement on the steady response, which happens when α = 44.81◦.
Although the amplitude increases under primary resonance, the change in motion caused
solely by internal resonance is minor and thus can hardly be observed in Figure 9.
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Figure 8. Steady responses of the blade with α = 40.28◦. (a) Time history, (b) frequency spectra and
(c) phase diagram of q1; (d) time history, (e) frequency spectra and (f) phase diagram of q2.

The steady response of the blade when α = 85.48◦ is shown in Figure 10. Both q1 and
q2 are found to be quasi-periodic with dominant spectra of fQ, the first flapwise frequency
fq1 and the combined frequencies of fq1 + 2 fQ, 2 fq1 + fQ and 3 fQ. With the current section
of α, the aforementioned exchanges in energy between the aforementioned modes cannot be
observed. In fact, the frequency difference between these modes grows with the increasing
α (c.f. Figure 6b), which weakens the effect of internal resonance on these modes.
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Figure 9. Steady responses of the blade with α = 44.81◦. (a) Time history, (b) frequency spectra and
(c) phase diagram of q1; (d) time history, (e) frequency spectra and (f) phase diagram of q2.

4.1.2. Effect of Contact Stiffness

In the following, the vibration response of the blade is studied using different stiffness
values of normal contact. The bifurcation of the blade vibration is shown in Figure 11,
where the contact stiffness ranges from 1 MN/m to 10 MN/m. Similar to Section 4.1.1, the
range of ks is divided into three stages, where ks1 = 1.72 and ks2 = 6.97 MN/m are the
dividing points of these stages.
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Figure 10. Steady responses of the blade with α = 85.48◦. (a) Time history, (b) frequency spectra and
(c) phase diagram of q1; (d) time history, (e) frequency spectra and (f) phase diagram of q2.

In Figure 11a, the steady q1 is identified as a periodic-1 motion in the entire range
of ks. Again, jumping of amplitude and hardening spring due to the primary resonance
can be observed in stage-II. As for the steady second flapwise mode q2, it is periodic-1
in stages-I and III but periodic-3 in stage-II, Figure 11b. Moreover, the energy exchanges
caused by internal resonance occur in stage-II; thereby, the jumping of the amplitude and
the hardening spring due to the primary resonance can also be observed.
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Figure 11. Bifurcation of the blade with variable ks. (a) q1 and (b) q2.

Further explorations are carried out using three different contact stiffness values, i.e.,
1.407 MN/m (in stage-I), 2.764 MN/m (in stage-II) and 8.191 MN/m (in stage-III), and the
response is provided through Figures 12–14. As depicted in Figure 12, both q1 and q2 are
periodic-1 motions and are spectrally governed by fQ and its odd multiples (3 fQ and 5 fQ,
etc.). Similar to previous cases, the amplitudes of q1 and q2 are both periodic, while
the amplitude of q1 is synchronous and π is out-of-phase against the amplitude of q2.
Comparing the results presented in the three figures, it is found that the first flapwise
modal response is always period-1. Nonetheless, the response of the second flapwise mode
changes from a period-1 to period-3 motion and then returns to period-1 when the stiffness
of normal contact increases.
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spectra and (c) phase diagram of q1; (d) time history (e) frequency spectra and (f) phase diagram of q2.
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Figure 13. Steady responses of the blade with ks = 2.764 MN/m. (a) Time history, (b) frequency spec-

tra and (c) phase diagram of �̄�1; (d) time history, (e) frequency spectra and (f) phase diagram of �̄�2. 
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Figure 13. Steady responses of the blade with ks = 2.764 MN/m. (a) Time history, (b) frequency
spectra and (c) phase diagram of q1; (d) time history, (e) frequency spectra and (f) phase diagram of q2.
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Figure 14. Steady responses of the blade with ks = 8.191 MN/m. (a) Time history, (b) frequency
spectra and (c) phase diagram of q1; (d) time history, (e) frequency spectra and (f) phase diagram of q2.

4.1.3. The Effect of Rotation Speed

In the following, the contribution of the rotation speed to the blade vibration is studied.
The bifurcation of the modal responses is shown in Figure 15, where the range of Ω is
from 2000 r/min to 12,000 r/min. This range of speed can also be divided into three
stages: 2.0 × 103 ∼ Ω1 (stage-I), Ω1 ∼ Ω2 (stage-II) and Ω2 ∼ 1.2 × 104 r/min (stage-III),
respectively, where Ω1 = 4.46 × 103 r/min and Ω2 = 8.08 × 103 r/min.

As shown in Figure 15a, the steady responses of q1 remains in a periodic-3 motion
for the entire range of Ω. Similar to the case of contact stiffness, q2 remains periodic-1
in stages-I and III, while q2 is periodic-3 in stage-II, Figure 15b. Moreover, the jumping
of the amplitude and the hardening spring can also be observed in stage-II due to the
combination resonance.
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Figure 15. Bifurcation diagram of the blade under variable W. (a) q1 and (b) q2..

Next, three values of rotational speed, i.e., 2000 r/min (in stage-I), 7480 r/min (in
stage-II) and 11,000 r/min (in stage-III), are chosen to examine the modal responses,
Figures 16–18. It is found that the steady first flapwise response is always period-1. How-
ever, the second flapwise modal response turns from the period-1 to period-3 motion and
then goes back to period-1 with the increasing rotation speed. In addition, exchanges in
energy can also be observed in stage-III, a sign of the interaction between modes of the
first-order and second-order flapwise motion due to internal resonance.
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Figure 16. Steady responses with Ω = 2000 r/min. (a) Time history, (b) frequency spectra and
(c) phase diagram of q1; (d) time history, (e) frequency spectra and (f) phase diagram of q2.
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Figure 17. Steady responses with Ω = 7480 r/min. (a) Time history, (b) frequency spectra and (c) 

phase diagram of �̄�1; (d) time history, (e) frequency spectra and (f) phase diagram of �̄�2. 
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Figure 17. Steady responses with Ω = 7480 r/min. (a) Time history, (b) frequency spectra and
(c) phase diagram of q1; (d) time history, (e) frequency spectra and (f) phase diagram of q2.
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Figure 18. Steady responses with Ω = 11,000 r/min. (a) Time history, (b) frequency spectra and (c) 
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4.2. Parametric Analysis in the Case of Combination Resonance 

Based on Section 4.1, both primary and internal resonances can be observed in the 
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4.2. Parametric Analysis in the Case of Combination Resonance

Based on Section 4.1, both primary and internal resonances can be observed in the
steady responses of the first-order and second-order modes in the flapwise motion under
variable tilting angle of the shroud, stiffness of normal contact and rotation speed. Also,
combination resonance can be identified with the parameters in Table 1. In this section,
the parametric influences of detuning and shroud design (δs and ks) are highlighted on the
blade response in the case of combination resonance. It is worth noting that the forcing and
damping parameters (i.e., f k and ck) as well as the geometric nonlinearity coefficients gk,j are
all related to δs and ks. For convenience, a coefficient of damping is defined for the flapwise
modes of interest:

ζk = ck,k/(2ωk,k)

Based on Figure 19, for a fixed δs, the flapwise damping ratios ζ1,2 rise as ks increases.
Both ζ1,2 decrease with the increasing δs when ks is constant. Further, the effect of δs on the



Machines 2024, 12, 59 21 of 29

modal dampings of the flapwise motion is noticeably weak compared with that of ks. In
addition, the coefficient of the nondimensional equations in Appendix A shows that gk,j as-

cends as δs increases in contrast to f k. Both gk,j and f k are insensitive to the contact stiffness.
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4.2.1. Effect of εσ1 with Various Contact Stiffness and Gap Dimension

The amplitude–frequency relations of both α1 and α2 are presented in Figure 20
using different εσ1 and constant ks = 3.55 × 106 N/m and δs = 2 × 10−5 m for the case
of combination resonance. It is observed that the blade resembles a hardened spring in
vibration, which can be attributed to the presence of the gk,j terms. Based on Figure 20a,
both stable and unstable motions can be identified within different bands of frequency,
along with four turning points, i.e., A1, B1, C1 and D1. The real and imaginary parts of
eigenvalues are presented in Figure 21, corresponding to the steady responses depicted
in Figure 20.
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As far as the fixed points are concerned, the branch left to summit A1 (εσ1 = 1.52)
are stable focuses of α1 before the occurrence of primary resonance. The connecting route
from A1 to B1 (εσ1 = 0.88) involves identified saddle-typed fixed points that destabilize α1.
The branch between points B1 and C1 (εσ1 = 2.00) has stable focuses at α1, as opposed
to the saddle points represented by the branch from point C1 to D1 (εσ1 = 0.72). More-
over, the branch right of the turning point D1 returns to a stable focus. As a matter of
fact, α1 jumps downward from A1 and C1 once εσ1 increases to critical values. The upward
jumping happens at D1 as εσ1 decreases to a certain critical value. However, with the
decreasing εσ1, α1 will jump at the turning point B1. The responses either jumps up and
flows following the left branch of point A1 or goes down to the right branch of point D1.

As for α2 in the case of combination resonance, a similar phenomenon of hardening
can be observed in Figure 20b through three stable regions, two unstable regions and
four turning points. Comparing the amplitudes in Figure 20a,b, the branches of response
between points B2 (α2 = 0.206) and C2 (α2 = 0.209) are greater than that at A2 (α2 = 0.124),
which makes a difference in the direction of jumping at points A2 (εσ1 = 1.52) and B2
(εσ1 = 0.88); however, α1 in the branch B1 (α1 = 0.516) and C1 (α1 = 0.853) are less than
that at A1 (α1 = 1.20). This confirms the existence of energy exchange between the first and
second modes in the flapwise direction.

To demonstrate the effect of contact stiffness, ks is reduced by half (denoted sub-
sequently by 0.5ks) and doubled (by 2ks), respectively. The solutions of α1 and α2 are
presented in Figures 22 and 23, respectively. Unlike the results shown in Figure 20, the
decreasing ks widens the range of frequency corresponding to instability of the vibration
and delays the onset frequency for primary resonance. Specifically, the frequency interval
for unstable motion expands from (0.88, 1.52) and (0.72, 2.00) to (0.84, 7.05) and (0.83, 10.01),
respectively. The larger ks is able to remove the instability of α1 and α2 under the combina-
tion resonance alongside the turning points. This is because the damping of the blade rises
with the increasing ks (see Figure 19) and thus refrains the vibration of the blade. When ks is
large enough, the hardening spring-like reaction of the blade at the resonance point can
been completely suppressed.

To demonstrate the effect of the shroud gap, the original δs is halved (denoted by 0.5δs)
and doubled (by 2δs), respectively. The solutions of α1 and α2 are presented in Figures 24
and 25, accordingly. Similar to the previous finding, the blade vibrates in higher amplitude
as δs becomes larger, and the onset of primary resonance postpones. In this case, the regions
of εσ1 corresponding to instability expand from (0.88, 1.52) and (0.72, 2.00) to (1.14, 3.05)
and (0.93, 3.97) and narrow to (0.60, 0.76) and (0.60, 0.76) in Figure 25 when the gap doubles
its original value.
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Nevertheless, the effect of δs is noticeably weaker than that of ks. The rising δs in-
fluences the level of vibration through changing the aerodynamic force ( fk), damping
(ζk) and geometric nonlinear terms (gk,j). It is worth mentioning that changing gk,j has
negligible contribution to the level of vibration [32,33]. An increasing δs has a double effect
on the response: it does reduce the blade damping (see Figure 19) and hence increases
the amplitudes of α1 and α2; on the other hand, it prevents the response by decreasing
the aerodynamic force. Comparing Figure 24 with Figure 25, it is found that the level of
vibration decreases with the increasing δs; thereby, the strengthening of increasing δs on the
level of vibration overwhelms its weakening.
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4.2.2. Effect of εσ2 with Various Contact Stiffness and Gap Dimension

In this subsection, the contribution of parameter εσ2 to the steady response of the
blade is investigated. Given ks = 3.55 × 106 N/m and δs = 2.0 × 10−5 m, the amplitudes of
the first- and second-order modal response of the flapwise motion are plotted in Figure 26.
Unlike the previous discussion, the phenomenon of softening spring are discovered due to
the geometric nonlinearity associated with gk,j.
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There are two regions of stable motion and one region of unstable motion along with
two turning points, i.e., A1 and B1, as depicted in Figure 26a. The stability of the steady
response is demonstrated through eigenvalue analysis at the fixed points of α1 and α2 in
Figure 27. In viewing the fixed points, the branch left of point A1 (εσ2 = 1.504) is found to
be a stable focus of α1. The connection between A1 and the lowest point B1 (εσ2 = 1.408)
corresponds to the saddle points of α1, demonstrating an unstable motion of the blade.
Indeed, α1 jumps downward from point A1 once εσ2 increases to be critical, while an
upward jumping is located at point B1. As shown in Figure 26b, the hardening spring
phenomenon can be observed alongside two stable regions and one unstable region. With
the increasing εσ2, α2 rises in the branch left of the turning point A2 and drops to the region
left of the other turning point B2, which is opposite to the trend of α1 in Figure 26a. This
suggests that εσ2 is the key influence on the internal resonance.
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The steady responses of the blade vibration versus ks are presented in Figures 28
and 29 for the combination resonance. As shown in Figure 28, both the level of vibration
and the interval of frequency for unstable motion are enlarged. There exists an overlap
in the unstable region and the right branch of the turning point B1. The unstable region
expands from εσ2 ∈ (1.408, 1.504) to (1.423, 1.679). Similar to the solutions in Figure 23, the
unstable region as well as the turning points can be removed by increasing ks for the same
reason presented in Section 4.2.1.
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and (b) α2.

Finally, the steady responses in the situation of combination resonance are presented
in Figures 30 and 31 with various shroud gap δs. It is found that a decreasing δs escalates
the vibration level and broadens the interval of instability of motion in the frequency
domain. The unstable region now expands from (1.408, 1.504) to (1.783, 1.986) in the
frequency domain at a halved δs and narrows to (1.097, 1.116) in Figure 31. The effect
of ks on the responses is significantly weaker than that of ks on α1,2. In addition, the overlap
in the unstable region and the right branch of the turning point B1 can also be observed in
Figure 30a.
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5. Conclusions

In this paper, the nonlinear dynamics of a flexible turbine blade are investigated
considering the contact and friction of shrouds, focusing on the case of combination
resonance of flapwise motion induced by a 1:3 internal resonance between the first- and
second-order modes and a primary resonance of the first-order mode. The stiffness and
damping properties are expressed by linearizing the normal and tangential forces of
shrouds using the method of harmonic balance. The steady responses of the blade in
the situation of combination resonance are obtained with the multiple-scale method. The
contributions of detuning and shroud parameters to the steady responses of the blade in
the case combination resonance are analyzed. Several conclusions are drawn as follows:

(1) The combination resonance involving the flapwise modes can be triggered by co-
existing internal and primary resonances. Nevertheless, such resonance will not
likely occur for separated blades where contact and friction on their shroud interfaces
are removed.

(2) Motion of the first-order flapwise mode can change from quasi-periodic to period-1
and then back to quasi-periodic with an increasing tilting angle of shroud. As for
the second-order mode, it can change from quasi-periodic to period-3 and finally
quasi-periodic.

(3) With increasing contact stiffness and rotation speed, the first-order flapwise motion is
period-1, while the second modal response can change between period-1 and period-1.

(4) For primary resonance, the hardening spring behavior of the blade is attributed to
geometric nonlinearity in the blade motion. On the other hand, such a nonlinearity can
lead to a softening spring behavior of the blade in the scenario of internal resonance.

(5) Less shroud contact stiffness and gap dimension can result in a stronger vibration
response, wider region of unstable motion in the frequency domain and delayed onset
of combination resonance.
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Appendix A

The coefficients ck, ωk, gk,j and fk of Equation (16) are defined as

ck =
1

mk

[∫ L

0
cvγ

2(v)
k dx −

(
cnsin α + c f cos α

)
γ

2(v)
k (L)

]
(A1)

ω2
k =

1
mk

( ∫ L
0 EIγ′′ 2(v)

k dx +
∫ L

0

∫ L
x mlΩ

2(e + y)dyγ′2(v)
k dx

−
∫ L

0 Ω2mlγ
2(v)
k dxi −

(
Ω2ms + knsin α + k f cos α

)
γ

2(v)
k (L)

)
(A2)

gk,1 =
1

mk

∫ L

0

1
2

EAγ′(v)
k γ′3(v)

1 dx (A3)

gk,2 =
1

mk

∫ L

0

1
2

EAγ′(v)
k γ′2(v)

1 γ′(v)
2 dx (A4)

gk,3 =
1

2mk

∫ L

0
EAγ′(v)

k γ′(v)
1 γ′2(v)

2 dx (A5)

gk,4 =
1

2mk

∫ L

0
EAγ′(v)

k γ′3(v)
2 dx (A6)

fk = − 1
mk

Q0γ
(v)
k (L), (A7)

where

mk =
∫ L

0
mlγ

2(v)
k dx + msγ

2(v)
k (A8)

The coefficients ck, ωk, gk,j and f k of Equation (18) are defined as

ck =
1

Ωmk

[∫ L

0
cvγ

2(v)
k dx −

(
cnsin α + c f cos α

)
γ

2(v)
k (L)

]
(A9)

ω2
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1
Ω2mk

( ∫ L
0 EIγ′′ 2(v)

k dx +
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0

∫ L
x mlΩ

2(e + y)dyγ′2(v)
k dx

−
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0 Ω2mlγ
2(v)
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)
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2(v)
k (L)

)
(A10)
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0
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k γ′3(v)
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f k = − 1
δsΩ2mk

Q0γ
(v)
k (L) (A15)

The components of J in Equation (32) are defined as



Machines 2024, 12, 59 28 of 29

J1,1 = − c1,1

2
− 3g1,2

4ω1
α1α2sin γ2, J1,2 = −3g1,2

8ω1
α2

1sin γ2, J1,3 =
f1

2ω1
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8ω1
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1α2cos γ2, (A16)

J2,1 =
3g2,1

8ω2
α2

1sin γ2, J2,2 = − c2,2

2
, J2,3 = 0, J2,4 =

g2,1

8ω2
α3

1cos γ2 (A17)

J3,1 = − 3g1,1α1
4ω1

− 3g1,2α2
8ω1

cos γ2 − f1
2ω1α2

1
sin γ1,

J3,2 = − 3g1,3α2
2ω1

− 3g1,2α1
8ω1

cos γ2, J3,3 = f1
2ω1α1

cos γ1, J3,4 =
3g1,2α1α2

8ω1
sin γ2

(A18)
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Appendix B

An iterative can be applied to solve the amplitude of the steady vibration responses
(i.e., B in Equation (2)) before the governing equations in the paper are solved. Let
the initial value of B be denoted as B0. The properties of stiffness and damping can
be determined by substituting B0 into Equations (8), (9), (11) and (12), which represented
as kn,0, k f ,0, cn,0 and c f ,0, respectively. Then, the steady responses of Equation (18) along
with the transient systems (28)–(31) are solved using kn,0, k f ,0, cn,0 and c f ,0, and the ampli-
tude of the steady response is denoted by B1. The above process is repeated with B1 as the
initial value until the error between Bi and Bi−1 is below the preassigned tolerance. At last,
Bi is accepted as the amplitude of the desired steady responses.
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