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1. Introduction

At low temperatures, the direct current (DC) electrical conductiv-
ity of a crystalline p-type semiconductor with the hydrogen-like
impurity concentration corresponding to the insulator side of
the insulator–metal phase transition has the following form
(see, e.g., refs. [1,2]):

σ ¼ σ1 þ σ2 þ σ3

¼ σ01 exp � ε1
kBT

� �
þ σ02 exp � ε2

kBT

� �
þ σ03 exp � ε3

kBT

� � (1)

where the electrical conductivity σ1 is due to the transitions of
holes from acceptors in the charge state 0ð Þ to the v-band, σ2

is determined by the transitions of single
holes between electrically neutral acceptors
with the formation of a pair of ions in the
charge states þ1ð Þ and �1ð Þ, σ3 is associ-
ated with the phonon-assisted hops of sin-
gle holes from acceptors in the charge state
0ð Þ to the nearest acceptors in the charge
state �1ð Þ, formed due to the introduction
of compensating donors into a semicon-
ductor, σ01, σ02, and σ03 are the weakly
temperature-dependent prefactors (com-
pared with the corresponding exponents),
ε1 > ε2 > ε3 are the thermal activation
energies of the electrical conductivities
σ1, σ2, and σ3 of holes in the vicinity of tem-
peratures where the aforementioned mech-
anisms of electrical conductivity dominate;
kB is the Boltzmann constant; T is the abso-
lute temperature. (The charge states of
acceptors ja,�1i and donors jd,þ1i are
given in units of the elementary charge
e.) Note, that the electrical ε2-conductivity
appears in weakly compensated semicon-

ductors in the range of doping levels by majority impurities from
“moderate” to “heavy” (see, e.g., ref. [3]).

We will be interested in the mechanism of hopping electrical
conductivity σ3 ¼ σh. Historically, following the two higher tem-
perature thermal activation energies (transitions from the impu-
rity energy level to the v- or c-band and transitions between
electrically neutral impurities), it is assigned the index “3”.
At a low doping level, i.e., far from the Mott transition
(insulator–metal phase transition) at low temperatures, DC hop-
ping electrical conductivity has the following form:[1,2]

σh ¼ σ3 ¼ σ03 exp � ε3
kBT

� �
(2)

The most important electrophysical parameters of a semicon-
ductor that determine its properties are the doping level (the con-
centration of the majority impurity) and the compensation ratio
K (the ratio of the concentration of compensating impurities to
the concentration of the majority impurities). Further we con-
sider only lightly doped weakly compensated (LDWC) crystalline
semiconductors, in which the doping level is much lower than
that corresponding to the insulator–metal transition, and the
value of K ≪ 1.

The dependence ln 1=σð Þ versus 1=T according to Equation (1)
for such semiconductors, as well as their energy band diagram
on the example of p-type semiconductors are illustrated
in Figure 1. At a certain characteristic temperature T j, the

N. A. Poklonski, I. I. Anikeev, S. A. Vyrko
Faculty of Physics
Belarusian State University
Minsk 220030, Belarus
E-mail: poklonski@bsu.by

A. G. Zabrodskii
Division of Solid State Electronics
Ioffe Institute
St. Petersburg 194021, Russia

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/pssb.202400132.

DOI: 10.1002/pssb.202400132

A model is proposed for calculating the thermal activation energy ε3 of direct
current hopping conductivity via nearest neighbors in lightly doped and weakly
compensated crystalline semiconductors with hydrogen-like impurities. The
temperature region is considered in which hops of single holes occur only
between acceptors randomly distributed over the crystal (or hops of single
electrons only between donors). The model is based on the idea of the Coulomb
blockade of charge carriers by the field of compensating impurities (trap
impurities). The hopping length of a hole between acceptors (or an electron
between donors) is assumed to be equal to the critical (percolation) radius of the
spherical region per a majority (doping) impurity atom. At a critical radius, an
infinite cluster connecting ohmic contacts is formed in the crystal, along which
charge carriers move in a hopping manner via majority impurities. The value of ε3
is defined as average work on overcoming the electrostatic Coulomb blockade by
a charge carrier and its hopping via the electrically conducting cluster to
“infinity”. The results of calculating ε3 by the proposed model of the Coulomb
blockade for the most well-studied bulk germanium and silicon p- and n-type
crystals are consistent with known experimental data.
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minimum observed band conductivity with the activation
energy ε1 is equal to the maximum hopping conductivity with
the activation energy ε3 ≪ ε1 (see, e.g., refs. [4–6]). Note that,
according to ref. [5], at the hole concentration in the v-band
p ≪ K 1� Kð ÞNa, where Na is the concentration of acceptors,
K is the ratio of the donor concentration to the acceptor concen-
tration, the inequality Wp ≪ Wa is satisfied. The quantity
K 1� Kð ÞNa is the effective concentration of holes hopping via
acceptors in the A0=�-band.[4]

The study of the thermal activation energy ε3 is of key impor-
tance, since its results are used in the creation of cryothermal
resistances and photodetectors based on the crystalline semicon-
ductors operating in the range from infrared to terahertz radia-
tion (see, e.g., refs. [7,8]).

There are quite a lot of experimental data[1,2,9–20] on the ther-
mal activation energy ε3 of the DC hopping electrical conductivity
of LDWC crystalline semiconductors with hydrogen-like impuri-
ties. These data were compared with calculations based on
mathematical and computer models[13,14,21–26] known at that
time. Let us briefly discuss these models (some of which were
considered earlier, for example, in refs. [24,27]).

Historically, the first model for describing the dependence of
the activation energy ε3 on the concentration of the majority
impurities in LDWC semiconductors is the Mott model[21]

(see also ref. [23]). This model gives a correct assessment of
the role of compensating impurities, which is fundamental
for the low-temperature electrical conductivity. Charge carriers
in the Mott model are charged hole vacancies on acceptors or
electron vacancies on donors in p- or n-type materials, respec-
tively. The quantity ε3 in it is defined as the average energy
required to overcome the Coulomb blockade of charge carriers
in the field of the attractive potential of an oppositely charged
compensating impurity and transfer them to infinity.
According to refs. [28,29], the Coulomb blockade of electron
(or hole) vacancies on the majority impurities by the field of com-
pensating impurity ions leads to the formation of a Coulomb gap
at the Fermi level. This gap determines both the migration of
electron (or hole) vacancies and their spin exchange at low tem-
peratures, which manifests itself in macroscopic electrical and
magnetic properties near the insulator–metal concentration
phase transition. At the same time, in the Mott model the
Coulomb correlations in the random (Poisson) distribution of
oppositely charged ions of the majority and compensating impu-
rities are not taken into account and the dependence of ε3 on the
compensation ratio K is not fully described, more precisely, the
result is obtained for vanishingly small values of K, close to zero.

In the Miller–Abrahams model[22] (see also ref. [23]), the cur-
rent via majority impurities is carried out by charge carriers hop-
ping between them. In this case, each hop corresponds to its own
resistor, and together they form a three-dimensional equivalent
resistance network. Then the exponent of the resistance network
is calculated for a Poisson (random) distribution of impurities.
However, the Coulomb interaction between oppositely charged
ions of donors and acceptors is not taken into account in this
model. A significant advance is the ability to analytically describe
the dependence ε3 Kð Þ. However, the derived values of ε3 are on
an average 10% greater than those observed in germanium
crystals,[1,2,9–15] and 35% greater than in silicon crystals.[16–20]

The next step toward a more accurate calculation of the
dependences of ε3 on the doping level of the majority impurities
and their compensation is associated with the Shklovskii–Efros
model,[24] which develops Miller–Abrahams approach taking into
account the percolation theory. This model introduces the con-
cept of impurity complexes associated with a compensating
impurity and expands the number of complexes under consider-
ation from one to three. Thus, in a p-type semiconductor, the 0-,
1-, and 2-complexes represent an ionized donor, next to which
there is no ionized acceptor, or there are 1 or 2 ionized acceptors,
respectively. From the electrical neutrality of the set of charged
0- and 2-complexes, the position of the Fermi level in the zero-
temperature limit is determined by numerical simulation. After
that, long-range fluctuations of the electric potential are taken
into account and the dependence of the activation energy ε3
on the compensation ratio and the concentration of doping
impurities is determined within the framework of the percola-
tion theory. Thus, the dependence of the thermal activation
energy ε3 ¼ ε3ðSEÞ according to the Shklovskii–Efros model
(index SE) on the compensation ratio K ¼ Nd=Na of acceptors
with the concentration Na by donors with the concentration

Figure 1. Scheme of the dependence of the natural logarithm of the recip-
rocal DC electrical conductivity lnð1=σÞ of LDWC semiconductor on the
reciprocal temperature 1=T . At T ¼ T j, the observed values of the mini-
mum band electrical conductivity with the thermal activation energy ε1 and
the maximum hopping electrical conductivity with the thermal activation
energy ε3 are equal. Nearest neighbor hopping (NNH) is the region of
phonon-assisted tunnel hops of holes between the nearest acceptors in
the charge states ð0Þ and ð�1Þ with the activation energy ε3 ≪ ε1 (in
the vicinity of temperature T3); variable range hopping (VRH) is the region
of hole hops optimized by both the activation energy and the length. The
inset shows the energy diagram for the acceptor A0=�-band of LDWC
p-type semiconductor at low temperatures (the energy axis is broken).
Here, Ep and En are the energies of a hole and an electron, respectively,
Ev ¼ 0 is the top of the v-band of an undoped semiconductor (the elec-
tron-filled v-band states are hatched), gp is the density of single-electron
states in the v-band of LDWC semiconductor, Ga is the distribution density
of acceptor energy levels in A0=�-band [the energy levels of acceptors
vacant for holes are hatched, i.e., those in the charge states ð�1Þ]; Ia is

the ionization energy of a single (isolated) acceptor, EðvÞF < 0 is the
Fermi level, Wa is the width of the acceptor band, Wp is the root-
mean-square fluctuation of the potential energy of v-band holes.
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Nd ¼ KNa for a p-type LDWC semiconductor is determined as a
correction to the difference between the positions of the Fermi
level and the maximum density of hole states in the acceptor
band. Approximation of numerical calculations (by the Monte
Carlo method) of the value ε3ðSEÞ over a limited array (up to
1600) of coordinates of acceptors and donor ions, energies
and numbers of hole occupations of acceptors gives[24]

ε3ðSEÞ ¼ 0.61
e2

4πεrε0Ra
1� 0.29K1=4
� �

(3)

where e is the elementary charge, εr is the relative static permit-
tivity (determined by v-band electrons on the background of the
ionic cores of the crystal matrix), ε0 is the electric constant;
Ra ¼ 4πNa=3Þ�1=3

�
is the distance between acceptors in a p-type

semiconductor.
When obtaining relation (3), the validity is not completely

clear: (i) long-range chaotic electrostatic potential in LDWC semi-
conductors; (ii) representation of the value of ε3 as a difference of
energy positions of the Fermi level and the maximum of the den-
sity of states in the impurity band at zero absolute temperature;
(iii) use of a limited data array in computer modeling by the
Monte Carlo method at extremely low compensation ratios of
the majority impurities.

Note that Ginzburg[25] obtained an expression for the activa-
tion energy ε3 by considering only the pairs “majority impurity
ion–electrically neutral majority impurity”, i.e., without taking
into account compensating impurities. But this approach is
rather applicable for moderately doped weakly compensated
semiconductors, when ε3 starts to decrease with an increasing
concentration of the majority impurity.

Subsequently, Tkach and Chenskii[26] proposed an analytical
expression for the dependence of the Fermi level on the compen-
sation ratio of LDWC semiconductors based on the Shklovskii–
Efros model andMarkov chains. The results of calculations of the
Fermi level EF at zero absolute temperature by the model[26] prac-
tically do not differ from the calculations of EF by the Shklovskii–
Efros model.

The purpose of this work is to obtain a more rigorous analyti-
cal expression for the activation energy ε3 of the stationary hop-
ping electrical conductivity based on Mott’s idea about the
important role of the Coulomb blockade in determining it.
The energy ε3 is defined as the work required to overcome
the Coulomb blockade of the charge states �1ð Þ of acceptors
by the field of mutually nearest fixed donors in the charge states
þ1ð Þ in a p-type material [or to overcome the Coulomb blockade
of the charge states þ1ð Þ of donors by the field of mutually near-
est fixed acceptors in the charge states �1ð Þ in an n-type mate-
rial]. The result is an analytical expression for ε3 in the form of a
definite integral. The calculations performed according to this
expression are compared with the experimental data known in
the literature[1,2,9–20] and with the results of numerical simula-
tion[24] of ε3 for LDWC crystalline semiconductors with
hydrogen-like impurity atoms.

Note that we present a comparison with the experimental data
for the most well-studied LDWC covalent semiconductors. These
data have stood the test of time. Unfortunately, there are no new
experimental data on the value of ε3 for the well-characterized
LDWC semiconductor materials with hydrogen-like impurities.

2. Theoretical Model for Calculating ε3

Let us consider a three-dimensional crystalline p-type semicon-
ductor lightly doped with acceptors with the concentration
Na ¼ Na;0 þ Na;�1 and weakly compensated by donors with
the concentration Nd. Here Na;0 andNa;�1 are the concentrations
of acceptors in the charge states 0ð Þ and �1ð Þ, respectively.
The compensation ratio of hydrogen-like acceptors by
hydrogen-like donors in a weakly compensated semiconductor
is 0 < K ¼ Nd=Nað Þ < 5%. It is assumed that in a lightly doped
semiconductor the concentration of the majority (doping) impu-
rity is less than 5% of the concentration corresponding to the
insulator–metal phase transition (Mott transition) at low temper-
atures. This corresponds to the doping level, starting from which
there is a violation of the theoretically predicted increase in the
value of ε3 with an increasing concentration of the majority
impurity.[30] All compensating donors are in the charge state
þ1ð Þ, i.e., Nd;þ1 ¼ Nd ¼ KNa. The average over the crystal
volume electrical neutrality has the form:

Na;�1 ¼ Nd ¼ KNa (4)

Further, the hopping migration of holes is considered within
the framework of the one-particle approximation, i.e., one hole is
considered and it is assumed that it hops between acceptors in
the averaged field of all holes and all impurity ions. At the hop-
ping electrical ε3-conductivity, thermally phonon-assisted tunnel-
ing transitions of holes occur between acceptors in the charge
state 0ð Þ and acceptors nearest to them in the charge state
�1ð Þ. This means that these charge states migrate through
the crystal in an appropriate manner.[4]

Based on the virial theorem, in refs. [5,6] the characteristic
temperature T j of the transition from band migration of holes
via the v-band states to hopping migration of holes via acceptors
in the charge states 0ð Þ and �1ð Þ at the concentration of v-band
holes p ≪ K 1� Kð ÞNa is determined as follows:

T j ≈
0.728
kB

e2

4πεrε0
KNað Þ1=3 (5)

where εr is the relative static permittivity; at low temperatures
εr ¼ 15.4 for germanium crystals[31] and εr ¼ 11.47 for silicon
crystals;[32] Na;�1 ¼ KNa.

Note that at temperature T ≥ T j there is no correlation in the
location of all impurity ions and they are randomly (Poissonian)
distributed over the crystal. At temperature T < T j, the electrical
conductivity of free holes via the v-band states is negligible com-
pared to the hopping electrical conductivity. The concentration of
localized holes in the acceptor band is Na;0 ¼ 1� Kð ÞNa.
According to,[33,34] the maximum concentration of holes hopping
between acceptors in the charge states 0ð Þ and �1ð Þ is
Nh ¼ K 1� Kð ÞNa, i.e., Nh ¼ Na;0Na;�1=Na. The ratio of the con-
centration of holes hopping via acceptorsNh to the concentration
of holes on acceptors Na;0 ¼ 1� Kð ÞNa is Nh= 1� Kð ÞNa ¼ K .
The hopping electrical conductivity σh ¼ σ3 ¼ eNhMh, where
Mh is the drift hopping mobility, which determines the temper-
ature dependence of σh.

Next, we take into account that a hole localized near one impu-
rity atom is affected by the other impurity ions. As a result, the
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energy level of the impurity shifts (due to local fluctuations of
concentration, the shift is random in different parts of the
crystal). Instead of discrete local energy levels, an impurity band
appears in the band gap of a semiconductor (see the A0=�-band in
Figure 1). In this case, we cannot know exactly where the hole
energy level is located in the impurity band. Then, under the
assumption that the distribution density of acceptor energy levels
in the band gap is Gaussian, we can find the average concentra-
tion of electrically neutral and negatively charged acceptors by
integrating over all possible values of acceptor energy levels in
the A0=�-band.

Thus, the average over the crystal volume probabilities f 0h i
and f �1h i that the acceptor randomly selected in the crystal
matrix is in the charge state 0ð Þ [is electrically neutral] or in
the charge state �1ð Þ [is a singly negatively charged ion] are[4,5,35]

hf 0i ¼
Na;0

Na
¼

Z þ∞

�∞
Ga f 0 dðEa � IaÞ ¼ 1� K

hf �1i ¼
Na;�1

Na
¼

Z þ∞

�∞
Ga f �1 dðEa � IaÞ ¼ K

(6)

where Ga is a Gaussian distribution of density of hole states

in the acceptor band (A0=�-band), f 0 ¼ 1� f �1 ¼
�
1þ

β�1
a exp

���
E vð Þ
F þ Ea

�
=kBT

�	�1 is the probability of filling a state
with the energy level Ea by a hole; Ea ¼ Ea;�1 � Ea;0 > 0 is the
ionization energy of an electrically neutral acceptor from the
ground state (a hole detachment from a neutral acceptor and
its transition to the top of the v-band of an undoped crystal); Ia ¼
Ia;�1 � Ia;0 ¼ e2=8πεrε0ap > 0 is the thermal ionization energy of
an isolated (single) acceptor in the charge state 0ð Þ; ap is the Bohr
radius of a hole on the acceptor; E vð Þ

F < 0 is the Fermi level; T is
the absolute temperature; the top of the v-band (Ev ¼ 0) of an

undoped crystal is chosen as the reference point for E vð Þ
F , Ia,

and Ea; βa is the degeneracy factor of the energy level Ea of a
hydrogen-like acceptor. For the case T < T j it is assumed that
βa ¼ 4 (cf. ref. [36]) and the degeneracy factor of the hydrogen-
like donor is βd ¼ 2.[37–39] The magnetic moment of the acceptor
(donor) atom nucleus is not taken into account.[40]

Let us assume that the distribution density of acceptor energy
levels Ea in the band gap (see Figure 1) has a normal (Gaussian)
distribution:[41,42]

Ga ¼
1

Wa
ffiffiffiffiffi
2π

p exp � Ea � Iað Þ2
2W2

a

� �
(7)

whereW2
a is the variance of acceptor energy levels Ea relative to Ia

in the semiconductor band gap; ∫ þ∞
�∞Gad Ea � Iað Þ ¼ 1.

The rms fluctuation of acceptor energy levels (the effective
width of the acceptor band) Wa taking into account the
Coulomb interaction of randomly (Poissonian) located in the
crystal nearest impurity ions is equal to[4,5,43]

Wa ≈ 2.64
e2

4πεrε0
2KNað Þ1=3 (8)

where 2KNa ¼ Na;�1 þ Nd is the concentration of all impurity
ions in the crystal.

To take into account the effect of the electrostatic potential
φ rð Þ ¼ e=4πεrε0r created by donor in the charge state þ1ð Þ, at
distance r from it, on the concentration of acceptors in the charge
state �1ð Þ it is necessary to find the position of the Fermi level

E vð Þ
F rð Þ:

E vð Þ
F rð Þ ¼ E vð Þ

F � eφ rð Þ ¼ E vð Þ
F � e2=4πεrε0r (9)

where E vð Þ
F < 0 is found from the solution of the electrical neu-

trality Equation (4) taking into account Equation (5)–(8) at
φ rð Þ ¼ 0.

Note that in Equation (9) and further the purely Coulomb
potential φ rð Þ of the interaction of the mutually nearest donor
and acceptor ions is taken into account without screening of this
potential by holes hopping between acceptors.[44]

From Equation (6) and (9) follows that

Na;�1 rð Þ ¼ Na;�1 φ rð Þð Þ

¼ Na

Z þ∞

�∞

Gad Ea � Iað Þ
1þ βa exp Ea þ E vð Þ

F � eφ rð Þ
h i� .

kBT
� (10)

Further, following ref. [5], we introduce the concept of mutu-
ally nearest positively charged donors and negatively charged
acceptors. The donor ion and the acceptor ion are considered
to be mutually nearest in the crystal if the donor ion is the nearest
to the acceptor ion, and the acceptor ion is the nearest to the
donor ion. Then the probability density function Pcor rð Þ to find
a mutually nearest pair “acceptor ion – donor ion” in the range of
distances r, r þ drð Þ between them taking into account the
Coulomb attraction of the acceptor in the charge state �1ð Þ to
the donor ion is (see Appendix A):

Pcor rð Þ ¼ 4πr2 Na;�1 rð Þ þ KNa
� �

� exp �4π
Z

r

0
l2½Na;�1ðlÞ þ KNa�dl

� � (11)

where ∫ ∞
0 Pcor rð Þdr ¼ 1, Na;�1 rð Þ ≡ Na;�1 φ rð Þð Þ is the concentra-

tion of acceptors in the charge state �1ð Þ, which by Equation (6)
taking into account Equation (9) depends on r through the depen-
dence of the Coulomb potential φ rð Þ; the position of the donor
ion is chosen as the reference point for distances r ¼ 0ð Þ.

Note that without taking into account the Coulomb interaction
between the donor ion and the acceptor ion, the probability den-
sity function by Equation (11) transforms into a purely geometric
(Poisson) probability density function to find the mutually
nearest impurity ion in the distance range r, r þ drð Þ providing
that there are no other ions in the ball of radius r, i.e.,
Prnd rð Þ ¼ 4πr2Nch exp �4πr3Nch=3ð Þ, whereNch ¼ Na;�1 þ Nd ¼
2KNa is the concentration of impurity ions.[5,45] This
probability density function is used in refs. [4,5,43] to obtain
Equation (8), which describes the rms fluctuation of acceptor
energy levels.

Note that in refs. [46–49] the distribution of distances between
mobile ions in liquid and solid crystals is considered and it
is assumed that Na;�1 rð Þ ¼ Na exp e2=4πεrε0rkBTð Þ. Then, as
the donor ion approaches the acceptor ion, i.e., at r ! 0, the
value of Na;�1 rð Þ increases indefinitely; the value of Na;�1 rð Þ
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becomes divergent due to the use of the Maxwell–Boltzmann dis-
tribution.[50] When writing Equation (10) for the probability of
finding an acceptor in the charge state �1ð Þ at distance r from
the nearest donor in the charge state þ1ð Þ, the grand canonical
Gibbs distribution[51,52] is used and the specified problem with
the concentration Na;�1 rð Þ does not arise.

According to numerical calculations,[24–26] 97.4% of the
donors in a p-type semiconductor (or acceptors in an n-type semi-
conductor) participate in 1-complexes; see also ref. [53].

Further, when calculating the activation energy ε3 for lightly
doped weakly compensated semiconductors, the following
assumptions simplifying the subsequent calculation are used:
(i) The distance between the mutually nearest “electrically
bound” ions of the donor–acceptor pair is assumed to be equal
to the critical (percolation) radius Rper of the spherical region per
acceptor, taking into account the donors that compensate them,
at which end-to-end electrically conducting channels of acceptors
are formed in the crystal. (ii) At the critical radius Rper the charge
state �1ð Þ of the acceptor, being “detached” as a result of activa-
tion, from the mutually nearest donor ion, without changing its
nearest and farthest surroundings can migrate in a hopping
manner via acceptors through the entire crystal, moving away
from this donor to infinity. In fact, during this migration, sub-
sequent captures by other distant donors are possible (K ≪ 1),
after which the process is repeated. (iii) The restoration time
of the initial local equilibrium state, when the donor and acceptor
ions become again mutually nearest neighbors, is determined by
the overall migration rate, i.e., ultimately by the temperature.
(iv) The energy source of the magnitude ε3 for activating hops
is acoustic phonons (phonon assisted hopping).

It is assumed that the charge state �1ð Þ of the acceptor
belongs to an “infinite” cluster of acceptors connecting electrodes
to the sample when the NNH-conductivity is realized in it.[24]

Ionization equilibrium ensures the fulfillment of the local and
global electrical neutrality of the crystal sample.

Note that the stationary hopping conductivity involves the
charge states �1ð Þ of acceptors which due to thermal fluctuations
migrate in the acceptor band from the mutually nearest

donor (located at distance Rper) to infinity. Here Rper ¼
B1=3
c 4π 1þ Kð ÞNa=3½ ��1=3 ≈ 0.867 1þ Kð ÞNa½ ��1=3 is the distance

between acceptors (majority impurities), equal to the percolation
radius of the spherical region per acceptor taking into account
the compensation of acceptors by donors; Bc ≈ 2.735 is a dimen-
sionless parameter, the average number of hopping bonds per
atom of the majority impurity.[24,54–57] At the percolation radius
Rper the charge state �1ð Þ of the acceptor, being activated and
“detached” from the donor ion, is able to migrate in a hopping
manner via acceptors states through the entire crystal [more pre-
cisely, holes migrate, hopping from the acceptor in the charge
state 0ð Þ to the acceptor in the charge state �1ð Þ]. Note that
the value of Rper takes into account the effect of the excluded frac-
tion of self-avoiding walks (according to the terminology of
ref. [58]) of holes via acceptors.

We define the thermal activation energy ε3 of hopping migra-
tion of holes between acceptors and donors randomly
(Poissonian) distributed over the crystal as the average work
in the Coulomb field of the donor ion E ρð Þ ¼ e=4πεrε0ρ2

necessary for hopping migration of the charge state �1ð Þ of the
acceptor from the mutually nearest donor in the charge state
þ1ð Þ from the point with coordinate ρ ¼ r ¼ Rper to infinity
ρ ¼ ∞ (cf. ref. [23]):

ε3 ¼
1
C3

Z
∞

Rper

PcorðrÞ
Z

∞

r
eEðρÞdρ

� �
dr

¼ 1
C3

e2

4πεrε0

Z
∞

Rper

Pcor rð Þ
r

dr;

C3 ¼
Z

∞

Rper

PcorðrÞdr ¼ exp �4π
Z

Rper

0
l2½Na;�1ðlÞ þ KNa�dl

� �
(12)

where C3 is the normalizing factor; the probability Pcor rð Þdr is
determined by Equation (11) taking into account Na;�1 lð Þ ¼
Na;�1 rð Þ by Equation (10); E ρð Þ ¼ �dφ=dρ is the Coulomb elec-
tric field strength created by the donor ion at distance ρ from it;
φ ρð Þ ¼ e=4πεrε0ρ is the electrostatic potential created by the
donor in the charge state þ1ð Þ at distance ρ from it.

Note that the value of ε3 by Equation (12) corresponds to the
activation energy of hopping migration of an average hole of the
acceptor band from “infinity” to Rper ≈ 0.867 1þ Kð ÞNa½ ��1=3.

In order to extend the obtained equations to n-type semicon-
ductors with hydrogen-like donors in all equations the index “a”
[acceptors in the charge states 0ð Þ and �1ð Þ] should be replaced
by the index “d” [donors in the charge states 0ð Þ and þ1ð Þ].

3. Calculation Results and Their Comparison with
Experimental Data

Table 1 shows the results of calculations of ε3 by Equation (12),
taking into account Equation (4)–(11) at the temperature T3 ¼
T j=3 determined by Equation (5), and their comparison with
the experimental data[1,2,9–20] for bulk germanium and silicon
crystals of n- and p-type doped with various hydrogen-like impu-
rities. The thermal ionization energies of a single majority impu-
rity atom in the charge state 0ð Þ used in calculations for n-type
and p-type germanium crystals are:[59,60] Id ¼ 10.32 meV
(n-Ge:Sb), Id ¼ 14.17 meV (n-Ge:As), Id ¼ 12.89 meV (n-Ge:P),
and Ia ¼ 11.32 meV (p-Ge:Ga); for n-type and p-type silicon crys-
tals: Id ¼ 45.58 meV (n-Si:P) and Ia ¼ 44.39 meV (p-Si:B).

From the experimental data for LDWC crystals of Ge and Si we
selected such samples in which the compensation ratio K < 5%
and the concentration of the doping impurity NdðaÞ < 0.05NM,
where NM is the concentration of the majority impurity corre-
sponding to the Mott transition (see ref. [61] and references
therein). For n-type and p-type germanium crystals: NM ≈ 1.68�
1017 cm�3 (n-Ge:Sb, K < 0.1), NM ≈ 3.61� 1017 cm�3 (n-Ge:As,
K ≈ 0), NM ≈ 2.53� 1017 cm�3 (n-Ge:P, K ≈ 0), and NM ≈
1.85� 1017 cm�3 (p-Ge:Ga, K ≈ 0.35); for n-type and p-type
silicon crystals: NM ≈ 3.81� 1018 cm�3 (n-Si:P, K ≈ 0.1) and
NM ≈ 4.1� 1018 cm�3 (p-Si:B, K ≈ 0.1). As it was established
on the example of Ge and Si,[62,63] at weak compensation ratios
K the value of NM is practically independent of compensation,
which makes it possible to use the above data on NM in the entire
considered range of weak compensations.
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Table 1 shows that the results of calculations of the thermal
activation energy ε3 of the hopping electrical conductivity by
Equation (12) taking into account Equation (4)–(11) at the

temperature T3 ¼ T j=3 by Equation (5) are generally quantita-
tively consistent with the experimental data for Ge and Si.
The calculations of ε3ðSEÞ by Equation (3) proposed by

Table 1. Parameters of hydrogen-like doping impurities in semiconductor crystals of Ge and Si and the thermal activation energy ε3 of the hopping
electrical conductivity calculated by Equation (12), taking into account Equation (4)–(11) at the temperature T3 ¼ T j=3 by Equation (5), and by Shklovskii–
Efros model ε3ðSEÞ [Equation (3)] in comparison with the experimental data.[1,2,9–20]

Material Sample NdðaÞ [cm
�3] K [%] T j [K] Calculation ε3 [meV] Experiment ε3 [meV] Calculation ε3ðSEÞ [meV] Calculation Experimental data refs.

n-Ge:Sb �5 1.6� 1015 ≈3 2.87 0.99 0.96 0.95 [2]

�7 2.3� 1015 ≈3 3.24 1.1 1.08 1.07

�8 3� 1015 ≈3 3.54 1.2 1.18 1.17

�10 5.2� 1015 ≈3 4.25 1.5 1.42 1.40

– 6� 1015 ≈3 4.46 1.76 1.49 1.47 [9]

E3 6.7� 1015 4 5.09 1.62 1.58 1.51 [10]

– 6.7� 1015 ≤3 4.62 1.75 1.55 1.52 [11,12]

– 6.8� 1015 ≤3 4.65 1.45 1.55 1.53

– 6.8� 1015 2–4 4.06 1.3 1.52 1.55

n-Ge:As – 2� 1016 ≈2 5.82 1.89 2.17 2.22 [9]

n-Ge:P 1 3.7� 1015 ≈3 3.79 1.25 1.27 1.25 [13,14]

2 4.3� 1015 ≈3 3.99 1.39 1.33 1.31

3 4.9� 1015 ≈3 4.17 1.47 1.39 1.37

4 6.3� 1015 ≈3 4.53 1.56 1.51 1.49

5 6.9� 1015 ≈3 4.67 1.60 1.56 1.54

6 1.1� 1016 ≈3 5.46 1.74 1.82 1.80

p-Ge:Ga – 2.66� 1015 2–4 3.74 1.45 1.16 1.11 [15]

– 4.4� 1015 ≈2 3.66 1.40 1.32 1.34 [1]

n-Si:P 215A 1.1� 1017 0.73 9.85 5 5.07 5.41 [16]

p-Si:B – 2.3� 1016 0.1 3.01 3.89 3.50 3.33 [17,18]

– 2.49� 1016 0.1 3.09 4.15 3.59 3.42

– 2.74� 1016 0.1 3.20 3.99 3.71 3.53

– 3.06� 1016 0.1 3.31 4.29 3.84 3.66

– 3.1� 1016 0.1 3.33 4.09 3.86 3.68

– 3.6� 1016 0.1 3.50 4.22 4.06 3.87

– 3.6� 1016 0.04 2.58 4.79 4.29 3.91

– 3.6� 1016 0.06 2.95 4.47 4.21 3.89

– 3.6� 1016 0.08 3.25 4.37 4.13 3.88

– 3.6� 1016 0.18 4.26 4.12 3.84 3.83

– 3.6� 1016 0.34 5.26 3.97 3.63 3.79

– 3.6� 1016 0.62 6.43 3.73 3.51 3.74

– 3.6� 1016 0.89 7.25 3.65 3.49 3.71

11 4.5� 1016 0.22 4.90 4.3 4.06 4.12 [19]

12 5.2� 1016 0.11 4.08 4.4 4.55 4.36

13 6� 1016 0.078 3.82 4.7 4.91 4.60

14 7.8� 1016 0.03 3.03 5.2 5.59 5.07

B-977 8.94� 1016 1.4 11.42 4.5 4.74 4.97 [20]

15 9� 1016 0.2 5.99 5.2 5.16 5.19 [19]

B-171 1.07� 1017 3.4 16.30 5.1 5.27 5.13 [20]

16 1.2� 1017 0.03 3.50 6.2 6.46 5.86 [19]

www.advancedsciencenews.com www.pss-b.com

Phys. Status Solidi B 2024, 2400132 2400132 (6 of 10) © 2024 Wiley-VCH GmbH

 15213951, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pssb.202400132 by U

niversidad Publica D
e N

avarra, W
iley O

nline L
ibrary on [12/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.pss-b.com


Shklovskii and Efros[13,14,24] for the zero-temperature limit agree
approximately equally well for Ge and somewhat worse for Si
with the experimental data.

Although the analytical calculations according to our
Equation (12) practically coincide with the numerical calculations
of Shklovskii–Efros [see Equation (3)], there are nevertheless the
following reasons for their deriving: (i) to avoid the unjustified
introduction of long-range chaotic electrostatic potential in
LDWC semiconductors; (ii) to avoid the unjustified assumption
that the value ε3 is equal to the difference between energy posi-
tion of the Fermi level, obtained from the equality of the
concentrations of 0- and 2-complexes, and the maximum of
the density of states in the impurity band at zero absolute tem-
perature; (iii) to avoid the necessity to calculate the coefficients in
evaluation of ε3 by numerical simulation by the Monte Carlo
method using a limited data array; (iv) to take into account
the influence of temperature on the value of ε3.

Thus, comparison of calculation results (see also ref. [64])
using both models with experiment gives almost equally good
results and does not allow us to make a final choice between
them. Nevertheless, it shows the realism of our model, based
on Mott’s idea about the relation of the activation energy of hop-
ping migration in the doped semiconductors with overcoming
the Coulomb blockade of charge carriers in the impurity band
by the field of compensating impurities.

4. Conclusions

An electrostatic model is constructed to calculate the thermal
activation energy of the hopping electrical ε3-conductivity via
the nearest neighbors in lightly doped weakly compensated semi-
conductors with hydrogen-like impurities. This model allowed to
obtain an analytical expression (in the form of a definite integral)
for the value of ε3. The model is based on the idea that the mech-
anism of the electrical ε3-conductivity is realized by the thermally
activated charge carriers overcoming the Coulomb blockade in
the impurity band. The Coulomb blockade is created by a field
of compensating trap impurities. A subsequent hopping migra-
tion of charge carriers via the states of the majority impurities is
considered within the framework of the percolation theory. In
fact, we propose a model of “detachment” of the charge state
of the doping impurity from the mutually nearest ion of the com-
pensating impurity, i.e., in some sense an analogue of the Mott
model for ε3.

It is assumed that donors and acceptors are randomly
(Poissonian) distributed over a crystal, and hops of single holes
occur only between acceptors in the charge states 0ð Þ and �1ð Þ in
a p-type semiconductor (or electrons between donors in the
charge states 0ð Þ and þ1ð Þ in an n-type semiconductor).
Among the three possible types of impurity complexes, only
“1-complexes” (mutually nearest donor ion and acceptor ion)
are considered. The distance between “electrically bound”major-
ity impurities is assumed to be equal to the critical (percolation)
radius Rper ≈ 0.867 1þ Kð ÞNaðdÞ

� ��1=3, where 1þ Kð ÞNaðdÞ is the
total concentration of impurities in the crystal with the compen-
sation ratio K (index “a” for p-type or index “d” for n-type). At the
hopping length Rper of charge carriers between the atoms of the
majority impurity in the crystal sample, an end-to-end (i.e., from

anode to cathode) electrically conducting channel is formed. As a
result of thermal activation at the characteristic temperature T3,
the charge state �1ð Þ of the acceptor “detaches” from the mutu-
ally nearest donor ion in a p-type semiconductor at the critical
radius Rper and starts to migrate in a hopping manner through
the crystal. Hence, in p-type semiconductors, the activation
energy ε3 is defined as the work of electrostatic field forces
required for the hopping migration of a hole from infinity to
the acceptor ion located at a distance Rper from the compensating
donor ion. Similarly, the value of ε3 is calculated for n-type
semiconductors.

We compared calculations based on our model [Equation (12)
at the absolute temperature T3 ¼ T j=3] and the Shklovskii–Efros
model [Equation (3) at zero absolute temperature] against the
known experimental data for bulk covalent crystals (n- and
p-Ge; n- and p-Si). Both theories describe the experimental values
of the activation energy ε3 almost equally well. Nevertheless, this
comparison demonstrates the realism of our model, and the
physical picture of hopping migration on which the model is
based. The key role in this picture is played by the activation
effect of overcoming the Coulomb blockade of charge carriers
in the impurity band by the field of compensating impurities.

Appendix A. Probability of Distribution of
Oppositely Charged Mutually Nearest Impurity
Ions in Electrically Neutral Crystal

Let hydrogen-like acceptors and compensating donors are ran-
domly distributed in the crystal matrix of a p-type semiconductor,
which are considered as a gas of point particles. Each acceptor
can be in one of two charge states �1ð Þ and 0ð Þ, while all donors
are in the charge state þ1ð Þ. In contrast to the fixed states of
donor ions, the charge states �1ð Þ of acceptors can migrate
through the crystal accordingly to the thermally activated hole
hopping from acceptors in the charge state 0ð Þ to acceptors in
the charge state �1ð Þ. Let Nd;þ1 be the donor concentration,
and Na;�1 rð Þ be the local concentration of acceptors in the charge
state �1ð Þ located in the Coulomb field of mutually nearest
donors, where r is the distance from the donor to the acceptor
ion. [The acceptor and donor ions are called mutually nearest
neighbors if the acceptor ion is the acceptor in the charge state
�1ð Þ nearest to this donor ion, and the donor ion is the donor in
the charge state þ1ð Þ nearest to this acceptor ion.]

The stationary probability that in a chosen volume V of a crys-
tal matrix there are k point particles (acceptor ions or donor ions)
does not depend on the shape of V and its location in the matrix
and is given by the Poisson distribution (see ref. [5] and referen-
ces therein, as well as ref. [65]):

Pðk,N iV Þ ¼
ðN iV Þk exp ð�N iV Þ

k!
(A1)

where N iV is the average number of particles of the type
i ¼ 1 (acceptor ions) or i ¼ 2 (donor ions) in the volume V;
N 1V ¼ ∫ V Na;�1ðlÞ d3l is the average number of acceptors in
the charge state �1ð Þ enclosed in the volume V, which are
affected by the Coulomb field of donor ion of the mutually
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nearest donor–acceptor ion pair; N 2V ¼ ∫ V Nd;þ1 d3l ¼ VNd;þ1

is the average number of donors in the charge state þ1ð Þ
enclosed in the volume V; for a spherical region the element
of volume d3l ¼ 4πl2dl.

Let us consider the probability space consisting of particle
pairs ðjd,þ1i, ja,�1iÞ, where jd,þ1i is a positively charged
hydrogen-like donor and ja,�1i is a negatively charged
hydrogen-like acceptor. Let event Ar consists of the pairs
ðjd,þ1i, ja,�1iÞ in which the ionized donor and the ionized
acceptor are mutually nearest neighbors and the distance
jrd;þ1 � ra;�1j between these donor and acceptor ions lies within
the range r, r þ dr½ Þ (see Figure A1).

Let us find the probability of detecting the mutually nearest
pair “acceptor ion – donor ion”, taking into account the
Coulomb attraction between them and the distance from r to
r þ dr in the pair. Let us place the origin of coordinates at the
donor ion and find the distribution of distances from the donor
ion to the nearest acceptor ion. For this purpose, let us consider a
ball of volume Vball= 4πr3=3 with center at the donor ion and a
ball of volume 4πr3=3 with center at the nearest acceptor ion (see
Figure A1). In order for the donor ion placed at the coordinate
origin to have the acceptor in the charge state �1ð Þ as its nearest
neighbor, and in turn this acceptor ion to have this donor ion as
its nearest neighbor, it is necessary, that in region I there are no
acceptors in the charge states �1ð Þ, in region II there are no
donors in the charge states þ1ð Þ, in region III there are neither
acceptor ions nor donor ions, and in region Sd;þ1 there are at least
one acceptor in the charge state �1ð Þ.

Let us calculate the probabilityP�1ðArÞ of the event Ar . For the
donor ion, consider a random event Ard ⊂ Ar , consisting of all
pairs from Ar that contain this donor ion. The random event
Ard is the intersection of four independent events (the area

notations are shown in Figure A1): there are no acceptors in
the charge states �1ð Þ in region I (event A1), there are no donors
in the charge states þ1ð Þ in region II (event A2), there are neither
acceptor ions nor donor ions in region III (event A3), and there
are at least one acceptor in the charge state �1ð Þ in region Sd;þ1

(event A4). Taking into account Equation (A1) we obtain

P�1ðArdÞ ¼ PðA1ÞPðA2ÞPðA3ÞPðA4Þ,

PðA1Þ ¼ Pð0,N 1VI
Þ ¼ exp ð�N 1VI

Þ, N 1VI
¼
Z
VI

Na;�1ðlÞd3l;

PðA2Þ ¼ Pð0,N 2VII
Þ ¼ exp ð�N 2VII

Þ, N 2VII
¼ VIINd;þ1;

PðA3Þ ¼ Pð0,N 1VIII
ÞPð0,N 2VIII

Þ ¼ exp ð�N 1VIII
Þexpð�N 2VIII

Þ,

N 1VIII
þN 2VIII

¼
Z
VIII

½Na;�1ðlÞ þ Nd;þ1�d3l;

PðA4Þ ¼ 1� Pð0,N 1Sd;þ1
Þ ≈ 4πr2Na;�1ðrÞdr

Then the probability P�1ðrÞ to find the acceptor ion at distance
r from the donor ion taking into account their Coulomb interac-
tion is

P�1ðrÞ ¼ 4πr2Na;�1ðrÞdr � exp ð�N 1VI
Þ

� exp ð�N 2VII
Þ exp ½�ðN 1VIII

þN 2VIII
Þ�

(A2)

The probability Pþ1ðrÞ to find the donor ion at distance r from
the acceptor ion taking into account their Coulomb interaction is
similarly written:

Pþ1ðrÞ ¼ 4πr2Nd;þ1dr � exp ð�N 2VII
Þ exp ð�N 1VI

Þ
� exp ½�ðN 1VIII

þN 2VIII
Þ�

(A3)

Let us take into account that the entering of the acceptor ion
and the donor ion to the origin of coordinates are incompatible
events. Then from Equation (A2) and (A3) we obtain the proba-
bility of finding the mutually nearest acceptor in the charge state
�1ð Þ and donor in the charge state þ1ð Þ in the form:

PcorðrÞ ¼ P�1ðrÞ þ Pþ1ðrÞ

¼ 1
Ccor

4πr2½Na;�1ðrÞ þ Nd;þ1�dr exp ð�N Þ (A4)

where Ccor is the normalization factor obtained from the normal-
ization condition ∫ ∞

0 PcorðrÞ ¼ 1; N ¼ N 1VI
þN 2VII

þN 1VIII
þ

N 2VIII
is the average number of acceptors in the charge state

�1ð Þ in the volume VI þ VIII and the average number of donor
ions in the charge state þ1ð Þ in the volume VII þ VIII taking into
account their Coulomb interaction.

The average number of ions N in two balls (see Figure A1)
included in Equation (A4) is calculated as follows:

Figure A1. Balls of radius r with centers at the donor ion jd,þ1i (at a point
with radius vector rd;þ1) and at the acceptor ion ja,�1i (at a point with
radius vector ra;�1) forming a mutually nearest pair “donor ion – acceptor
ion” with distance range ½r, r þ drÞ between them. At the center of each
ball, an infinitesimal neighborhood of the donor ion jd,þ1i or the acceptor
ion ja,�1i is excluded, Sd;þ1 is the spherical layer with thickness dr of the
ball with the center on the donor ion jd,þ1i, more precisely
Sd;þ1 ¼ fr ∈ E3jr < jr � rd;þ1j < r þ drg, Sa;�1 is the spherical layer with
thickness dr of the ball with the center on the acceptor ion ja,�1i, more
precisely Sa;�1 ¼ fr ∈ E3jr < jr � ra;�1j < r þ drg, where E3 is the three-
dimensional Euclidean space. Here it is taken into account that in region I
there are no acceptor ions, in region II there are no donor ions, and in
region III there are neither acceptor ions nor donor ions.
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N ¼ N 1VI
þN 2VII

þN 1VIII
þN 2VIII

¼
Z
VI

Na;�1ðlÞd3lþ VIINd;þ1

þ
Z
VIII

Na;�1ðlÞd3lþ VIIINd;þ1

¼
Z
Vball

Na;�1ðlÞd3lþ ðVII þ VIIIÞNd;þ1

¼
Z
Vball

Na;�1 lð Þd3lþ VballNd;þ1

¼ 4π
Z

r

0
l2Na;�1 lð Þdlþ 4πr3

3
Nd;þ1

(A5)

where the last transformation is obtained by the transition from
the Cartesian coordinate system to the spherical coordinate
system.

Then from Equation (A5) we obtain the normalized to unity
desired probability PcorðrÞ to find the mutually nearest acceptor
in the charge state �1ð Þ and the donor ion in the charge state
þ1ð Þ at distance r, r þ dr½ Þ in the following form:

PcorðrÞ ¼ PcorðrÞdr ¼ 4πr2½Na;�1ðrÞ þ Nd;þ1�dr

� exp �4π
Z

r

0
l2Na;�1 lð Þdl� 4πr3

3
Nd;þ1

� � (A6)

where Pcor rð Þ is the probability density function normalized to
unity due to the relation [see Equation (A4)]:

Ccor ¼
Z

∞

0
PcorðrÞ ¼

Z
∞

0
PcorðrÞdr

¼
Z

∞

0
4πr2½Na;�1ðrÞ þ Nd;þ1�

� exp �4π
Z

r

0
l2½Na;�1ðlÞ þ Nd;þ1�dl

� �
dr

¼ �
Z

∞

0

d
dr

exp
�
� 4π

Z
r

0
l2½Na;�1ðlÞ

þ Nd;þ1�dl
�
dr ¼ 1

(A7)

If Na;�1 does not depend on r, i.e., there is no Coulomb cor-
relation between the location of fixed donors [all in the charge
state þ1ð Þ] and migrating charge states �1ð Þ of acceptors (due
to hole hopping between acceptors), then the resulting
Equation (A6) transforms into the Equation from ref. [5] for
mutually nearest randomly distributed ions in the charge states
þ1ð Þ and �1ð Þ.
Note that the average distance rcor between the mutually near-

est fixed donor in the charge state þ1ð Þ and the mobile charge
state �1ð Þ of the acceptor, taking into account their purely
Coulomb attraction, is less than the average distance rrnd
between the mutually nearest donor and acceptor ions randomly
distributed over the crystal:

rcor ¼
Z

∞

0
rPcorðrÞ < rrnd ≈ 0:554½ðNd;þ1 þ Na;�1Þ��1=3 (A8)
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