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Abstract: Dense and transparent ceramic samples of a (Gd,Y)3Al2Ga3O12:Ce scintillator were ob-
tained by using stereolithography-based Digital Light Processing (DLP) 3D printing for compacting,
subsequent burnout, and pressureless sintering. The effects of stoichiometric deviations and green
body compaction methods (uniaxial pressing versus DLP 3D printing) on the optical, luminescent,
and scintillation properties of ceramics were analyzed. An excess of Y and Gd in the composition
led to an increase in transmittance and to the acceleration of the scintillation kinetics. Moreover,
transparent ceramics made of 3D-printed green bodies were found to be superior in light yield to the
samples, which were prepared from the same powders and densified by uniaxial pressing.

Keywords: 3D printing; ceramics; garnet oxide; light yield; luminescence; scintillation

1. Introduction

Inorganic scintillator materials based on complex oxides with a garnet crystal structure
(cubic, Ia-3d, #230), specifically (Gd,Y)3Al2Ga3O12 doped with cerium (GYAGG:Ce), are
of great interest for ionizing radiation detection applications or as a promising detector in
modern medical X-ray and Computed Tomography (CT) scanners due to their excellent
chemical and thermal stability, high light output, good energy resolution, and relatively
short photoluminescence decay [1–3]. GYAGG:Ce ceramics possess a high density of about
~6 g/cm3, high effective atomic number [4], and good radiation hardness [1,5,6], which
makes them useful for the measurement of ionizing radiation. The excellent mechanical
properties [7,8] and machinability of GYAGG:Ce have also been demonstrated [8]. Another
important advantage of Ce3+ ions in a garnet matrix is their good spectral compatibility with
the sensitivity range of various semiconductor photosensors. Beyond that, in comparison
to the expensive process of single-crystal growth, transparent garnet ceramic fabrication is
a less time-consuming process; no precious metal tooling is used. The production process is
paired with the ability to precisely modify their composition as well as size and shape [9–11].
Thus, the development of techniques to make ceramic manufacturing more cost-effective is
greatly demanded.

Traditional methods of manufacturing dense advanced functional ceramics, such as
cold and hot iso-static pressing [12,13] or spark plasma sintering [14], are commonly used.
However, these methods allow the production of objects with simple shapes, requiring
expensive molds and possessing well-known size limitations. Also, these methods require
complex equipment. One of the possible ways to overcome these limitations is through 3D
printing compaction of the green bodies (making the object layer by layer) [15–25].

Several studies have reported the successful fabrication of oxide ceramics with a
garnet crystal structure using various 3D printing methods. Recently, we demonstrated
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the use of DLP 3D printing to create the first-ever scintillation Y3Al5O12:Ce (YAG:Ce)
ceramics with complex shapes [15]. Later on, the same technique was employed to pro-
duce Al2O3/YAG:Ce3+ luminescent ceramics for high-flux laser lighting [16]. Transparent
LuAG:Ce ceramics with a free geometric structure design for the same application were
also successfully fabricated [17]. Stereolithography was also used to obtain YAG:Yb [18]
and YAG [19] transparent ceramics, followed by free sintering that required the addition of
sintering aids such as tetraethyl orthosilicate (TEOS) [14,18–20]. At the same time, silicon-
containing sintering additives can have a negative effect on the scintillation properties of
garnet oxides, reducing photoluminescence emission and light yield [11].

It is clear that such layer-by-layer polymerization methods show one of the highest
printing resolutions in comparison with extrusion, for example. Although two-photon
polymerization (TPP) offers even better resolution, direct printing using resin filled with in-
organic material is currently not feasible due to process limitations. Transparent micrometer-
sized YAG:Nd ceramics were fabricated by using a solution of metal salts that can undergo
a sol–gel process and photopolymerization by two-photon printing [21]. However, the TPP
method has extremely low performance and poor prospects for scaling.

Another popular 3D printing method used to produce garnet ceramics is direct ink
writing (DIW), which was reported for YAG [22] and Nd:YAG [23,24] ceramic manufactur-
ing. Unlike stereolithography, the green bodies obtained through DIW still require the use
of iso-static pressing after sintering to achieve desirable high transmittance.

Here, we report for the first time a successful fabrication of GYAGG:Ce transparent
ceramics in the application of DLP 3D printing for compacting the powder of a scintillator.
The essential properties of the ceramics, such as photoluminescence and scintillation, were
equal or superior to those measured for ceramics of the same composition obtained from
the application of the traditional compacting method of uniaxial pressing.

2. Materials and Methods
2.1. Synthesis of the Initial Powders

High-purity chemical reagents, such as Gd2O3 (99.995%), Y2O3 (99.995%), AlOOH
(99.998%), Ga (99.999%), and Ce(NO3)3 (99.95%), were used as raw materials to prepare
nitrate solutions for synthesizing GYAGG:Ce powders of various compositions through
coprecipitation [11,25,26]. The reagents were mixed in the required proportions and then
diluted to obtain a total Me+ ion concentration of ~1 mol/L. The mixture was added
gradually to an ammonium hydrogen carbonate (NH4HCO3) solution with continuous
stirring. Subsequently, the resulting precipitates were filtered, washed several times with
deionizing water and isopropanol, and then calcined at a temperature of 1250 ◦C. Following
that, the oxide powders were milled down to d50 ~ 2.5 µm for 60 min in a planetary
ball mill PM100 (Retsch GmbH, Haan, Germany) with alumina jars and beads using
isopropanol as the medium. In one case superstiochiometric additive (excess ~ 5%) of
fine Y2O3 powder as a self-sintering aid for GYAGG:Ce was inserted during the milling
process [27,28]. A combination of Gd and Y in 5% excess of the stoichiometric amount was
added during the chemical synthesis stage. Table 1 provides the chemical compositions,
calcining temperatures, and abbreviations of the powders.

Table 1. Garnet powders used in this study for photocurable slurry preparation.

Abbreviation Composition Calcining
Temperature (◦C)

Density
(g/cm3)

GYAGG:Ce Gd1.194Y1.791Ce0.015Al2Ga3O12
1250

5.85
GYAGG:Ce+5%Y Gd1.194Y1.88Ce0.015Al2Ga3O12 5.89

GYAGG:Ce+5%Y,Gd Gd1.569Y1.569Ce0.012Al2Ga3O12 6

The phase purity of all powders and ceramics was confirmed by X-ray diffraction
using a diffractometer D2 Phaser (Bruker, Billerica, MA, USA) with Cu Kα radiation, and
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equipped with a LYNXEYE detector under room conditions. The Rietveld refinement of
X-ray diffractions is performed using the JANA 2006 software package.

The specific surface values of the GYAGG:Ce powders were determined according
to the capillary nitrogen condensation method using BET model values on a NOVA 4200e
(Quantachrome Instruments, Anton Paar Group, Graz, Austria). The typical specific surface
value was 4.3(1) m2/g.

2.2. Slurry Preparation and Green Bodies Fabrication

The resin consisted of 1,6-Hexanediol diacrylate (HDDA, assay ≥ 80%, Sigma-Aldrich,
St. Louis, MI, USA), well known for its low viscosity and high polymerization rate [15,29].
According to the supplier information, the HDDA monomer contains up to 100 ppm monomethyl
ether hydroquinone (MEHQ) as an inhibitor. Based on our measurements at 25.0 ◦C, the
dynamic and kinematic viscosities of HDDA are 6.6 mPa s and 6.5 mm2/s, respectively.

For decreasing viscosity, commercially available phosphorous-free hyperbranched
polyester-based dispersant was added with a dosage of ~2 mg/m2 [30]. To initiate a
radical polymerization reaction, a UV photoinitiator of the phosphine oxide class, 1 wt.%
of HDDA, was used. The selected organic components were consistently mixed, followed
by the addition of the GYAGG:Ce powders in several steps to achieve a solid load of
30–41 vol.% (70–80 wt.%).

The viscosity of the slurries was determined by conducting measurements with a
Physica MCR-52 rheometer (Anton Paar, Graz, Austria) at a fixed temperature of 20.0 ◦C,
using a parallel-plate geometry with a disk diameter of 25 mm and a gap of 0.5 mm. The
range of shear rates applied during the measurements was from 1 to 200 s−1. The measured
viscosity and polymerization depth curves of the suspensions used in this work are given
in the Supplementary Materials (Figure S1). The viscosity of the slurries increased with the
increasing use of garnet powder from 0.2 Pa·s to 3.5 Pa·s at a 50 s−1 shear rate for 30 and
41 vol.%, respectively.

The 3D printing of green bodies was carried out using the cheap, desk-top, bottom-up
and easily commercially available DLP 3D printer Photon Ultra (Anycubic, Shenzhen,
China). This 3D printer uses a micro mirror array projector (Texas Instrument, Dallas, TX,
USA) for the layer-by-layer controlled polymerization of a photocurable slurry through the
bottom of a printing vat. The lateral resolution on the XY plane of the printer is 80 × 80 µm.
The light-radiation power of the UV projector (λ = 405 nm) was measured with a UV-light
meter Model 222 (G&R Labs, Santa Clara, CA, USA) and amounted to 2.5 mW/cm2. Note
that the Photon Ultra is a beginner-level 3D printer. Its brightness is approximately five to
ten times lower than the typical value for professional 3D printers designed specifically for
printing with high-loaded ceramic slurries [31,32].

A simple object was chosen as the printing model—a disk with a diameter of 20 mm
and a thickness of 1.0 mm. For the composition GYAGG:Ce+5%Y,Gd, the dimensions for
a similar model were 15 × 1 mm. A printing layer of 50 µm thickness required above
50 mJ/cm2 total UV-light energy exposure. The layer exposure time was 70 s, due to
the low photosensitivity of photocurable suspensions filled with cerium-activated garnet
powders [32]. The chosen increased time ensured good adhesion between the layers due to
the curing depth being set about two times higher than the layer thickness [29].

After 3D printing, the green bodies were rinsed in a laboratory ultrasonic bath several
times, then the samples were dried for a few days under ambient conditions. To remove the
organic binder, the fabricated green parts were continuously heated from room temperate
to 550 ◦C in an inert atmosphere (95% Ar+5% H2 [19]) at a rate of 0.6 ◦C/min. Ceramic
bulk sintering was performed in a tube furnace with an oxygen flow at 1650 ◦C for 2 h [4].
For GYAGG:Ce+5%Y,Gd, the samples were sintered both at 1720 ◦C for 2 h in oxygen
and at 1650 ◦C for 2 h in air. As well-studied comparison objects, green bodies of the
same size and geometry were obtained through uniaxial pressing at 64 MPa and then
sintered at the same conditions and temperature. After sintering, GYAGG:Ce ceramics
were ground and polished using silicon carbide abrasive papers [4]. Additionally, to
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examine the microstructure of ceramics, samples were fixed in epoxy resin, sanded down,
and polished to reveal a cross section; no thermal or chemical etching was applied.

2.3. Ceramic Sample Characterization

The apparent density of the ceramic samples was measured using Archimedes’ method
in Lotoxane at room temperature. In all cases, the apparent density was >99%.

Ceramic microstructures were studied using a Jeol JSM-7100F (JEOL, Tokyo, Japan)
scanning electron microscope (SEM). SEM images were obtained in secondary electron and
backscattered electron modes. Carbon coating was used to ensure the electrical conductivity
of the surface ceramic sample. The processing of the SEM images to determine the average
grain sizes was carried out using ImageJ software version 1.54.

For photoluminescence (PL) and excitation spectra measurements, a Fluorat-02-Panorama
spectrofluorimeter (Lumex, St. Petersburg, Russia) with a xenon lamp light source was
used. The photoluminescence kinetics were studied on a FluoTime 250 luminescence
spectrometer (PicoQuant, Berlin, Germany) using a pulsed LED excitation source with a
wavelength of 340 nm and a pulse width of 200 ps, corresponding to the excitation of the
4f→5d2 interconfigurational transition of Ce3+ ions. The instrument response function was
defined as 2 ns. All measurements were performed at room temperature.

The full and in-line transmittance of the samples in the visible region of the spectrum
(400–700 nm) was determined on a Specord Plus spectrophotometer (Analytik Jena, Jena,
Germany) equipped with an integrating sphere.

The scintillation light yield was evaluated from the photo-absorption peak positions in
the amplitude spectra of γ-quanta (662 keV, 137Cs) measured with an XP2020 Philips photo-
multiplier tube (PMT). As a reference sample, a YAG:Ce single-crystal sample with matted
surfaces was used to mimic ceramic samples with a light output of 24,000 photons/MeV
when excited by γ-quanta. Scintillation kinetics were measured by the delayed coincidence
method on a Philips XP2020 PMT with a pulse width of 1.2 ns. The intrinsic time resolution
was defined to be 2.9 ns.

3. Results and Discussion

GYAGG:Ce ceramics have a typical garnet’s grain structure (Figure 1a) [10,25,26,28,33].
One can see that the superstoichiometric additive causes a notable enlargement of the
average grain size, growing from 1.2 to 6.2 µm (Figure 1b). Furthermore, this additive
completely eliminates any visible pores within the material due to the coalescence process.
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Figure 1. SEM images of the cross section of (a) GYAGG:Ce; (b) GYAGG:Ce+5%Y ceramics, obtained
from 3D-printed green bodies. Samples were sintered in an oxygen flow at 1650 ◦C for 2 h. The black
areas in the left image are pores.

X-ray diffraction patterns for the initial GYAGG:Ce powder and for GYAGG:Ce ce-
ramics are shown in the Supplementary Materials, Figure S2. Only narrow intense lines
corresponding to the garnet phase are observed in the patterns. The calculated lattice
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parameters for GYAGG:Ce powder and for GYAGG:Ce ceramics are a = 12.217(3) Å and
a = 12.222(3) Å, respectively. The slight difference in the lattice parameter between the
powder annealed at 1250 ◦C and the corresponding ceramic sintered at 1650 ◦C is associ-
ated with their different crystallinities. The solid-phase reaction to produce garnet phase
only occurs completely at elevated temperatures. At the same time, the lattice parameters
obtained are close to those described in the literature previously [34–37]. The calculated
lattice parameter for GYAGG:Ce+5%Y ceramics is a = 12.229(2) Å. The diffraction patterns
of GYAGG:Ce+5%Y ceramics contain an additional very weak line (at 30.5◦ 2θ), which
can be attributed to the highest-intensity line of the m-Y4Al2O9-like phase (Figure S2c).
This fact is quite comparable to the results of electron microscopy (Figure 1b). One can
see inclusions of small impurity grains at the junction of the garnet phase. So, it can be
assumed that the optimal amount of self-sintering additive in a complex garnet-type oxide
is most likely 2–3%, but 5% is an excessive amount.

Figure 2 demonstrates ceramic samples of different compositions, obtained both by
uniaxial pressing and 3D printing (the initial suspension solid loading was 35 vol.%).
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temperature was raised to 1720 ◦C. The sizes of the background cells are 1.5 × 1.5 mm (a–e) and
1.0 × 1.0 mm (f).
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After sintering in an oxygen atmosphere, all disks (~1 mm thick) were semi-transparent
and their visible transmittance increased with the addition of Y and Gd (Figure 2). For the
GYAGG:Ce+5%Y,Gd samples, the positive impact was enhanced by raising the temperature
up to 1720 ◦C. In general, samples obtained using photocurable slurries (Figure 2, right
column) were more translucent than the samples of the same composition obtained by
semi-dry uniaxial pressing (Figure 2, left column). Thus, the structure of the green bodies
obtained from liquid slurries is more favorable for the formation of dense garnet ceramics,
perhaps due to a better package of initial powder.

Note: carrying out the debinding process in an inert atmosphere made it possible
to obtain samples without major visible defects (Figure 2). Also, the ceramic samples
demonstrated transparency after high-temperature pressureless sintering in air, which
increased significantly when conducting the process in an oxygen atmosphere.

Apparently, the reason for the reduced transparency of 3D-printed GYAGG:Ce ceram-
ics sintered at temperatures sufficiently smaller than the melting point is the presence of
residual pores. A small number of micron-scale pores (Figure 1a) in the cross section came
from the air bubbles in the slurry mixing process, which remained in the green body after
photocuring and in the ceramics after sintering. A further way to significantly improve the
quality of ceramics is to increase the loading, homogenize the slurry under a vacuum, and
modify the printing mode (increasing the delay time before the layer curing).

Thus, as the result of 3D printing using these simple-formula slurries, disk-shaped
green bodies were obtained. This form allows for a more dependable evaluation of the
key characteristics of the resulting ceramics (density and light transmission) using reliable
instrumental methods.

The optical transmittance in the spectral range of scintillation of the samples obtained
from the 3D-printed green bodies is depicted in Figure 3. One can see an increase in light
transmission with the presence of a sintering additive. Thus, pores are the main reason for
the low transparency of ceramics. The presence of trace amounts of impurity phases has a
rather weak effect.
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Figure 3. Transmittance of GYAGG:Ce ceramic samples of ~0.9 mm thickness for different composi-
tions (indicated) obtained from 3D-printed green bodies.

The normalized photoluminescence (PL) and photoluminescence excitation (PLE)
spectra of the ceramic samples obtained with two techniques for compacting are demon-
strated in Figure 4. No difference in the shape and position of the bands was observed. The
photoluminescence and photoexcited spectra of the ceramic exhibit a typical profile for
Ce3+ ions in a garnet oxide matrix.

The green body compacting method also does not affect the photoluminescence
kinetics. Table 2 lists the results of an approximation of the PL kinetics by three exponential
decay components (Figure 5). The effective decay time constants <τ> were defined to be in
the range of 50–60 ns, which is typical for garnets doped with Ce3+ ions [25]. When the
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superstoichiometric additive includes Gd, the tail part of the kinetics shows an increase in
the intensity. This effect is similar to the kinetic change observed in ternary GAGG ceramics
described in [28].
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Figure 4. Comparison of the room-temperature measurements and normalized luminescence
(λex = 340 nm) and excitation spectra (λreg = 520 nm) of different compositions of GYAGG:Ce ceram-
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Table 2. Decay components of the photoluminescence kinetics of GYAGG:Ce ceramics of different
compositions and using the green body compacting method.

Compacting Method Composition τ1 (ns) P1 (%) τ2 (ns) P2 (%) τ3 (ns) P3 (%) <τ> (ns)

Uniaxial pressing
GYAGG:Ce 12.5 5.72 47.1 88.92 161 5.36 51.3

GYAGG:Ce+5%Y 12.5 5.62 45.9 84.98 113 9.40 50.3
GYAGG:Ce+5%Y,Gd 19.6 7.54 53.2 90.47 336 1.99 56.3

3D printing
GYAGG:Ce 17.0 14.83 50.1 79.60 287 5.57 58.4

GYAGG:Ce+5%Y 17.9 10.20 51.7 83.51 335 6.29 66.1
GYAGG:Ce+5%Y,Gd 15.3 9.83 47.3 78.98 162 11.19 57.0
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Ceramic samples made from the green bodies obtained by different techniques and
annealed at the same technological conditions have similar scintillation kinetics. However,
the scintillation kinetics show variations depending on the superstoichiometric additive
and ceramic sintering temperature. Two samples were evaluated for their scintillation
kinetics (Figure 6). The sample made with the superstoichiometric additive possesses
enlarged phosphorescence, as seen from the increased number of photons detected prior
to the kinetics curve. Table 3 depicts the results of an approximation by three exponential
decay components of the scintillation kinetics measured at room temperature. The appli-
cation of the superstoichiometric additive led to an increase in the fraction of the slowest
component, but a shortening of the effective decay time was also evident. We believe that
the introduction of a superstoichiometric self-sintered additive together with 20 ppm of
MgO can accelerate the kinetics of PL and scintillation [9].
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Figure 6. Room-temperature scintillation kinetics of GYAGG:Ce ceramics depending on the initial
powder composition and sintering temperature.

Table 3. Decay components of the scintillation kinetics of GYAGG:Ce ceramics of different compositions.

Composition τ1 (ns) P1 (%) τ2 (ns) P2 (%) τ3 (ns) P3 (%) τ (ns)

GYAGG:Ce 14.3 13 47.5 68.8 310 18.2 91.0
GYAGG:Ce+5%Y,Gd 11.6 8.4 41.4 63.7 173 27.9 75.6

The same samples were evaluated for LY at room temperature. Figure 7 depicts the pulse
height spectra of the reference YAG:Ce and the samples GYAGG:Ce and GYAGG:Ce+5%Y,Gd.
A difference in the LY between two samples is caused by different optical transmissions,
which affect the collection of the scintillation light when measured. The light yield of the
ceramic samples was evaluated to be 43,000–46,000 photons/MeV, which correlates rather
well with the results of [25].

GYAGG:Ce single crystals have a scintillation light output of 52,000 photons/MeV.
The ceramics obtained in this work by uniaxial pressing have a slightly lower light output,
which is explained by their worse light transmission, which needs to be improved. Also, the
scintillation kinetics of ceramic samples contain slow components that are absent in single
crystals [9]. Their presence may be due to the incomplete removal of phosphorus-containing
components [30], as well as the absence of magnesium or/and titanium co-doping in the
composition [9].
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measured under γ-radiation.

4. Conclusions

Stereolithographic-based low-cost DLP 3D printing technology allows for the produc-
tion of bulk GYAGG scintillation ceramics. To minimize defects in the ceramics, it is better
to burn out the organic binder in an inert atmosphere.

The photoluminescent and scintillation properties of the ceramic samples obtained
from the green bodies prepared by 3D printing and uniaxial pressing were practically
similar. However, they were affected by the superstoichiometric additive or sintering
temperature. The Gd additive resulted in a slight rise in the intensity of the kinetics’ tail
part. An increased amount of Y led to the enlargement of the average grain size and
eliminated pores. Furthermore, applying these superstoichiometric additives led to an
increase in the fraction of the slowest component, accompanied by a reduction in the
effective decay time.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/photonics11080695/s1, Figure S1: Dependence of viscosity on shear
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depth curve (b); Figure S2: X-ray diffraction patterns of GYAGG:Ce initial powder and ceramics.
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