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Abstract  

In this paper, we modelled the Chinese pond mussel distribution in the European subcontinent under the recent 

climatic conditions and two climate change scenarios.  Using species records of Sinanodonta woodiana (Bivalvia: 

Unionidae) in Europe and a set of bioclimatic variables, we applied the maximum entropy approach provided by 

MaxEnt to build the species distribution models and investigate how each climatic variable affects the species 

distribution. We found that winter temperatures had the largest contribution to the species distribution in all three 

scenarios (recent, RCP 4.5, RCP 8.5). We applied the minimum training presence threshold, as a less stringent, 

and 10th percentile training presence threshold, as more stringent, to map the potential area of the species 

occurrence. The models show that the climatically optimal range, depicted by the stricter threshold, will be 

expanded eastwards under all three scenarios. At the same time, the area of minimally suitable environments, 

represented by the less stringent threshold, will be contracted in the future climate. The species distribution models 

highlight that the climatic conditions of the British Isles and the Azov-Kuban Lowland are the most suitable, 

among the uninvaded regions, for further S. woodiana invasion. 

 

Key words alien species, fundamental niche, MaxEnt, bioclimatic variables, Sinanodonta woodiana. 

 

 

 

Introduction  
 

Biological invasions are one of the most significant ecological disturbances threatening native 

biodiversity on a global scale (Mollot et al., 2017). Aquatic ecosystems are no exception and have been 

subject to hundreds of introductions of invasive species (Strayer, 2010), which negatively impact native 

fauna and entire ecosystems in a variety of ways (Geist et al., 2023; Sousa et al., 2014). 
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Freshwater mussels of the genus Sinanodonta (Bivalvia, Unionidae) are one of the most 

successful invaders among bivalves along with the Asian clam Corbicula fluminea (Mueller, 1774) and 

the zebra mussel Dreissena polymorpha (Pallas 1771). The genus comprises invasive lineages belonging 

to three species: S. woodiana (Lea, 1834), S. pacifica (Heude, 1878), and S. lauta (Martens, 1877) 

(Douda et al., 2024). Among these, the Chinese pond mussel S. woodiana (also called the “temperate 

invasive” lineage (Bolotov et al., 2016)), is the most widespread. With native range restricted to China, 

it has been widely introduced in Europe, Southern Siberia, Central Asia and Southeast Asia (Douda et 

al., 2024 and references herein), and successfully occupied variety of climatic zones from Myanmar to 

Northern Europe. 

Being subtropical species initially, the Chinese pond mussel has successfully invaded colder 

temperate and even subarctic areas using anthropogenically heated water bodies as steppingstones 

(Labecka & Czarnoleski, 2021). It has been shown that initially established viable population of S. 

woodiana in warm waters could successfully spread to natural environments and adapt for surviving 

and even for recruitment in ice-covered waterbodies (Konečný et al., 2018; Urbańska & Andrzejewski, 

2019).  

The number of new records of invasive populations of S. woodiana in Europe has increased 

exponentially since it was first discovered in 1979 (Mehler et al., 2024). Such a “hyper-successful” 

invasion (Sousa et al., 2014) is facilitated by biological and ecological preadaptation of the species 

leading to outcompeting native mussels (Reichard et al., 2012). The Chinese pond mussel demonstrates 

a high tolerance to environmental conditions and is able to survive in a wide range of freshwater habitats 

(Donrovich et al., 2017). The thermal tolerance of glochidia comparable to native species (Benedict & 

Geist, 2021), relatively higher growth and reproduction rates (Huber & Geist, 2019), resistance to 

pollution and hypoxia (Sárkány-Kiss et al., 2000), and the ability to use of most fish species as hosts for 

glochidia (i.e., being a host-generalist; Watters, 1997) have established a broad range of the ecological 

niche of S. woodiana.  

The main driver of the invasion is the commercial freshwater fish trade which promotes spread 

of S. woodiana at the glochidial stage (Benedict et al., 2024). Watershed divides loose their role of 

natural barriers with this type of artificial dispersal, meaning that the species potentially can colonize 

every habitat regardless of its natural dispersal abilities. In addition to continuing to parasitise 

aquaculture species, glochidia can parasitise native fish (Donrovich et al., 2017), which subsequently 

distribute mussels through connected waterways. Studies in Europe have shown that once established, 

invasive populations can negatively impact the ecosystems by outcompeting native species for food and 

space and altering biotic composition and abiotic properties (Donrovich et al., 2017; Douda & Čadková, 

2018; Reichard et al., 2015). 

The high invasion potential of S. woodiana, its negative impact on natural ecosystems, and the 

still vast uncolonized areas in the European subcontinent raise questions about the future direction of 

invasion and the impact of global climate change on this process. To date, only one study has attempted 

to answer these questions (Mehler et al., 2024). The authors applied a species distribution modelling 

technique and showed that the species distribution is controlled by habitat and climate variables. They 

also forecasted that the area of suitable habitat will decrease at the end of the century. 

Species distribution models (SDMs), also called environmental niche models, are a widely used 

tool for understanding the processes underlying the distribution of species (Da Re et al., 2023; Franklin, 

2023). The basis of the whole diversity of SDMs (e.g., generalised linear models, random forest, maxent, 

etc.) is to find correlations between an observed response variable describing the species distribution 

and a set of environmental predictors recorded from the species’ locations. Thus, the main output of 

SDM is the estimation of a species’ potential niche in a temporal and geographical context (Franklin, 

2023). 

Global environmental change affects a species distribution through shifting, contracting, 

expanding and fragmentation of their ecological niches (Chen et al., 2011). The transferability of 

observed relationships between a species and an environment is an important metric of a SDMs quality 

which allow a model to be projected in space and time. It is particularly important for tracking and 

managing invasions, where predictions may help to identify areas with a high probability of invasion 

and save resources by prioritising the monitoring efforts. At the same time, modelling the distribution 

of range-shifting species is a more complex task than for species which are in equilibrium with an 

environment (Elith et al., 2010). Specific suggestions for modelling of invasion are that the 
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overestimation of the geographical area that the alien species could invade is a “desirable property” 

(Jiménez-Valverde et al., 2011), and the reducing of the model complexity and the overfitting are the 

key features of a model to avoid the underprediction (Jiménez-Valverde et al. 2011; Jane Elith, Kearney, 

and Phillips 2010; Santamarina et al. 2019). 

The case studies of niche modelling of alien species show that SDM is a powerful spatial 

analysis tool for predicting the potential distribution of invasions, provided that all necessary precautions 

regarding the choice of modelling settings are taken into account (Santamarina et al. 2019; Jane Elith, 

Kearney, and Phillips 2010). One of the main constraint in modelling range-shifting species is the 

problems of extrapolation due to non-analogous climates in the invaded range compared to the native 

one (Fitzpatrick & Hargrove, 2009). The approach to overcome this is to calibrate a model using species 

records from the invaded range (Barbet-Massin et al., 2018). 

Among the environmental niche modelling techniques using presence-only data, MaxEnt 

(Phillips et al., 2008) is the most widely used (Elith et al., 2010, 2011; Fois et al., 2018; Santamarina et 

al., 2019). Improved predictions are achieved by tuning the default parameters and examination of the 

complexity of models using different values of MaxEnt (Elith et al., 2010; Radosavljevic & Anderson, 

2014; Santamarina et al., 2019).  

In this paper, we applied environmental niche modelling to predict the distribution of 

environmental conditions suitable for S. woodiana on the European subcontinent under the historical 

climate and two scenarios of future climate change. For this, we 1) compiled the dataset of S. woodiana 

occurrences covering its entire invasive range in Europe and 2) used the MaxEnt approach to calculate 

a set of models of the probability of species presence for the historical climate and two future scenarios. 

 

 

Materials and methods 
 

Distribution mapping 

The range models of S. woodiana were mapped with ESRI ArcGIS 10 software (www.esri.com/arcgis). 

Free open sources, i.e., Natural Earth Free Vector and Raster Map Data 

(http://www.naturalearthdata.com), GSHHG (http://www.soest.hawaii.edu/pwessel/gshhg), 

HydroSHEDS (http://www.hydrosheds.org), and GADM (http://gadm.org) were used to create the base 

of the maps. 

 

Species records 

MaxEnt software (Phillips et al., 2008), used here for SDM, requires presence only data and does not 

require information about true absence. Georeferenced records of the occurrence of invasive populations 

of S. woodiana in Europe were obtained from the Global Biodiversity Information Facility (GBIF.org 

(01.05.2020)), from published sources searched in the Web of Science database using key words 

“Sinanodonta woodiana” and “Chinese pond mussel”, and “grey” literature. Population records from 

artificially heated reservoirs were excluded from the search results.  The initial dataset contained 325 

points after removing repeated records (Figure 1) (dataset on figshare: Vikhrev et al., 2024). To avoid 

model overfitting, the initial dataset was rarified using the SDMtoolbox plugin for ArcGIS 10.4 with a 

distance of 100 km between closest points (Brown et al., 2017). The final dataset contained 60 records. 

 

Environmental data  

Considering the high tolerance of the Chinese pond mussel to biotic conditions and its ability to survive 

in a wide range of habitats (Benedict & Geist, 2021; Dobler et al., 2022; Konečný et al., 2018), we 

suggest that climate is a major factor limiting the potential niche of the species. 

The range of habitat suitability was modelled using a set of bioclimatic variables for historical 

(Wouters, 2021) and future (Wouters et al., 2021) climate conditions derived from the Copernicus 

Climate Change Service (CCS). The recent data cover the industrial period from 1979 to 2018, and the 

future climate is modelled for the period 2080 – 2100 for two greenhouse gas emission scenarios, i.e., 

RCP 4.5 and RCP 8.5. The original CCS bioclimatic indicator layers are available for the period 1950 

– 2100 with a temporal resolution of 20-year averages. Each layer contains seven bands – one for each 

20-year period. We extracted the last seventh band of the period of interest using the Raster Calculator 

function of QGIS 3.32.3 (QGIS.org, 2022). To improve model performance, it is necessary to exclude 

http://www.naturalearthdata.com/
http://www.soest.hawaii.edu/pwessel/gshhg
http://www.hydrosheds.org/
http://gadm.org/
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areas where species cannot colonise due to geographical barriers or other reasons (Elith et al., 2010). In 

the case of S. woodiana, we know that there are no theoretically unreachable habitats due to human-

mediated dispersal, so we only excluded marine waters as a completely unsuitable environment for the 

strictly freshwater species. All layers of environmental variables were clipped by a coastline mask using 

ArcGIS 10.4. 

SDM results are very sensitive to autocorrelated variables, so removing of multicollinearity is a 

necessary step in data preparation (Merow et al., 2013; Radosavljevic & Anderson, 2014). We 

performed an autocorrelation test in the SDMtoolbox plugin for ArcGIS 10.4 to calculate paired Pearson 

correlations for each of the three sets of variables. 

To select which variables to include in the model, we followed Worthington et al. (2016) with 

our modifications. Highly correlated variables were removed based on the results of permutation test of 

MaxEnt. First, variables with zero contribution were removed. Then, pairs of variables with higher 

correlation coefficient were evaluated first and the variable with lower contribution was removed from 

the model.  In the first step, all 19 bioclimatic variables were tested. After reducing the set of variables, 

the SDM was built with the remaining of variables. Those with zero contribution in the permutation test 

were not included in the next round of SDM. These steps were repeated until each variable had a 

contribution to the model greater than zero. After that, the results of a jackknife test were checked, and 

the variables that disimprove the model performance were removed. 

The same approach to variable selection was used for the recent and two forecasting models, 

meaning that each scenario was projected as an independent model with its own set of variables but the 

same species records (Worthington et al., 2016). MaxEnt allows the current prediction to be projected 

to a different environment or geographical extent. However, this approach does not account for potential 

changes in interactions between variables in space and time, because a decision about variables selection 

is based on the current correlations between variables. We investigated whether interactions between 

climatic variables will change in the future against recent data. The Mantel test, implemented in PAST 

3.01 (Hammer et al., 2001) was used to calculate correlations between pairs of correlation matrices: 

recent vs RCP 4.5 and recent vs RCP 8.5. 

We examined how each of the environmental variables affects the prediction using response 

curves provided by MaxEnt. Each curve shows how the logistic prediction changes as each 

environmental variable is varied, keeping all other environmental variables at their average sample 

value. Logistic scale does not allow to conclude which values of the predictor are marked suitable 

habitats, but the probability of presence lover than 50% is considered as not differing from random. 

 

Distribution modelling 

Recent and future potential invasion ranges of S. woodiana in Europe were build using the maximum 

entropy algorithm as implemented in MaxEnt software. The default settings, employed for the 

calibration of the algorithm, were the k-fold cross-validation method, maximum iteration number, the 

maximum number of background points, and the autofeatures.  To reduce the model complexity, 

different values of the regularization multiplier (β) were tested: 0.1, 0.5, 1, 2, 3, 4, 5 (Elith et al., 2010; 

Worthington et al., 2016). For each of β-value, 10 model replicates with same settings were built. The 

averaged model of 10 replicates was used for subsequent analysis and visualization of results. Variables 

impact on a model was assessed at each β-value using permutation test and response curves generated 

by MaxEnt. In case if a variable did not affect the prediction, it was excluded from the subsequent 

modelling. 

MaxEnt can generate continuous maps of presence prediction in raw, logistic, and cumulative 

formats. However, such continuous output is difficult to interpret (Phillips et al., 2008). To evade this 

constraint, MaxEnt allows to apply threshold rule for the generation of a binary map of 

presence/absence. The minimum training presence (MP) rule was chosen as the less strict one, which 

tends to select extreme habitats at the edge of species’ niche as suitable. Such approach is useful for 

invasive range modelling, where overestimation is better than underestimation. The 10th percentile 

training presence (10P) rule was tested as a more conservative approach. This rule excludes 10 

percentages of the most extreme habitats, where species presence was predicted. Of the three output 

formats, logistic was reported to be less suitable (Merow et al., 2013). The raw format is the most 

appropriate, but it is impossible to apply a threshold rule to this one. In our modelling, the cumulative 

format was chosen. 
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The discriminative ability of the SDMs was assessed using the average evaluation Area Under 

the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve (Elith & Burgman, 2002; 

Fielding & Bell, 1997). To test for overfitting, the difference between the calibration and the test AUCs 

(hereafter AUCdiff) and the average omission rates based on the two selected thresholds were used 

(Radosavljevic & Anderson, 2014; Santamarina et al., 2019). All these values were extracted or 

calculated from MaxEnt output files. The model with the optimal β-value was chosen following the 

consequence of evaluation steps: a) select those with omission rates closer to the theoretical expectations 

for MP and 10P thresholds (0 and 0.1, respectively), b) among them, select one with a minimal 

difference between training and test AUCs but still maximal or near maximal observed values for the 

test AUC. Binary maps of the predictions were generated from the averaged output .asc file using the 

thresholds values of the selected models.  

We decided not to use a bias file as we do not expect sampling bias in our dataset. Unevenness 

of distribution of S. woodiana records in Eastern Europe illustrated in the Figure 1 reflects its actual 

distribution there. Recent publications and our own extensive field work on freshwater bodies across 

European Russia and Belarus confirm only six populations in the region (Douda et al., 2024; Kondakov 

et al., 2020; this study). 
 

 
 

Figure 1. Map of records of S. woodiana in Europe obtained from GBIF database and published sources 

(Vikhrev et al., 2024).  

 

 

Results 
 

Model selection and quality estimation 

The set of models with various β-parameter were built for each climatic scenario (Table 1). Omission 

levels return the same low values at MP and 10P thresholds in all models. Therefore, the choice of the 

optimal β-parameter was based on AUCdiff and testAUC. The lowest AUCdiff for each of the scenarios 

were reached when β=5. In all cases testAUC value at β=5 was lower than the highest (recent: 0.865 vs 

0.878; RCP 4.5: 0.861 vs 0.884; RCP 8.5: 0.871 vs 0.887), but still high enough (>0.8) to consider the 

good discrimination ability of each selected model. 
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 Table 1. Parameters from MaxEnt output used to evaluate the quality of S. woodiana distribution models (β-

parameter – regularization multiplier; AUCdiff = trainAUC - testAUC; minimum training presence (MP) and 10th 

percentile training presence (10P) omissions), and to draw maps of probability of presence. The best quality 

models are shown in grey. 

 

Model 
β-

parameter 
AUCdiff trainAUC testAUC 

MP 

omission 

10P 

omission 

MP 

threshold 

10P 

threshold 

H
is

to
ri

c 

0.1 0.065 0.937 0.871 0.000 0.094 0.901 19.211 

0.5 0.035 0.912 0.877 0.000 0.094 1.711 20.752 

1 0.027 0.905 0.878 0.000 0.094 1.965 23.438 

2 0.024 0.900 0.876 0.000 0.094 3.572 29.942 

3 0.020 0.895 0.876 0.000 0.094 4.928 34.285 

4 0.017 0.889 0.871 0.000 0.094 6.208 36.328 

5 0.014 0.879 0.865 0.000 0.094 7.774 35.587 

R
C

P
 4

.5
 

0.1 0.068 0.934 0.866 0.000 0.094 3.645 12.200 

0.5 0.033 0.917 0.884 0.000 0.094 3.054 14.695 

1 0.030 0.910 0.880 0.000 0.094 4.970 18.177 

2 0.025 0.901 0.876 0.000 0.094 8.076 23.111 

3 0.022 0.893 0.872 0.000 0.094 10.026 28.124 

4 0.017 0.885 0.868 0.000 0.094 11.945 32.221 

5 0.014 0.876 0.861 0.000 0.094 13.444 33.786 

R
C

P
 8

.5
 

0.1 0.053 0.922 0.869 0.000 0.094 1.542 14.827 

0.5 0.023 0.909 0.885 0.000 0.094 2.472 17.145 

1 0.018 0.906 0.887 0.000 0.094 3.922 20.249 

2 0.015 0.902 0.887 0.000 0.094 7.038 24.318 

3 0.014 0.897 0.883 0.000 0.094 9.940 26.564 

4 0.013 0.891 0.878 0.000 0.094 12.282 28.047 

5 0.012 0.883 0.871 0.000 0.094 14.695 29.747 

 

 

Climatic variables contribution 

Mantel test returned absence of correlation between pairs of correlation matrices of environmental 

variables: recent vs RCP 4.5 (r=-0.008, p>0.05) and recent vs RCP 8.5 (r=-0.06, p>0.05). This result 

indicates significant changes in interactions between climatic variables in future against recent data. 

Considering this, two different sets of six environmental variables were retained for prediction of S. 

woodiana distribution under the recent climatic conditions and future RCP 4.5 scenario, and four 

variables explain prediction of the Chinese pond mussel distribution under the RCP 8.5 scenario (Table 

2). The majority of them are temperature-related, and only two, i.e., Bio 15 and Bio18, refer to 

precipitation.  

MaxEnt returned minimal temperature of the coldest month (Bio6) as the variable with highest 

contribution to the recent climate model (Table 2). The probability of presence is skyrocketed with rise 

of a minimal temperature of the coldest month over -5 ºC and the model does not show the temperature 

value which drops the MaxEnt prediction (Figure 2D). Probability of presence became non-random 

when cross 50% threshold at values of 5.6 ºC. Bio6 was also included in the RCP 4.5 model but with 

much lower contribution than in the recent one (Figure 3C). The variable crossed 50% threshold at the 

similar value of 4.3 ºC, but response curve demonstrates much smoother distribution. Second high 

variable in the recent model is the temperature seasonality (Bio4), which refers to the variability of 

temperature within the year (Figure 2C). Lower values correspond to more stable climate over year. In 

the model, the variable maximizes the probability of presence at the value 6.5 degrees of standard 

deviation of mean temperature change. Lower values decrease the probability faster than higher values.  
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Table 2. Environmental variables selected for prediction of S. woodiana distribution under three climate change 

scenarios and variables contribution to each model. Highest contribution values are marked in bold. 
 

Variable 
Contribution to the model, % 

Recent RCP 4.5 RCP 8.5 

Bio2 (Mean diurnal range) 0.3 17.4 n/a 

Bio3 (Isothermality) 1.4 6.2 10.5 

Bio4 (Temperature seasonality) 25.2 n/a 0.4 

Bio6 (Minimum temperature in coldest month) 46.5 6.9 n/a 

Bio7 (Temperature annual range) 7.4 n/a n/a 

Bio8 (Mean temperature in wettest quarter) n/a 4.3 n/a 

Bio11 (Mean temperature of coldest quarter) n/a 56.8 48.8 

Bio15 (Precipitation seasonality) n/a 8.3 n/a 

Bio18 (Precipitation in warmest quarter) 19.2 n/a 40.3 

 

 

The future distribution will be the most contributed from another climatic variable as forecasted 

by both models. Mean temperature of coldest quarter (bio11) will share the highest contribution in the 

model under both future scenarios (Figures 3E and 4C). Response curves are almost identical for RCP 

4.5 and RCP 5.8, but with plus two-degree shift in extreme scenario. 

 Bio18 is the only variable in the recent and RCP 8.5 models related to precipitation (Figures 2F 

and 3D). It indicates averaged volume of precipitations during the warmest quarter across the referenced 

period. The contribution to the future model is two times higher (40.3 vs 19.2), and the maximum values 

are significantly differed. The value of the variable that maximize the recent prediction is 113.8 mm, 

and 81.7 mm in the future. Lower values drop probability dramatically in both cases, while higher values 

leave it almost constant in the recent model but decrease rapidly in the future. Prediction under the 

moderate future scenario RCP 4.5 is affected by precipitation in a much less degree (Figure 3F). 

Precipitation seasonality (Bio15) has low contribution to the model (8.3%) and decrease the probability 

of presence across the whole range of values. 
 

 

 
 

Figure 2. Response curves of the environmental variables selected for prediction of S. woodiana distribution under 

the recent climate scenario. Each curve (green line) shows how the logistic prediction changes as each 

environmental variable is varied. The orange dashed line crosses the maximum value of the variable. 
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Figure 3. Response curves of the environmental variables selected for prediction of S. woodiana distribution under 

the RCP 4.5 scenario. Each curve (green line) shows how the logistic prediction changes as each environmental 

variable is varied. The orange dashed line crosses the maximum value of the variable. 

 

 
 

Figure 4. Response curves of the environmental variables selected for prediction of S. woodiana distribution under 

the RCP 8.5 scenario. Each curve (green line) shows how the logistic prediction changes as each environmental 

variable is varied. The orange dashed line crosses the maximum value of the variable. 
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Isothermality (Bio3) is the only variable that presents in all models (Figures 2B, 3B, and 4A). 

The contribution of the predictor grows from 1.4% in recent model to 10.5% in RCP 8.5 but stays on 

low levels. 

 

 

Predictions of presence 

The map of the potential invasion range of S. woodiana in Europe under the recent climatic conditions 

was drawn using MP and 10P thresholds (Figure 5). The MP threshold defines as suitable the wide range 

from the southern part of Finland in the north to the southern edge of the Iberian Peninsula in the south, 

and from the British Isles in the west to the Volga Delta in the east. All species records, that used in the 

model, are fall within the predicted distribution. Moreover, large areas with no records are also predicted 

as suitable for the species presence, i.e., the British Isles, the Iberia, the basins of the Dnieper, Don, and 

Kuban rivers, the rivers of the Finnish Gulf Basin, and waterbodies of Southern Scandinavia. The 10P 

threshold depicts a much narrower range, excluding areas with 10% of the most extreme environmental 

conditions. However, even in this case most of the British Isles’ territory, coastal areas of the Iberian 

Peninsula and the Black Sea, and the Kuban River basin are considered to be regions with a high 

probability of presence. At the same time, there are many records of the species in the eastern part of 

the invasive range, which are outside the predicted distribution. This finding illustrates that invasive 

species have successfully adapted to environmental conditions at the edge of their potential niche. 
 

 
 

Figure 5. Map of potential invasion range of S. woodiana in Europe under the recent climate conditions: green 

filling indicates areas defined as suitable using minimum presence (MP) threshold; orange filling indicates areas 

defined as suitable using 10th percentile presence (10P) threshold. Black dots indicate species record used for 

SDM. 

 

 

Maps of prediction of S. woodiana presence in Europe under future climate change scenarios 

show a controversial picture of the forecasted species distribution. The area of presence of the species 

will be contracted according to the MP threshold of the RCP 4.5 model (Figure 6) compared with the 

recent climatic model. The eastern boundary of the range will be shifted westwards to the Dnieper and 

Daugava basins, and only scattered areas of the Iberian Peninsula will be depicted as suitable. At the 
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same time, the presence range under the 10P threshold of the RCP 4.5 model (Figure 6) will be extended 

eastwards from that shown in the recent model. 
 

 
 

Figure 6. Map of potential invasion range of S. woodiana in Europe under the RCP 4.5 climate change scenario 

at 2080-2100: green filling indicates areas defined as suitable using minimum presence (MP) threshold; orange 

filling indicates areas defined as suitable using 10th percentile presence (10P) threshold. Black dots indicate 

species record used for SDM. 

 

 

The most significant changes that predicted by the RCP 8.5 model (Figure 7) relate to the south-

eastern part of the invasive range. The probability of presence in this area is higher than both thresholds 

and its boundary will be shifted northwards at least to the Lower Don and Volga (10P threshold) or up 

to the Middle Volga including almost the entire Don River basin (MP threshold). 

All scenarios of MaxEnt prediction warn that among the areas not yet colonized, the Azov 

Lowland and the south of the British Isles share the most suitable climatic conditions for successful 

invasion. Notably, the probability of presence in Southern Scandinavia will be below 10P threshold in 

the RCP 8.5 model, while the remote Arctic island of Kolguev in the Barents Sea is predicted to be 

suitable for invasion. 

 

 

Discussion 
 

Effect of climatic variables on the modelled distribution 

Environmental niche models of S. woodiana predict that temperature variables have the greatest 

contribution to the shaping of the potential distribution range currently and in the future. In particular, 

we found that winter temperatures play the most important role. This is not surprising considering 

subtropical origin of the species and previous results of the species SDM (Mehler et al., 2024).  

Probability of presence in all our models decreases with decreasing temperature, whereas examples of 

successful adaptation to colder environments in the invasion range (Domagała et al., 2007; Kondakov 

et al., 2020) and even overwintering in ice-covered waterbodies (Urbańska et al., 2021) demonstrate that 

the Chinese pond mussel is quite resistant to the temperature decrease. The probability of presence in 
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the recent climate model became non-random at the value of about 5 °C of the minimum temperature of 

the coldest month. It is likely that this temperature threshold is not related to the survival as such, but to 

the reproductive success of the species. It has been shown that the survival rate of glochidia of S. 

woodiana is the highest at the 5 °C and significantly higher than that of the native Unio crassus 

Philipsson, 1788 (Benedict & Geist, 2021). Together with the ability to year-round reproduction 

(Labecka & Domagala, 2018), it gives a significant reproductive advantage to the Chinese pond mussel. 

Additionally, this temperature threshold is a robust indicator of the length of the growing season, and 

the productivity of aquatic ecosystems is directly dependent on water temperature (Downing, 2014). 

The Chinese pond mussel prefers nutrient-rich water (Kraszewski & Zdanowski, 2007), and a lack of 

food resources may limit the species survival in colder environments. Such environmental conditions 

are currently at the edge of the fundamental niche of S. woodiana, and adaptation to them may be more 

costly than that for native species (Lurman 2014). 

Precipitation influences prediction of occurrence in lesser degree than temperature in our 

models. However, in the future climate under the extreme scenario, the precipitation in the warmest 

quarter is the variable with the second highest contribution to the model. The same predictor has a 

relatively high contribution in the recent climate model. Both scenarios demonstrate that lower values 

of variables, associated with precipitation deficits and possibly droughts, are less favourable conditions 

for the species than higher values of precipitation. Examples of massive die-offs caused by temperature 

extremes or long-term droughts are not rare under current climatic conditions (Bódis et al., 2014; Cilenti 

et al., 2019; White et al., 2015), and it is predicted that future climate change will multiply the duration 

and frequency of such extreme events, especially in temperate and Mediterranean areas (Schneider et 

al., 2013; van Vliet et al., 2013). 

 
 

 
 

Figure 7. Map of potential invasion range of S. woodiana in Europe under the RCP 8.5 climate change scenario 

at 2080-2100: green filling indicates areas defined as suitable using minimum presence (MP) threshold; orange 

filling indicates areas defined as suitable using 10th percentile presence (10P) threshold. Black dots indicate 

species record used for SDM. 
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Recent modelled distribution 

The modelled recent distribution indicate that climatically suitable areas occupy a broad range of 

waterbodies across Europe. Compared to the recently published S. woodiana SDM, our model predicts 

a much wider distribution of the species (Mehler et al., 2024). The differences in results are likely to be 

due to different sets of the species records used in the model and different approaches to model tuning 

and evaluation. 

The distribution of minimally suitable environmental conditions, where the probability of 

presence of S. woodiana is higher than the most tolerant threshold (MP), includes all known records in 

Europe and, in addition, large uninvaded areas in Eastern Europe and Southern Fennoscandia. The 

Chinese pond mussel is a species with the high tolerance to environmental conditions, owing to its ability 

to inhabit lotic and lentic habitats with a variety of substrates (Douda et al., 2024 and references herein). 

In this context, the predicted range appears feasible. Application of the less tolerant threshold reduces 

the predicted distribution of the species to Central, Western, and Southern Europe, and to the coastal 

areas of the Black Sea region. This threshold excludes habitats with the most extreme conditions. Thus, 

the depicted areas provide optimal climate for S. woodiana distribution. Most of the optimal range 

coincides with known records of the species, however, the British Isles and the Azov-Kuban Lowland 

are not invaded. The vulnerability of the Lower Kuban and Don river basins to the Chinese pond mussel 

invasion has been noted previously (Kondakov et al., 2020), and our SDM confirms this concern.  

The differences between the predicted distributions under different thresholds indicate areas 

where species can invade by adapting to new environments. There are several records of S. woodiana 

(Figures 1, 6) from this area and even from the edge of the suitable range. Using heated waterbodies as 

refugia in the colder environment, the species can gradually adopt thanks to the temperature gradient 

between warm and cold waters (Konečný et al., 2018). At the same time, the Chinese pond mussel from 

the Lower Volga River, located at the edge of the modelled distribution, was able to establish a viable 

(naturally reproducing) population in the absence of thermal refugia (Kondakov et al., 2020). We 

suppose that the founder of this population was already adapted to the non-native environment and was 

transferred from analogues habitat somewhere in Kazakhstan or Southern Siberia (Kondakov et al., 

2020). 

 

Future modelled distribution 

Under both scenarios of the future climate change, there was a contraction of minimally suitable areas 

and an expansion of areas with optimal environmental conditions. The latter trend is consistent with 

previous findings that alien species benefit from climate warming, especially in moderate and high 

latitudes (Rahel & Olden, 2008). The explanation for the future decline of minimally suitable areas is 

not so straightforward. Considering winter temperatures as the factor that most controls the distribution 

of the species, it is logical to assume that the northeastern boundary of the invasive range of S. woodiana 

will continue to shift as winter temperature increase. However, our models predict the opposite. The 

decrease in precipitation in the future is reported as a significant threat to terrestrial and aquatic 

ecosystems as discussed above and has been suggested as a cause for the future decline of S. woodiana 

(Mehler et al., 2024). The distribution model under the most extreme scenarios reveals that the 

probability of presence in areas affected by droughts is very low (Figure 5D). However, this fact is also 

a poor explanation for the future contraction of the potential species range in the east. An increase in 

drought events is predicted for all of Europe, but especially for the south (van Vliet et al., 2013), which 

could explain the decrease of suitable environments in Iberia in the future scenarios (Figures 6, 7).  

The given sets of environmental variables do not allow us to explain the decline of minimally 

suitable habitats in Northern and Northeastern Europe in the future. The answer may lie in the 

interactions between environmental variables and the species’ response to them, which will require 

additional research efforts in the framework of a future study. 

 

Models’ shortcomings and limitations 

The quality assessment criteria for SDMs used in this study revealed that the models obtained have good 

predictive power and transferability, but as the models are addressed to range shifting species, they have 

shortcomings and limitations. 

We have done our best to include in SDMs all the range of habitats currently invaded by the 

Chinese pond mussel in Europe. Our initial species records dataset is smaller than that in analogous 



ENVIRONMENTAL MODELLING OF CHINESE POND MUSSEL  

222 

 

research (Mehler et al., 2024), but includes records from a wider geographical extent and significantly 

expands the range of environmental conditions used in SDM. Rarefaction of the initial dataset reduces 

the number of records mainly in Central and Southern Europe, but records from the Central Pyrenees 

were missing in the initial one. Potentially, these records could improve our SDM locally and specify 

the predicted presence in the particular region. 

Our SDM is based on bioclimatic variables that are widely used in this kind of studies (Barbet-

Massin et al., 2018; Bazzato et al., 2021; Fourcade et al., 2018; Mehler et al., 2024). However, other-

than-climate predictors, like land use, vegetation cover, distance to the nearest waterbody, etc., are also 

influence species distribution and can strengthen the predictive power of SDMs (Mehler et al., 2024; 

Thuiller et al., 2004). We decided not to include such type of variables for several reasons. We assume 

that current association of S. woodiana distribution with anthropogenically affected environments (Sîrbu 

& Benedek, 2018) does not reflect its fundamental niche, but linked with human-mediated invasion. The 

dynamic of this predictor at the local scale under the future climate changes is the subject of special 

research efforts (Arfasa et al., 2023; Lukas et al., 2023; Zhang et al., 2022).  The dispersal of the Chinese 

pond mussel with fish stocks, independent of direct connections between watercourses, makes useless 

predictors related to river network density and watershed divides. Potentially, the distribution of fish 

farms, fishponds, and heated waterbodies could serve as variables that significantly contribute to the S. 

woodiana SDM.  

Projecting of the current species distributions in space and time is a major challenge for SDM 

(Franklin, 2023: see the review in the section 2.5; Wenger & Olden, 2012). We have used different sets 

of environmental variables for both future SDMs, but predictions of distribution are based on current 

relationships between species records and environments, and do not take into account the potential 

evolution of these relationships through time. One of the techniques to improve the extrapolation ability 

of environmental niche models is to generate an ensemble of predictions using several modelling 

methods (Araujo & New, 2007). 

The above criticism does not significantly affect the predictive power of SDMs presented here, 

and we suppose that these models could be used as risk maps for assessing of further invasions of S. 

woodiana. However, the Sinanodonta species complex comprises several invasive lineages that are 

distributed globally. Forecasting of multi-species invasions on a global scale, using improved modelling 

techniques, is of great importance and should attract special research efforts. 
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