Министерство образования Республики Беларусь Белорусский государственный университет Механико-математический факультет Кафедра геометрии, топологии и методики преподавания математики

Аналитическая геометрия Электронный учебно-методический комплекс для специальности: 6-05-0533-13 «Механика и математическое моделирование»

Регистрационный № 2.4.2-24 / 539

Авторы:

Кононов С.Г., кандидат физико-математических наук, доцент, Суворов В.В., кандидат физико-математических наук, доцент

Рассмотрено и утверждено на заседании Научно-методического совета БГУ 28.11.2024 г., протокол № 4.

Минск 2024

УДК 514.12(075.8) К 647

Утверждено на заседании Научно-методического совета БГУ. Протокол № 4 от 28.11.2024 г.

Решение о депонировании вынес: Совет механико-математического факультета Протокол № 11 от 02.07.2024 г.

Авторы:

Кононов Сергей Гаврилович, доцент кафедры геометрии, топологии и методики преподавания математики механико-математического факультета БГУ, кандидат физико-математических наук, доцент.

Суворов Владимир Васильевич, доцент кафедры геометрии, топологии и методики преподавания математики механико-математического факультета БГУ, кандидат физико-математических наук, доцент.

Рецензенты:

кафедра математики и методики преподавания математики учреждения образования «Белорусский государственный педагогический университет им. М. Танка» (зав. кафедрой Н.В. Гриб, кандидат физико-математических наук, доцент);

Белько И.В., профессор кафедры высшей математики учреждения образования «Белорусский государственный аграрный технический университет», доктор физико-математических наук, профессор

Кононов, С.Г. Аналитическая геометрия : электронный учебнометодический комплекс для специальности 6-05-0533-13 «Механика и математическое моделирование» / С.Г. Кононов, В.В. Суворов ; БГУ, Фак. механико-математический, Каф. геометрии, топологии и методики преподавания математики. – Минск: БГУ, 2024. – 74 с. ил. – Библиогр.: с.73-74.

Электронный учебно-методический комплекс (ЭУМК) по учебной дисциплине «Аналитическая геометрия» разработан в соответствии образовательным стандартом первой ступени высшего образования специальности: 6-05-0533-13 «Механика и математическое моделирование». ДЛЯ информационно-методического предназначен преподавания дисциплины «Аналитическая геометрия» для студентов данной специальности. В ЭУМК содержится краткий конспект лекций; перечень лабораторных занятий с материалами для работы в аудитории и дома; материалы для управляемой самостоятельной работы: варианты контрольных работ, примерные варианты тестов по дисциплине, материалы для индивидуальных заданий; примерный список экзаменационных вопросов; список рекомендованной литературы.

ОГЛАВЛЕНИЕ

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА	5
1. ТЕОРЕТИЧЕСКИЙ РАЗДЕЛ	8
1.1. ВВЕДЕНИЕ	8
1.2. Векторы	9
1.2.1. Понятие вектора	
1.2.2. Сумма векторов. Произведение векторов на числа	
1.2.3. Базисы и координаты векторов	
1.2.4. Скалярное произведение векторов	
1.2.5. Векторное произведение векторов	
1.2.6. Смешанное произведение векторов	17
1.3. Уравнения прямых на плоскости ${f E}^2$, плоскостей и прямых в	
пространстве E ³	18
1.3.1. Аффинные реперы и уравнения фигур	18
1.3.2. Уравнения прямой на плоскости	
1.3.3. Уравнения плоскости в пространстве	
1.3.4. Уравнения прямой в пространстве	
1.4. Эллипс, гипербола, парабола, их уравнения и свойства	
1.4.1. Эллипс	27
1.4.2. Гипербола	
1.4.3. Парабола	
1.4.4. Некоторые общие свойства эллипса, гиперболы и параболі	ы37
1.5. Понятие аффинного пространства. Плоскости в аффинном	
пространстве и их уравнения	41
1.5.1. Определение, примеры и простейшие свойства аффинного	į
пространства	
1.5.2. Плоскости (подпространства) в аффинном пространстве	44
1.5.3. Аффинная оболочка множества точек. Взаимное	
расположение двух плоскостей в аффинном пространстве A ⁿ	
2. ПРАКТИЧЕСКИЙ РАЗДЕЛ	
2.1. Фигуры и уравнения	
2.2. Векторы	577
2.3. Прямые и плоскости	57
2.4. Фигуры 2 порядка на плоскости	57
2.5. Фигуры второго порядка в пространстве	57
2.6. Аффинные преобразования и движения	57
2.7. Плоскости в аффинных и евклидовых пространствах	57
2.8. Квадрики в аффинных пространствах	58

3. РАЗДЕЛ КОНТРОЛЯ ЗНАНИЙ	59
3.1. Примерные варианты контрольных работ	
3.2. Варианты индивидуальных заданий по теме: кривые второг порядка на плоскости	
3.3. Варианты итогового тестирования по дисциплине «Аналити геометрия»	
3.4. Примерный перечень вопросов к экзамену	70
4. ВСПОМОГАТЕЛЬНЫЙ РАЗДЕЛ	733
4.1. Рекомендуемая литература	733
4.2. Электронные ресурсы	733

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Настояший (ЭУМК) электронный учебно-методический комплекс разработан в соответствии с образовательным стандартом первой ступени образования специальности 6-05-0533-13 «Механика высшего ДЛЯ моделирование» математическое предназначен информационно-И «Аналитическая обеспечения преподавания методического дисциплины геометрия» для студентов данной специальности.

ЭУМК включает в себя разделы: «Пояснительная записка», «Теоретический раздел» (краткий курс лекций), «Практический раздел» (материалы к лабораторным занятиям), «Раздел контроля знаний» и «Вспомогательный раздел».

«Пояснительная записка» содержит аннотацию и краткую информацию об ЭУМК. «Теоретический раздел» представляет собой краткий курс лекций, охватывающий все разделы учебной программы. В «Практическом разделе» содержатся материалы к лабораторным занятиям (задачи с разбивкой по темам) и соответствующие задания для самостоятельной работы.

В «Разделе контроля знаний» представлены примерные варианты заданий по управляемой самостоятельной работе студентов, а также примерные задачи для контрольной работы. «Вспомогательный раздел» содержит рекомендуемую по курсу литературу и электронные ресурсы.

«Аналитическая геометрия» традиционно является одной из основных дисциплин, которые изучаются студентами-математиками в начале обучения в университете. Понятия и основные факты дисциплины «Аналитическая геометрия» используются при изучении многих математических дисциплин, в первую очередь таких, как «Дифференциальная геометрия и топология», «Дифференциальные уравнения», «Алгебра и теория чисел», «Математический анализ». Все это определяет важность учебной дисциплины «Аналитическая геометрия» в учебном процессе, а также обуславливает необходимость своевременного внесения изменений и дополнений в ее содержание.

Главными *образовательными целями* учебной дисциплины «Аналитическая геометрия» являются:

- •углубленное изучение фигур первого и второго порядков в трехмерном евклидовом пространстве и на евклидовой плоскости;
- освоение новых по сравнению с элементарной геометрией пространств: многомерных евклидовых и аффинных и изучение фигур первого и второго порядков в этих пространствах;
- изучение аффинных преобразований и движений в аффинных и евклидовых пространствах;
- овладение основным методом исследования в аналитической геометрии методом координат;
- приобретение студентами достаточного объема знаний, навыков и умений в области аналитической геометрии для их использования при изучении других математических дисциплин.

Развивающая цель: формирование у студентов основ математического

мышления, способности применять геометрические методы при постановке и решении теоретических и прикладных математических задач.

Для достижения этих целей решаются следующие задачи:

- Определяется геометрического понятие вектора класса Излагается эквивалентных направленных отрезков. векторная алгебра, используемая дальнейшем как основной инструмент построения аналитической геометрии;
- Всесторонне изучаются фигуры первого и второго порядков, являющиеся основными объектами исследования в аналитической геометрии;
- Вводятся основные типы геометрических преобразований и проводится идея рассмотрения различных геометрий как совокупности инвариантов той или иной группы преобразований.

В начале изучения дисциплины с целью сохранения преемственности со школьной геометрией рассмотрение ограничивается трехмерным евклидовым пространством E^3 . При этом векторы в трехмерном евклидовом пространстве E^3 , прямые на евклидовой плоскости E^2 , плоскости и прямые в пространстве E^3 изучаются всесторонне с точки зрения высшей математики. Затем рассматриваются фигуры второго порядка на плоскости E^2 и в пространстве E^3 .

Далее рассматриваются аффинные преобразования и движения плоскости E^2 и пространства E^3 , широко используемые в настоящее время в различных графических программах компьютерной геометрии.

Заключительная часть дисциплины «Аналитическая геометрия» посвящена многомерным аффинным пространствам. Определяются и изучаются фигуры первого и второго порядков в вещественных аффинных пространствах; аффинные преобразования; аффинная геометрия.

В течение всего процесса обучения происходит систематическое изучение геометрических преобразований, проведение теоретико-группового взгляда на геометрию.

Учебная дисциплина «*Аналитическая геометрия*» относится *к модулю* «*Алгебра и геометрия*» 1государственного компонента.

Изучение дисциплины «Аналитическая геометрия» в течение всего срока обучения проходит во взаимосвязи с изучаемыми параллельно дисциплинами: «Введение в специальность», «Алгебра и теория чисел», «Математический анализ».

В соответствии с образовательным стандартом в результате изучения дисциплины обучающийся должен:

знать:

- -векторы в E^3 , операции над векторами;
- —эллипсы, гиперболы, параболы, эллипсоиды, гиперболоиды, параболоиды, их канонические уравнения и свойства;
- -понятия n-мерного аффинного пространств; аффинные реперы и координаты точек; κ -мерные плоскости и фигуры второго порядка, группы геометрических преобразований;

уметь:

- -выполнять операции над векторами; записывать общие и параметрические уравнения плоскостей в различных пространствах, определять их взаимное расположение;
- -по общему уравнению фигуры второго порядка в \mathbf{E}^2 и \mathbf{E}^3 определять ее тип, размеры, расположение относительно системы координат; приводить общее уравнение фигуры второго порядка в аффинном пространстве к нормальному виду;

владеть:

-методом координат при решении основных задач аналитической геометрии.

Дисциплина изучается в 1 и 2 семестрах очной формы получения высшего образования. Всего на изучение учебной дисциплины «Аналитическая геометрия» отведено 198 часов, в том числе 122 аудиторных часов, из них:

- в 1 семестре 72 аудиторных часа, из них: лекции 36 часов, практические занятия 32 часов, управляемая самостоятельная работа 4 часа;
- во 2 семестре 50 аудиторных часов, из них: лекции 24 часа, практические занятия 22 часов, управляемая самостоятельная работа 4 часа.

Трудоемкость учебной дисциплины составляет 6 зачетных единиц.

Форма промежуточной аттестации — экзамен — 1 семестр, экзамен — 2 семестр.

1. ТЕОРЕТИЧЕСКИЙ РАЗДЕЛ

1.1. ВВЕДЕНИЕ

Общепризнано особое положение математики среди других наук, которое заключается в строгости ее определений и построений, абсолютной истинности математических утверждений — именно это привлекает к постижению математики многих людей. Строгость математической науки достигается тем, что теоремы той или иной области математики выводятся (доказываются) по определенным логическим законам из некоторых сравнительно простых утверждений, которые в этой области считаются истинными, т.е. из аксиом. В наибольшей степени это относится к геометрии, изложение которой в "Началах" Евклида (III в. до н.э.) было первым в истории человечества аксиоматическим построением научной теории. Содержание "Начал" до сих пор остается основой школьной элементарной геометрии. Плоскость и пространство, где развивается школьная геометрия, называются евклидовыми. В дальнейшем аксиомы Евклида были всесторонне изучены и дополнены. Наиболее известной является аксиоматика Д. Гильберта¹, включающая 20 аксиом.

По многим причинам полное и скрупулезное аксиоматическое изложение евклидовой геометрии в школе невозможно. Такой подход реализуется в высшей математике в рамках дисциплины "Основания геометрии". При преподавании дисциплины «Аналитическая геометрия» мы не будем рассматривать систему аксиом Гильберта. Тем не менее, используя в начале нашего курса материал элементарной школьной геометрии, мы можем быть уверены в его возможном строгом обосновании в рамках аксиоматики Гильберта. Кроме гильбертовской существуют и другие системы аксиом евклидовой геометрии. Среди них, прежде всего, следует упомянуть аксиоматику Г. Вейля³.

Аксиоматическое построение теории предполагает наличие некоторых *первичных* (неопределяемых) *понятий* и *первичных отношений* между ними, свойства которых описываются аксиомами. В аксиоматике Гильберта евклидовой геометрии первичными понятиями являются *точка*, *прямая*, *плоскость*, первичными отношениями — *инцидентность*, *лежать между*, *конгруэнтность*. В аксиоматике Вейля первичными понятиями являются понятия *точка* и вектор, первичными отношениями — *операции* над векторами и *точками*.

Аналитическая геометрия изучает геометрические фигуры с помощью алгебры, используя *метод координат*. Впервые этот метод применил французский математик и философ Рене Декарт (1596 – 1650). В его честь наиболее часто используемые системы координат называются *декартовыми*. В общем случае введение координат в некотором множестве означает замену

 $^{^{1}}$ Давид Гильберт (1862 – 1943) – немецкий математик.

² Подробное изложение аксиоматики Гильберта имеется в книгах:[7],[8]. Гильбертовская аксиоматика планиметрии обсуждается в книге [10].

 $^{^{3}}$ Герман Вейль (1885 — 1955) — немецкий математик. Построение элементарной геометрии на основе аксиоматики Вейля проведено, например, в книгах [11], [12].

элементов этого множества элементами другого, более удобного для исследования, множества. В геометрии метод координат позволяет заменять точки пространства тройками вещественных чисел и формулировать геометрические утверждения с помощью уравнений, неравенств и других формальных выражений. Решая уравнения или исследуя их алгебраическими методами, получают решение геометрической задачи или описывают свойства фигур.

Далее в рамках теоретического раздела УМК будет изложен материал, относящийся к основам дисциплины «Аналитическая геометрия», покрывающий содержание вопросов, предлагающихся на государственном экзамене по окончании учебы на механико-математическом факультете. В полном объеме с содержанием дисциплины можно ознакомиться по учебному пособию [2], доступному в электронной библиотеке БГУ.

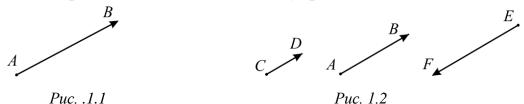
1.2. Векторы

1.2.1. Понятие вектора

Вектор — одно из важнейших математических понятий. Помимо геометрии векторы используются в других разделах математики. Кроме того, многие физические величины, такие, например, как скорость, ускорение, сила, интерпретируются как векторы. В данной главе рассматриваются векторы в элементарной евклидовой геометрии, определяемые направленными отрезками прямых. В общем случае вектор — это элемент того или иного векторного пространства и его природа может быть разнообразной: в роли векторов могут выступать числа (наборы чисел), функции, многочлены, матрицы и т.д.

Определение 1. Направленным отрезком называется отрезок прямой, для которого одна из его граничных точек выбрана в качестве начала, а другая — в качестве конца отрезка.

Направленный отрезок будем обозначать символом AB; здесь A — начало отрезка, B — конец. Направленный отрезок изображается в виде прямолинейной стрелки, направленной от начала к концу (рис. 1.1).



Случай, когда A = B, не исключается, направленный отрезок AA называется **нулевым**. Направленный отрезок BA называется **противоположным** для направленного отрезка AB. Далее нас будут интересовать только направленные отрезки, поэтому иногда для краткости направленный отрезок будем называть просто отрезком. Длину произвольного отрезка AB будем обозначать |AB|.

Если есть два ненулевых направленных отрезка, которые лежат на параллельных прямых или на одной прямой, то выполняется одно из двух условий: либо они *одинаково направлены*, либо *противоположно направлены*.

На рисунке 1.2 отрезки AB и CD одинаково направлены $(AB \uparrow \uparrow CD)$, отрезки AB и EF противоположно направлены $(AB \uparrow \downarrow EF)$. Обычно направленые отрезки задаются таким образом, что мы можем отличить первую ситуацию от второй.

Определение 2. Направленный отрезок AB называется **эквивалентным** направленному отрезку CD (обозначение $AB \sim CD$), если длина отрезка AB равна длине отрезка CD (|AB| = |CD|) и отрезки AB и CD одинаково направлены ($AB \uparrow \uparrow CD$). Все нулевые отрезки эквивалентны между собой ($\forall A, B \in \mathbf{E}^3$ $AA \sim BB$) и никакой нулевой отрезок не эквивалентен никакому ненулевому.

Определение 3. Вектором называется класс эквивалентных направленных отрезков.

Векторы обозначаются строчными латинскими буквами со стрелкой наверху: $\vec{a}, \vec{b}, \vec{c}$, ... Таким образом, каждый вектор \vec{a} представляет собой бесконечное множество направленных отрезков, эквивалентных между собой: $\vec{a} = \{AB, CD, EF, ... | AB \sim CD \sim EF \sim ...\}$. Каждый направленный отрезок, составляющий данный вектор, называется *представителем* этого вектора. Если AB — представитель вектора \vec{a} , то для вектора \vec{a} используют также обозначение \overline{AB} . Изобразить вектор, т.е. все направленные отрезки, составляющие данный вектор, невозможно, обычно для изображения вектора рисуют его представителя и ставят обозначение вектора (рис. 3).

По определению, все нулевые отрезки образуют один класс эквивалентности, т.е. один вектор. Этот вектор называется *нулевым* и обозначается $\vec{0}$. Множество всех векторов пространства обозначим $V(E^3)$.

Пусть \vec{a} , \vec{b} — ненулевые векторы. Отложив их от некоторой точки O , т.е. построив точки A и B такие, что $\vec{a} = \overrightarrow{OA}$, $\vec{b} = \overrightarrow{OB}$, можно говорить о числе ϕ , $0 \le \phi \le \pi$, выражающем (в радианах) величину угла AOB. Отметим, что число ϕ не зависит от выбора точки O. Действительно, если отложить векторы \vec{a} , \vec{b} от другой точки O' ($\vec{a} = \overrightarrow{O'A'}$, $\vec{b} = \overrightarrow{O'B'}$), то углы AOB и A'O'B' имеют попарно параллельные и одинаково направленные стороны, поэтому их величины равны. Число ϕ называется *величиной угла* между векторами $\vec{a} \grave{e} \vec{b}$. Ненулевые векторы $\vec{a} \grave{e} \vec{b}$ называются *ортогональными* (или *перпендикулярными*), если величина угла между ними равна $\frac{\pi}{2}$ (обозначение: $\vec{a} \perp \vec{b}$). Нулевой вектор считается ортогональным любому вектору.

Определение 4. Пусть $\vec{a}, \vec{b}, \vec{c}, ... -$ некоторая система векторов. Векторы $\vec{a}, \vec{b}, \vec{c}, ...$ называются коллинеарными (компланарными), если при откладывании их от некоторой точки O получающиеся точки A, B, C, ... лежат на одной прямой Δ , проходящей через точку O (в одной плоскости π , проходящей через точку O). В случае коллинеарности или компланарности говорят также, что векторы $\vec{a}, \vec{b}, \vec{c}, ...$ параллельны прямой Δ ($\vec{a}, \vec{b}, \vec{c} ... || <math>\Delta$) или плоскости π ($\vec{a}, \vec{b}, \vec{c} ... || <math>\pi$).

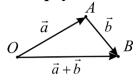
1.2.2. Сумма векторов. Произведение векторов на числа

Определение 5. Суммой вектора $\vec{a} = \overrightarrow{OA}$ и вектора $\vec{b} = \overrightarrow{AB}$ называется вектор $\vec{a} + \vec{b} = \overrightarrow{OB}$ (Рис. 4).

Таким образом, для любых точек $O, A, B \in \mathbb{E}^3$ верно равенство

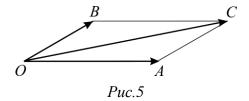
$$\overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OB},\tag{1}$$

которое называется равенством треугольника.



Puc. 4

Сумма двух неколлинеарных векторов $\vec{a} = \overrightarrow{OA}$ и $\vec{b} = \overrightarrow{OB}$ может быть вычислена по следующему *правилу параллелограмма*: сумма векторов-сторон параллелограмма, выходящих из одной вершины, равна вектору-диагонали, выходящему из этой же вершины: $\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OC}$ (рис. 5).



Отметим следующие основные свойства сложения векторов, справедливые для любых векторов $\vec{a}, \vec{b}, \vec{c} \in \mathbf{V}(\mathbf{E}^3)$.

Теорема 1. (i) $\vec{a} + \vec{b} = \vec{b} + \vec{a}$ (коммутативность сложения векторов);

- (ii) $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$ (ассоциативность сложения векторов);
- (iii) $\vec{a} + \vec{0} = \vec{a}$ (нулевой вектор $\vec{0}$ является **нейтральным элементом** относительно сложения);
- (iv) для любого вектора $\vec{a} \in \mathbf{V}(\mathbf{E}^3)$ существует **противоположный** вектор $(-\vec{a}) \in \mathbf{V}(\mathbf{E}^3)$, т.е. такой, что $\vec{a} + (-\vec{a}) = \vec{0}$.

С алгебраической точки зрения теорема 1 означает, что *множество* всех векторов пространства $\mathbf{V}(\mathbf{E}^3)$ относительно операции сложения является абелевой группой.

Определение 6. Пусть \vec{a} — произвольный вектор, λ — произвольное вещественное число. **Произведением вектора** \vec{a} **на число** λ называется вектор, который обозначается $\lambda \vec{a}$ и определяется следующими условиями:

(i) $|\lambda \vec{a}| = |\lambda| |\vec{a}|$;

(ii)
$$\begin{bmatrix} \lambda \vec{a} \uparrow \uparrow \vec{a}, ecлu & \lambda > 0, \\ \lambda \vec{a} \uparrow \downarrow \vec{a}, ecлu & \lambda < 0. \end{bmatrix}$$

Теорема 2. Для любых векторов $\vec{a}, \vec{b} \in V(\mathbf{E}^3)$ и для любых чисел $\lambda, \mu \in \mathbf{R}$ верны равенства:

- (i) $\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b}$;
- (ii) $(\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a}$;
- (iii) $(\lambda \mu)\vec{a} = \lambda(\mu \vec{a});$
- (iv) $1\vec{a} = \vec{a}$.

Тот факт, что операции сложения векторов и умножения векторов на вещественные числа удовлетворяют утверждениям теорем 1 и 2 на языке алгебры означает, что $\mathbf{V}(\mathbf{E}^3)$ является вещественным векторным (линейным) пространством.

Пусть

$$\vec{a}_1, ..., \vec{a}_k - \tag{2}$$

конечная система векторов,

$$\lambda_1, \dots, \lambda_k$$
 (3)

произвольные вещественные числа. Вектор

$$\vec{a} = \lambda_1 \vec{a}_1 + \dots + \lambda_k \vec{a}_k \tag{4}$$

называется *линейной комбинацией* системы векторов (2) с коэффициентами (3). Говорят также, что \vec{a} *линейно выражается* через систему векторов (2).

Линейная комбинация (3) называется **тривиальной**, если все коэффициенты равны нулю: $\lambda_1 = ... = \lambda_k = 0$. Ясно, что тривиальная линейная комбинация любой системы векторов равна нулевому вектору: $0\vec{a}_1 + ... + 0\vec{a}_k = \vec{0}$. Линейная комбинация (3) называется **нетривиальной**, если среди коэффициентов (2) есть ненулевые числа.

Определение 7. Система векторов (1) называется **линейно зависимой**, если существует нетривиальная линейная комбинация системы (1), равная нулевому вектору. Система векторов, не являющаяся линейно зависимой, называется **линейно независимой**.

Другими словами, система векторов (4) линейно независима, если только тривиальная линейная комбинация этих векторов равна нулевому вектору, т. е. из равенства $\lambda_1 \vec{a}_1 + ... + \lambda_k \vec{a}_k = \vec{0}$ следует, что $\lambda_1 = ... = \lambda_k = 0$.

1.2.3. Базисы

Определение 8. Базисом множества $V(E^1)$ векторов прямой E^1 называется ненулевой вектор $\vec{e} \in V(E^1)$.

Теорема 3. Пусть \vec{e} — базис множества $\mathbf{V}(\mathbf{E}^1)$. Тогда любой вектор $\vec{a} \in \mathbf{V}(\mathbf{E}^1)$ линейно выражается через \vec{e} :

$$\vec{a} = x\vec{e}, \ x \in \mathbf{R}. \tag{5}$$

Число x определяется однозначно и называется **координатой** вектора \vec{a} в данном базисе.

Определение 9. Базисом множества $\mathbf{V}(\mathbf{E}^2)$ векторов плоскости \mathbf{E}^2 называется упорядоченная пара (\vec{e}_1,\vec{e}_2) неколлинеарных векторов этой плоскости.

Теорема 4. Пусть (\vec{e}_1, \vec{e}_2) — базис множества $\mathbf{V}(\mathbf{E}^2)$. Тогда любой вектор $\vec{a} \in \mathbf{V}(\mathbf{E}^2)$ линейно выражается через базис (раскладывается по базису):

$$\vec{a} = x\vec{e}_1 + y\vec{e}_2, \quad x, y \in \mathbf{R}. \tag{6}$$

Числа x и y определяются однозначно и называются **координатами** вектора \vec{a} в данном базисе.

Определение 10. Базисом множества $V(E^3)$ векторов пространства E^3 называется упорядоченная тройка $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$ некомпланарных векторов.

Теорема 5. Пусть $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$ — базис множества векторов пространства $\mathbf{V}(\mathbf{E}^3)$. Тогда любой вектор $\vec{a} \in \mathbf{V}(\mathbf{E}^3)$ линейно выражается через базис (раскладывается по базису):

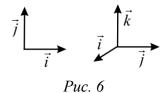
$$\vec{a} = x\vec{e}_1 + y\vec{e}_2 + z\vec{e}_3, \ x, y, z \in \mathbf{R}.$$
 (7)

Числа x,y,z определяются однозначно и называются **координатами** вектора \vec{a} в данном базисе.

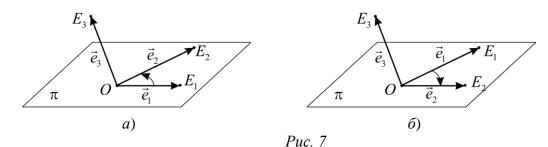
Среди множества всех базисов выделяют так называемые ортонормированные базисы, которые удобны при вычислениях.

Определение 11. Ортонормированным базисом называется базис, векторы которого попарно ортогональны и имеют единичную длину.

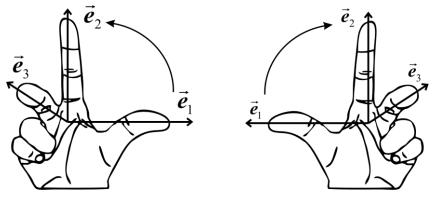
Обычно ортонормированные базисы на плоскости обозначаются (\vec{i}, \vec{j}) , в пространстве – $(\vec{i}, \vec{j}, \vec{k})$ (рис. 6).



Пусть $(\vec{e}_1,\vec{e}_2,\vec{e}_3)$ — базис в пространстве \mathbf{E}^3 . Отложим векторы $\vec{e}_1,\vec{e}_2,\vec{e}_3$ от некоторой точки O, получим соответственно точки E_1,E_2,E_3 . Обозначим π плоскость, проходящую через точки O,E_1,E_2 (рис. 7).



Поскольку векторы, составляющие базис, не компланарны, то точка E_3 не лежит в плоскости π , а лежит в одном из двух полупространств, на которые пространство разбивается плоскостью π . Базис $(\vec{e}_1,\vec{e}_2,\vec{e}_3)$ называется **правым**, если, глядя на плоскость π из точки E_3 (из «конца» вектора \vec{e}_3), мы видим кратчайший поворот вектора \vec{e}_1 до вектора \vec{e}_2 происходящим в направлении, противоположном направлению поворота часовой стрелки (рис. 7, а). Базис $(\vec{e}_1,\vec{e}_2,\vec{e}_3)$ называется **левым**, если, глядя из «конца» вектора \vec{e}_3 , мы видим кратчайший поворот вектора \vec{e}_1 до вектора \vec{e}_2 происходящим в направлении движения часовой стрелки (рис. 7, б). Моделями правого и левого базисов могут служить первые три пальца руки человека, соответственно правой и левой, расположенных в естественном положении (рис. 8).



Puc. 8

Этим объясняется употребление терминов *правый* и *левый*. **Правой** (**левой**) **ориентацией пространства** E^3 называется выбор класса правых (левых) базисов множества векторов пространства. Легко убедиться, что справедливы следующие свойства ориентации:

- (i) перестановка любых двух векторов в упорядоченной тройке некомпланарных векторов меняет ориентацию на противоположную;
- (ii) замена одного из векторов в упорядоченной тройке некомпланарных векторов на противоположный вектор меняет ориентацию на противоположную.

1.2.4. Скалярное произведение векторов

Определение 12. Пусть \vec{a} и \vec{b} – произвольные векторы. **Скалярным произведением** вектора \vec{a} на вектор \vec{b} называется число (скаляр), которое обозначается $\vec{a}\vec{b}$ и определяется следующим образом:

 $\vec{a}\vec{b} = \begin{bmatrix} |\vec{a}| |\vec{b}| \cos \varphi, \textit{если} & \vec{a} \neq \vec{0} \textit{u} & \vec{b} \neq \vec{0} & (\varphi - \textit{величина угла между } \vec{a} \textit{u} & \vec{b}), \\ 0, \textit{если хотя бы один из векторов } \vec{a} \textit{или } \vec{b} \textit{ нулевой.} \end{bmatrix}$

Скалярный квадрат вектора \vec{a} , т.е. неотрицательное число $\vec{a}\vec{a}=|\vec{a}|^2$ будем обозначать \vec{a}^2 . Из определения вытекают следующие формулы для вычисления длины произвольного вектора \vec{a} и величины угла между ненулевыми векторами \vec{a} и \vec{b} через скалярное произведение:

$$|\vec{a}| = \sqrt{\vec{a}^2}, \quad \varphi = \arccos\frac{\vec{a}\vec{b}}{|\vec{a}||\vec{b}|}.$$
 (8)

Утверждение 1. Для любых векторов $\vec{a}, \vec{b}, \vec{c} \in \mathbf{V}(\mathbf{E}^3)$ и любого числа $\lambda \in \mathbf{R}$ верны следующие равенства:

- (i) $\vec{a}\vec{b}=\vec{b}\vec{a}$ свойство коммутативности скалярного произведения;
- (ii) $(\lambda \vec{a})\vec{b} = \vec{a}(\lambda \vec{b}) = \lambda(\vec{a}\vec{b});$

(iii)
$$\begin{cases} (\vec{b} + \vec{c})\vec{a} = \vec{b}\vec{a} + \vec{c}\vec{a}, \\ \vec{a}(\vec{b} + \vec{c}) = \vec{a}\vec{b} + \vec{a}\vec{c}. \end{cases}$$

Справедливость равенств (ii) и (iii) означает, что скалярное произведение **билинейно**.

(iv)
$$\vec{a}\vec{b} = 0 \Leftrightarrow \vec{a} \perp \vec{b}$$
.

Свойство (iv) означает, что равенство нулю скалярного произведения двух векторов является критерием их ортогональности.

Пусть $(\vec{i}, \vec{j}, \vec{k})$ – ортонормированный базис множества векторов $V(\mathbf{E}^3)$,

 $\vec{a}(x_1,y_1,z_1), \vec{b}(x_2,y_2,z_2)$ — произвольных векторы, заданные своими координатами в этом базисе. В этом случае скалярное произведение векторов вычисляется по формуле:

$$\vec{a}\vec{b} = x_1 x_2 + y_1 y_2 + z_1 z_2,$$

а формулы (1) для длины вектора и величины угла между векторами имеют вид:

$$|\vec{a}| = \sqrt{x_1^2 + y_1^2 + z_1^2}, \quad \varphi = \arccos \frac{x_1 x_2 + y_1 y_2 + z_1 z_2}{\sqrt{x_1^2 + y_1^2 + z_1^2} \cdot \sqrt{x_2^2 + y_2^2 + z_2^2}}.$$
 (9)

Если векторы $\vec{a}(x_1,y_1)$ и $\vec{b}(x_2,y_2)$ заданы своими координатами в ортонормированном базисе $(\vec{i}\,,\vec{j})$ плоскости, то получаем аналоги формул (1'):

$$|\vec{a}| = \sqrt{x_1^2 + y_1^2}, \quad \varphi = \arccos \frac{x_1 x_2 + y_1 y_2}{\sqrt{x_1^2 + y_1^2} \cdot \sqrt{x_2^2 + y_2^2}}.$$
 (10)

1.2.5. Векторное произведение векторов

Определение 13. Пусть \vec{a} и \vec{b} – неколлинеарные векторы. **Векторным произведением** вектора \vec{a} на вектор \vec{b} называется вектор, который обозначается $\vec{a} \times \vec{b}$ и определяется следующими условиями:

- (i) $|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \varphi$;
- (ii) $\vec{a} \times \vec{b} \perp \vec{a}$, $\vec{a} \times \vec{b} \perp \vec{b}$;
- (iii) упорядоченная тройка векторов $(\vec{a}, \vec{b}, \vec{a} \times \vec{b})$ правая.

Если \vec{a} и \vec{b} — коллинеарные векторы, то их векторное произведение полагают равным нулевому вектору: $\vec{a} \times \vec{b} = \vec{0}$.

Отметим, что в случае неколлинеарных векторов для определения вектора $\vec{a} \times \vec{b}$ нужны все три условия (i), (ii) и (iii): условие (i) определяет только длину (ненулевую) вектора $\vec{a} \times \vec{b}$. Условиям (i) и (ii), очевидно, удовлетворяют два взаимно противоположных вектора. И только все три условия (i), (ii), (iii) задают вектор $\vec{a} \times \vec{b}$ однозначно (рис. 9).

Заметим также, что для неколлинеарных векторов длина $|\vec{a} \times \vec{b}|$ векторного произведения численно равна площади параллелограмма, построенного на векторах \vec{a} и \vec{b} (рис. 10).

Утверждение 2. Для любых векторов $\vec{a}, \vec{b}, \vec{c} \in \mathbf{V}(\mathbf{E}^3)$ и любого числа $\lambda \in \mathbf{R}$ верны следующие равенства:

(i) $\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a})$ — свойство **антикоммутативности** векторного произведения;

(ii)
$$(\lambda \vec{a}) \times \vec{b} = \vec{a} \times (\lambda \vec{b}) = \lambda (\vec{a} \times \vec{b});$$

$$(iii) \begin{cases} \vec{a} \times (\vec{b} + \vec{c}) = (\vec{a} \times \vec{b}) + (\vec{a} \times \vec{c}) \\ (\vec{b} + \vec{c}) \times \vec{a} = (\vec{b} \times \vec{a}) + (\vec{c} \times \vec{a}) \end{cases} ;$$

(iv)
$$\vec{a} \times \vec{b} = \vec{0} \Leftrightarrow \vec{a} \parallel \vec{b}$$
.

Справедливость равенств (ii) и (iii) означает, что векторное произведение (как и скалярное) $\pmb{\delta}$ илине $\pmb{\check{u}}$ но.

Свойство (iv) означает, что равенство нулю векторного произведения двух векторов является **критерием их коллинеарности**.

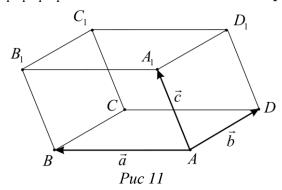
Пусть $(\vec{i},\vec{j},\vec{k})$ — правый ортонормированный базис множества векторов $V(\mathbf{E}^3)$, $\vec{a}(x_1,y_1,z_1), \vec{b}(x_2,y_2,z_2)$ — произвольные векторы, заданные своими координатами в этом базисе. В этом случае скалярное произведение векторов вычисляется по формуле:

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix}.$$
 (11)

1.2.6. Смешанное произведение векторов

Определение 14. Пусть $(\vec{a}, \vec{b}, \vec{c})$ — упорядоченная тройка произвольных векторов. **Смешанным произведением** тройки векторов $(\vec{a}, \vec{b}, \vec{c})$ называется число $(\vec{a} \times \vec{b})\vec{c}$. Смешанное произведение обозначается $\vec{a}\vec{b}\vec{c}$.

Пусть $\vec{a}, \vec{b}, \vec{c}$ — некомпланарные векторы. Отложив их от некоторой точки A, получим точки соответственно B, D, A_1 , не лежащие в одной плоскости с точкой A. Следовательно, отрезки AB, AD, AA_1 можно считать тремя ребрами параллелепипеда $ABCDA_1B_1C_1D_1$, выходящими из одной вершины A (рис. 11).



Этот параллелепипед будем называть *параллелепипедом, построенным на векторах* $\vec{a}, \vec{b}, \vec{c}$. Обозначим V число, выражающее объем этого параллелепипеда. Введенное обозначение будем использовать в следующей теореме, выражающей геометрический смысл смешанного произведения.

Теорема 6. Пусть \vec{a} , \vec{b} , \vec{c} – некомпланарные векторы. Тогда

$$ec{a}ec{b}ec{c} = egin{bmatrix} V, \ ecлu \ mpo \ reve{u} \kappa a \ (ec{a}, ec{b}, ec{c}) \ npa в a я; \ -V, \ ecлu \ mpo \ reve{u} \kappa a \ (ec{a}, ec{b}, ec{c}) \ лe в a я. \end{cases}$$

Пусть $(\vec{i},\vec{j},\vec{k})$ — правый ортонормированный базис множества векторов $V(\mathbf{E}^3)$, $\vec{a}(x_1,y_1,z_1)$, $\vec{b}(x_2,y_2,z_2)$, $\vec{c}(x_3,y_3,z_3)$ — произвольные векторы, заданные своими координатами в этом базисе. Тогда

$$\vec{a}\vec{b}\vec{c} = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}.$$
 (12)

Следствие 1 (критерий компланарности). Векторы $\vec{a}, \vec{b}, \vec{c}$ является компланарными тогда и только тогда, когда определитель (1), составленный из координат векторов, равен нулю.

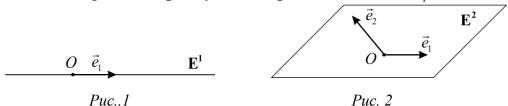
Следствие очевидно, если координаты заданы в ортонормированном базисе. Вместе с тем оно верно и в случае, когда координаты векторов взяты в произвольном (не обязательно ортонормированном) базисе. Дело в том, что значение определителя из координат векторов отличается от значения смешанного произведения этих векторов на отличный от нуля числовой множитель. Если базис ортонормирован и правый, то этот множитель равен 1.

1.3. Уравнения прямых на плоскости E^2 , плоскостей и прямых в пространстве E^3

1.3.1. Аффинные реперы и уравнения фигур

В аналитической геометрии фигуры на плоскости или в пространстве задаются обычно уравнениями или параметрически при фиксировании некоторой системы координат, чаще всего, аффинного репера. Аффинные реперы являются обобщением известных из средней школы систем координат на плоскости и в пространстве. Чтобы задать аффинный репер на прямой, на плоскости или в пространстве, надо зафиксировать точку и выбрать базис соответствующего множества векторов. Помимо аффинных реперов используются также полярная система координат на плоскости и сферическая или цилиндрическая системы координат в пространстве.

Определение 1. Аффинным репером на прямой \mathbf{E}^1 называется набор (O, \vec{e}_1) , где O- точка, \vec{e}_1- базис множества $V(\mathbf{E}^1)$ векторов прямой, т.е. ненулевой вектор прямой (рис. 2.1). Координатой точки $M \in \mathbf{E}^1$ в репере (O, \vec{e}_1) называется координата радиус-вектора \overrightarrow{OM} в базисе \vec{e}_1 .



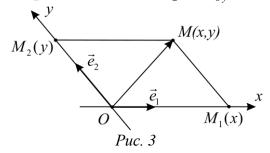
Таким образом, координата точки M в репере (O, \vec{e}_1) — это число $x \in \mathbf{R}$, которое определяется равенством $\overrightarrow{OM} = x\vec{e}_1$. Прямую с фиксированным репером (O, \vec{e}_1) будем называть *координатной осью* и обозначать Ox. Если x — координата точки M, то используют запись M(x).

Определение 2. Аффинным репером на плоскости \mathbf{E}^2 называется набор $(O, \vec{e}_1, \vec{e}_2)$, где O — точка плоскости, (\vec{e}_1, \vec{e}_2) — базис множества $V(\mathbf{E}^2)$ векторов плоскости, т.е. упорядоченная пара неколлинеарных векторов плоскости (рис. 2). Координатами точки $M \in \mathbf{E}^2$ в репере $(O, \vec{e}_1, \vec{e}_2)$ называется координаты радиус-вектора \overrightarrow{OM} точки M в базисе (\vec{e}_1, \vec{e}_2) .

Таким образом, координаты точки M в репере $(O, \vec{e}_1, \vec{e}_2)$ — это пара чисел $(x, y), x, y \in \mathbf{R}$, таких, что $\overrightarrow{OM} = x\vec{e}_1 + y\vec{e}_2$. Если (x, y) — координаты точки M, то

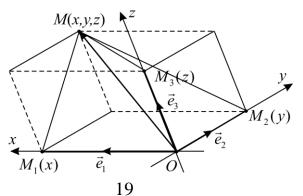
используют запись M(x,y). Те же аргументы, что и в случае прямой, показывают, что координаты точки в данном репере определяются однозначно. Имея репер $(O, \vec{e}_1, \vec{e}_2)$ на плоскости, можно говорить о двух координатных осях. Координатная ось с репером (O, \vec{e}_1) называется *осью абсцисс* и обозначается Ox, координатная ось с репером (O, \vec{e}_2) называется *осью ординат* и обозначается Oy. Первая x и вторая y координаты точки называются соответственно *абсциссой* и *ординатой* этой точки.

Для нахождения абсциссы x точки M нужно спроектировать ее на ось Ox параллельно оси Oy. Если $M_1 = pr_{Ox}M$, то x — координата точки M_1 на оси абсцисс. Аналогично, y — координата точки $M_2 = pr_{Oy}M$ на оси ординат (рис. 3).



Определение 3. Аффинным репером в пространстве \mathbf{E}^3 называется набор $(O, \vec{e}_1, \vec{e}_2, \vec{e}_3)$, где O- точка, $(\vec{e}_1, \vec{e}_2, \vec{e}_3)-$ базис множества $V(\mathbf{E}^3)$ векторов пространства, т.е. упорядоченная тройка некомпланарных векторов. Координатами точки $M \in \mathbf{E}^3$ в репере $(O, \vec{e}_1, \vec{e}_2, \vec{e}_3)$ называется координаты радиус-вектора \overrightarrow{OM} точки M в базисе $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Таким образом, координаты точки M в репере $(O, \vec{e}_1, \vec{e}_2, \vec{e}_3)$ — это тройка чисел (x, y, z), $x, y, z \in \mathbf{R}$, таких, что $\overrightarrow{OM} = x\vec{e}_1 + y\vec{e}_2 + z\vec{e}_3$. Если (x, y, z) — координаты точки M, то используют запись M(x, y, z). Далее можно повторить все то, что говорилось выше в случае плоскости с очевидными дополнениями. Помимо координатных осей абсцисс Ox и ординат Oy в пространстве добавляется *ось аппликат* Oz. Кроме того, в пространстве имеются три *координатные плоскости*, определяемые парами осей: это плоскости Oxy, Oxz и Oyz. Каждая из координат x, y, z точки M есть координата проекции точки M на соответствующую ось параллельно дополнительной координатной плоскости (рис. 4). Координаты точки в данном репере определяются однозначно.



Аффинные реперы называются также *аффинными* (или *декартовыми*) *системами координат* и обозначаются: Ox (для прямой), Oxy (для плоскости), Oxyz (для пространства). Точка O, входящая в репер, называется *началом системы координат*. В случаях, когда (\vec{i}, \vec{j}) или $(\vec{i}, \vec{j}, \vec{k})$ — ортонормированные базисы, говорят об *ортонормированном репере* плоскости (O, \vec{i}, \vec{j}) (рис. 5) и *ортонормированном репере* пространства $(O, \vec{i}, \vec{j}, \vec{k})$ (рис. 6). Ортонормированные реперы называются также *декартовыми прямоугольными системами координат*.

Утверждение 1. Пусть $(O, \vec{e}_1, \vec{e}_2)$ – аффинный репер на плоскости \mathbf{E}^2 , $A(x_1, y_1), B(x_2, y_2)$ – произвольные точки плоскости, заданные своими координатами в данном репере. Тогда:

- (i) вектор \overrightarrow{AB} в базисе (\vec{e}_1,\vec{e}_2) имеет следующие координаты: $\overrightarrow{AB}(x_2-x_1,y_2-y_1);$
- $AB(x_2-x_1,y_2-y_1);$ (ii) середина C отрезка AB имеет следующие координаты: $C\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right);$
- (iii) если $(O,\vec{i}\,,\vec{j})$ ортонормированный репер, то расстояние между точками A и B вычисляется по формуле:

$$d(A,B) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$
 (1)

Фигурой называется произвольное множество точек Ф в пространстве, на плоскости или на прямой. Аналитическая геометрия изучает фигуры, используя **метод координат**. Его суть заключается в том, что фиксируя некоторую систему координат, точки заменяют их координатами и задают фигуру как множество решений уравнения (системы уравнений) или неравенства (системы неравенств). Далее уравнения или неравенства анализируют методами алгебры и результаты анализа интерпретируют геометрически как свойства фигуры.

Определение 4. Пусть $(O, \vec{e}_1, \vec{e}_2)$ — аффинный репер на плоскости \mathbf{E}^2 , $F: D \to \mathbf{R}, (x, y) \mapsto F(x, y)$ — вещественнозначная функция двух аргументов, заданная на подмножестве D множества \mathbf{R}^2 . Будем говорить, что уравнение F(x, y) = 0

является уравнением фигуры $\Phi \subset \mathbf{E}^2$ в данном репере, если множество решений уравнения (1) совпадает с множеством координат точек фигуры Φ .

Другими словами, уравнение (1) является уравнением фигуры Φ в репере $(O, \vec{e}_1, \vec{e}_2)$, если эта фигура может быть определена следующим образом:

$$\Phi = \{ M(c_1, c_2) \in \mathbf{E}^2 \mid F(c_1, c_2) \equiv 0 \}.$$

Если Φ имеет уравнение (1), то говорят также, что фигура Φ *задана* этим уравнением.

Для нахождения уравнения фигуры в данном репере следует для произвольной точки плоскости M(x,y) через ее координаты x и y записать характеристическое свойство этой фигуры, т.е. условие, которому удовлетворяют точки фигуры и только они.

Определение 5. Пусть Φ — фигура на плоскости \mathbf{E}^2 , T — некоторое множество, элементы которого будем называть **параметрами**. Сюръективное отображение

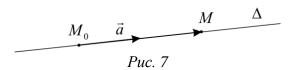
$$f: T \to \Phi, t \mapsto f(t)$$
 (2)

называется параметризацией фигуры Ф.

1.3.2. Уравнения прямой на плоскости

Прямую на плоскости \mathbf{E}^2 можно задавать различными способами. Например, на прямой Δ можно зафиксировать некоторую точку M_0 , которую будем называть *начальной точкой* прямой, и выбрать ненулевой вектор \vec{a} этой прямой, который будем называть *направляющим вектором* прямой. Тогда необходимое и достаточное условие того, что точка M лежит на прямой Δ , формулируется следующим образом:

 $(M \in \Delta) \iff (векторы \ \overline{M_0M} \ u \ \vec{a} \ коллинеарны) (рис. 7).$



Пусть O — фиксированная точка плоскости, $\vec{r}_0 = \overrightarrow{OM}_0$ — радиус-вектор начальной точки M_0 , $\vec{r} = \overrightarrow{OM}$ — радиус-вектор произвольной точки (иногда говорят *текущей* точки) M плоскости. Коллинеарность векторов $\overrightarrow{M_0M}$ и \vec{a} означает, что $\overrightarrow{M_0M} = t\vec{a}$ для некоторого $t \in \mathbf{R}$. Учитывая, что $\overrightarrow{M_0M} = \vec{r} - \vec{r}_0$, имеем следующую цепочку эквивалентностей:

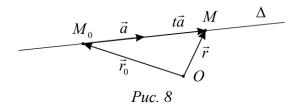
$$(M \in \Delta) \iff (\vec{r} - \vec{r_0} = t\vec{a}) \iff (\vec{r} = \vec{r_0} + t\vec{a}), t \in \mathbf{R}.$$

Таким образом, мы получили *векторно-параметрическое задание* прямой Δ :

$$\vec{r} = \vec{r}_0 + t\vec{a}, \ t \in \mathbf{R}. \tag{3}$$

По формуле (1) можно найти радиус-вектор \vec{r} любой точки прямой Δ в зависимости от значения параметра $t \in \mathbf{R}$ (рис. 8).

(2)



Равенство (3) называют также (допуская вольность речи) векторнопараметрическим уравнением прямой Δ .

Присоединим к точке O базис (\vec{e}_1, \vec{e}_2) множества векторов плоскости $V(\mathbf{E}^2)$, получим аффинный репер $(O, \vec{e}_1, \vec{e}_2)$ на плоскости \mathbf{E}^2 . Пусть (x, y) и (x_0, y_0) – координаты соответственно точек M и M_0 в данном репере. Согласно определению 3, (x, y) и (x_0, y_0) – координаты соответственно радиус-векторов \vec{r} и \vec{r}_0 в базисе (\vec{e}_1, \vec{e}_2) . Пусть (l, m) – координаты направляющего вектора прямой \vec{a} в базисе (\vec{e}_1, \vec{e}_2) . Тогда векторное равенство 13) равносильно двум скалярным равенствам:

$$\begin{cases} x = x_0 + tl, \\ y = y_0 + tm, t \in \mathbf{R}. \end{cases}$$
 (4)

Формулы (4) выражают координатно-параметрическое задание прямой, они называются также *координатно-параметрическими уравнениями* прямой Δ . Придавая параметру t подходящее числовое значение, по формулам (4) можно найти координаты (x, y) любой точки прямой Δ .

Если прямая Δ параллельна координатной оси Ox, то у направляющего вектора вторая координата m равна нулю и уравнения 24) принимают вид:

$$\begin{cases} x = x_0 + tl, \\ y = y_0, \quad t \in \mathbf{R}. \end{cases}$$
 (4')

Поскольку $l \neq 0$, то равенства (2') означают, что у точек прямой первая координата может быть любым вещественным числом, в то время как вторая — фиксирована. Следовательно, точка M(x, y) лежит на прямой Δ , $\Delta \parallel Ox$ (рис. 9) тогда и только тогда, когда выполняется условие

$$y = y_0.$$

$$y = y_0.$$

$$Q = Q_0.$$

Аналогично, прямая Δ' , проходящая через точку $M_0(x_0, y_0)$ и параллельна координатной оси Oy (рис. 10), задается условием

$$x = x_0. (5)$$

Пусть прямая Δ не параллельна координатным осям Ox и Oy, т.е. $l \neq 0, m \neq 0$. В этом случае из системы (2) можно исключить t и получить следующее уравнение прямой Δ :

$$\frac{x - x_0}{l} = \frac{y - y_0}{m}. (6)$$

Если (6) рассматривать как пропорцию, т.е. считать, что равенство (6) эквивалентно равенству $(x-x_0)m=(y-y_0)l$, то уравнениями вида (6) можно задавать все прямые без исключения, т.е. можно задавать и прямые, параллельные координатным осям. Например, уравнение $\frac{x-x_0}{0}=\frac{y-y_0}{m}$ означает, что $(x-x_0)m=(y-y_0)0$, т.е. $x=x_0$ (поскольку $m\neq 0$). Таким образом, будем считать, что любая прямая может быть задана уравнением (6), которое называется *каноническим уравнением* прямой.

Если прямая Δ не параллельна координатной оси Oy, т.е. $l \neq 0$, то можно определить число $k = \frac{m}{l}$, которое называется *угловым коэффициентом* прямой. Название объясняется тем обстоятельством, что в случае прямоугольной системы координат Oxy на плоскости $k = \operatorname{tg} \varphi$, где φ — величина угла между осью Ox и прямой Δ (*угла наклона* прямой Δ к оси Ox) (рис. 11).

Разумеется, в случае общей декартовой системы координат, число k не имеет такого геометрического смысла. Преобразовав уравнение (6), получаем следующее уравнение прямой по точке $M_0(x_0, y_0)$ и угловому коэффициенту k:

$$y - y_0 = k(x - x_0). (7)$$

В свою очередь, уравнение (6) очевидным образом приводится к виду y = kx + b. (8)

Число b здесь — величина отрезка, отсекаемого прямой Δ на оси Oy, т.е координата (на оси Oy) точки пересечения прямой Δ с осью (рис. 12).

Теорема 1. Пусть $(O, \vec{e}_1, \vec{e}_2) - a\phi \phi$ инный репер на плоскости \mathbf{E}^2 .

(i) Любая прямая на плоскости ${\bf E}^2$ может быть задана в данном репере линейным уравнением вида

$$Ax + By + C = 0. (9)$$

(ii) Обратно, любое уравнение (10) при условии, что числа A и B не равны нулю одновременно, задает в данном репере прямую.

Уравнение (9) называется *общим уравнение прямой*.

Будем называть *нормальным вектором прямой* любой ненулевой вектор, перпендикулярный прямой. Пусть (9) — общее уравнение прямой Δ в ортонормированном репере (O, \vec{i}, \vec{j}) . Покажем, что в этом случае вектор $\vec{n}(A, B)$ — нормальный вектор прямой Δ . Действительно, выше было отмечено, что вектор $\vec{a}(-B,A)$ — направляющий вектор прямой, т.е. $\vec{a} \parallel \Delta$. Так как $\vec{n}\vec{a} = -AB + BA = 0$, то $\vec{n}(A,B) \perp \Delta$.

Если для прямой Δ заданы начальная точка $M_0(x_0,y_0)$ своими координатами в ортонормированном репере $(O,\vec{i}\,,\vec{j}\,)$ и нормальный вектор прямой $\vec{n}(A,B)$ своими координатами в базисе $(\vec{i}\,,\vec{j}\,)$, то можно записать уравнение прямой по точке и нормальному вектору в виде:

$$A(x - x_0) + B(y - y_0) = 0. (10)$$

В самом деле, очевидно, что точка M(x,y) лежит на прямой Δ тогда и только тогда, когда векторы $\vec{n}(A,B)$ и $\overrightarrow{M_0M}(x-x_0,y-y_0)$ перпендикулярны. Равенство (10) как раз и выражает это условие.

1.3.3. Уравнения плоскости в пространстве

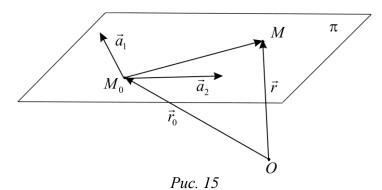
Пусть π – плоскость в пространстве \mathbf{E}^3 , M_0 – фиксированная (начальная) точка плоскости, (\vec{a}_1, \vec{a}_2) – базис множества $V(\pi)$ векторов плоскости (\vec{a}_1, \vec{a}_2) – направляющие векторы плоскости π). Очевидно, что точка M пространства принадлежит плоскости π тогда и только тогда, когда вектор $\overline{M_0M}$ принадлежит множеству $V(\pi)$, т.е. представляется в виде

$$\overrightarrow{M_0M} = t_1 \overrightarrow{a}_1 + t_2 \overrightarrow{a}_2 \tag{11}$$

для некоторых $t_1,t_2\in \mathbf{R}$. Зафиксируем в пространстве точку O и обозначим \vec{r}_0 и \vec{r} радиус-векторы соответственно точек M_0 и M. Тогда $\overrightarrow{M_0M}=\vec{r}-\vec{r}_0$ и равенство (11) можно переписать в виде

$$\vec{r} = \vec{r}_0 + t_1 \vec{a}_1 + t_2 \vec{a}_2, \ t_1, t_2 \in \mathbf{R}. \tag{12}$$

Формула (12) называется векторно-параметрическим уравнением плоскости π .



Присоединим к точке O базис $(\vec{e}_1,\vec{e}_2,\vec{e}_3)$ множества $V(\mathbf{E}^3)$ векторов пространства, получим аффинный репер $(O,\vec{e}_1,\vec{e}_2,\vec{e}_3)$ в пространстве \mathbf{E}^3 . Пусть (x,y,z) и (x_0,y_0,z_0) – координаты соответственно точек M и M_0 в данном репере. Согласно определению 3, (x,y,z) и (x_0,y_0,z_0) – координаты также радиус-векторов \vec{r} и \vec{r}_0 в базисе $(\vec{e}_1,\vec{e}_2,\vec{e}_3)$. Пусть (l_1,m_1,n_1) и (l_2,m_2,n_2) – координаты соответственно векторов \vec{a}_1 и \vec{a}_2 в базисе $(\vec{e}_1,\vec{e}_2,\vec{e}_3)$. Тогда векторное равенство (12) равносильно трем скалярным равенствам.

Еще один способ задания плоскости в пространстве получается, если заметить, что необходимым и достаточным условием принадлежности точки M плоскости π является компланарность векторов $\overrightarrow{M_0M}, \vec{a}_1, \vec{a}_2$. Последнее условие можно выразить через координаты векторов (*следствие* 1 в 1.2.6) и тем самым записать уравнение плоскости:

$$\begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \end{vmatrix} = 0.$$
 (13)

Раскрывая определитель, получим, что уравнение (13) есть линейное уравнение с тремя неизвестными вида

$$Ax + By + Cz + D = 0. (14)$$

Уравнение (14) называется *общим уравнением* плоскости π .

Хорошо известно, что любая плоскость однозначно определяется своими тремя точками, не лежащими на одной прямой. Пусть это будут точки $M_1(x_1,y_1,z_1),\ M_2(x_2,y_2,z_2)$ и $M_3(x_3,y_3,z_3)$. Выберем в качестве начальной точки плоскости $M_1(x_1,y_1,z_1)$, а в качестве базисных векторов множества $V(\pi)$ – неколлинеарные векторы

$$\vec{a}_1 = \overrightarrow{M_1 M_2}(x_2 - x_1, y_2 - y_1, z_2 - z_1) \text{ if } \vec{a}_2 = \overrightarrow{M_1 M_3}(x_3 - x_1, y_3 - y_1, z_3 - z_1).$$

В этом случае можно записать общее уравнение плоскости по трем точкам:

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0.$$
 (15)

Для случая пространства справедлива следующая теорема.

Теорема 2. Пусть $(O, \vec{e}_1, \vec{e}_2, \vec{e}_3) - a\phi \phi$ инный репер в пространстве \mathbf{E}^3 .

(i) Любая плоскость в пространстве ${\bf E}^3$ может быть задана в данном репере линейным уравнением вида

$$Ax + By + Cz + D = 0. ag{16}$$

(ii) Обратно, любое уравнение (16) при условии, что числа A, B и C не равны нулю одновременно, задает в данном репере плоскость.

Будем называть *нормальным вектором плоскости* любой ненулевой вектор, перпендикулярный плоскости. Пусть (16) — общее уравнение плоскости π в ортонормированном репере $(O,\vec{i}\,,\vec{j},\vec{k}\,)$. В этом случае вектор $\vec{n}(A,B,C)$ — нормальный вектор плоскости π . Чтобы убедиться в этом, достаточно проверить, что этот вектор ортогонален вектору $\overline{M_1M_2}$, построенному по любым точкам M_1,M_2 плоскости π . Пусть точки $M_1(x_1,y_1,z_1)$ и $M_2(x_2,y_2,z_2)$ заданы своими координатами в репере $(O,\vec{i}\,,\vec{j}\,,\vec{k}\,)$. Тогда $\overline{M_1M_2}(x_2-x_1,y_2-y_1,z_2-z_1)$ и

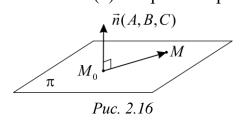
$$\vec{n} \cdot \overrightarrow{M_1 M_2} = A(x_2 - x_1) + B(y_2 - y_1) + C(z_2 - z_1) =$$

$$= (Ax_2 + By_2 + Cz_2) - (Ax_1 + By_1 + Cz_1) = (-D) - (-D) = 0,$$
T.e. $\vec{n}(A, B, C) \perp \pi$.

Если для плоскости π заданы начальная точка $M_0(x_0,y_0,z_0)$ своими координатами в ортонормированном репере $(O,\vec{i},\vec{j},\vec{k})$ и нормальный вектор плоскости $\vec{n}(A,B,C)$ своими координатами в базисе $(\vec{i},\vec{j},\vec{k})$, то можно записать уравнение плоскости π в данном репере в виде:

$$A(x-x_0) + B(y-y_0) + C(z-z_0) = 0. (17)$$

В самом деле, очевидно, что точка M(x,y,z) лежит в плоскости π тогда и только тогда, когда векторы $\vec{n}(A,B,C)$ и $\overline{M_0M}(x-x_0,y-y_0,z-z_0)$ перпендикулярны (рис. 16). Равенство (7) как раз и выражает это условие.



1.3.4. Уравнения прямой в пространстве

Прямая в пространстве может быть задана векторно-параметрическим уравнением:

$$\vec{r} = \vec{r_0} + t\vec{a}, t \in \mathbf{R}. \tag{18}$$

Пусть $(O, \vec{e}_1, \vec{e}_2, \vec{e}_3)$ — аффинный репер в пространстве \mathbf{E}^3 . Пусть (x, y, z) и (x_0, y_0, z_0) — координаты соответственно точек M и M_0 в данном репере, (l, m, n) — координаты направляющего вектора прямой \vec{a} в базисе $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$. Тогда векторное равенство (18) равносильно трем скалярным равенствам:

$$\begin{cases} x = x_0 + tl, \\ y = y_0 + tm, \\ z = z_0 + tn, t \in \mathbf{R}. \end{cases}$$
 (19)

Формулы (19) выражают координатно-параметрическое задание прямой, они называются также *координатно-параметрическими уравнениями* прямой Δ .

Исключая из уравнений (9) параметр t, получаем равенства

$$\frac{x - x_0}{l} = \frac{y - y_0}{m} = \frac{z - z_0}{n},\tag{20}$$

которые называются *каноническим уравнением* прямой в пространстве. Поскольку направляющий вектор $\vec{a}(l,m,n)$ прямой ненулевой, то хотя бы одно из чисел l,m,n не равно нулю. Допустим, что $l \neq 0$. Тогда равенства (20), эквивалентны системе уравнений

$$\begin{cases} \frac{x - x_0}{l} = \frac{y - y_0}{m}, \\ \frac{x - x_0}{l} = \frac{z - z_0}{n}, \end{cases}$$

Каждое из уравнений системы (как и в случае прямой на плоскости, равенства дробей рассматриваются как пропорции) является линейным уравнением, задающим плоскость. Таким образом, прямая Δ задается здесь как пересечение двух плоскостей. В общем случае, если прямая рассматривается как пересечение двух плоскостей π_1 и π_2 с уравнениями $A_1x + B_1y + C_1z + D_1 = 0$ и $A_2x + B_2y + C_2z + D_2 = 0$ соответственно, то эта прямая задается системой уравнений вида:

$$\begin{cases} A_1 x + B_1 y + C_1 z + D_1 = 0, \\ A_2 x + B_2 y + C_2 z + D_2 = 0. \end{cases}$$
 (21)

При этом, согласно теореме 2.4.2, коэффициенты при неизвестных в уравнениях системы не пропорциональны. Уравнения (21) называются *общими уравнениями* прямой.

1.4. Эллипс, гипербола, парабола, их уравнения и свойства

1.4.1. Эллипс

Определение 1. Эллипсом называется фигура на плоскости \mathbf{E}^2 , которая в некоторой прямоугольной системе координат Оху может быть задана уравнением

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. {1}$$

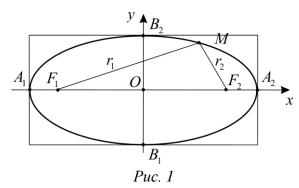
Здесь a и b — фиксированные положительные числа, причем a > b. Уравнение (1) называется **каноническим уравнением** эллипса.

Будем считать, что система координат Oxy расположена на плоскости стандартным образом относительно наблюдателя: ось Ox горизонтальна и направлена слева направо, ось Oy вертикальна и направлена снизу вверх. Поскольку в уравнение (1) неизвестные x и y входят в квадратах, то вместе с любой точкой $M_0(x_0,y_0)$, принадлежащей эллипсу, ему принадлежат точки $M_1(-x_0,y_0)$, $M_2(x_0,-y_0)$, $M_3(-x_0,-y_0)$. Это означает, что эллипс симметричен относительно осей координат и начала координат. Поэтому, чтобы нарисовать эллипс, достаточно изобразить его часть, лежащую в верхней полуплоскости относительно оси Ox, и затем достроить недостающую часть, пользуясь симметрией. Из уравнения (1) получаем, что в верхней полуплоскости, т.е. при условии, что $y \ge 0$, эллипс задается графиком функции

$$y = \frac{b}{a}\sqrt{a^2 - x^2}.$$

Область определения этой функции — отрезок [-a;a]; y(-a)=y(a)=0. Таким образом, эллипс пересекает ось Ox в точках $A_1(-a,0)$ и $A_2(a,0)$. Так как $y'=-\frac{b}{a}\frac{x}{\sqrt{a^2-x^2}}$, то функция возрастает на отрезке [-a;0] и убывает на отрезке [0;a]; точка x=0 — точка максимума и y(0)=b. В точках $x=\pm a$ производная не определена, $\lim_{x\to a}y'(x)=+\infty$, $\lim_{x\to a}y'(x)=-\infty$. Это означает, что эллипс пересекает ось Ox в точках A_1 и A_2 перпендикулярно прямой Ox . Поскольку $y''=-\frac{b}{a}\frac{a^2}{\sqrt{(a^2-x^2)^3}}<0$ на интервале (-a;a) то график исследуемой функции —

дуга кривой, выпуклой вверх, соединяющей точки A_1 и A_2 . Полученной информации достаточно для того, чтобы нарисовать график рассматриваемой функции. Используя симметрию относительно оси Ox, получаем изображение всего эллипса (рис. 1).

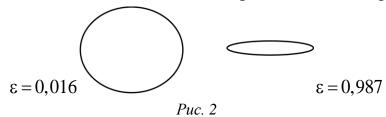


Таким образом, эллипс — ограниченная фигура, лежащая внутри прямоугольника размерами $2a \times 2b$ со сторонами параллельными осям координат и с центром в начале координат. Этот прямоугольник называется основным прямоугольником эллипса. Эллипс касается середин сторон

основного прямоугольника в точках $A_1(-a,0), A_2(a,0), B_1(0,-b), B_2(0,-b)$, которые называются вершинами эллипса. Числа a и b называются соответственно большей полуосью и меньшей полуосью эллипса, прямые A_1A_2 и B_1B_2 — осями эллипса.

Так как в уравнении (1) эллипса a > b , можно определить число $c = \sqrt{a^2 - b^2} > 0$. Отношение $\varepsilon = \frac{c}{a} = \sqrt{1 - \left(\frac{b}{a}\right)^2}$ называется эксцентриситетом.

Эксцентриситет эллипса — положительное число, меньшее единицы, характеризующее его форму. Если ε стремится к 0, то полуоси b и a отличаются мало, и эллипс приближается к окружности, если ε стремится к 1, то полуось b значительно меньше a и эллипс приближается к отрезку (рис. 2).



Точки $F_1(-c,0)$ и $F_2(c,0)$ называются фокусами эллипса. Если M(x,y) – произвольная точка эллипса, то отрезки MF_1 и MF_2 , а также их длины $r_1 = |MF_1|$, $r_2 = |MF_2|$ называются фокальными радиусами точки M. Вычислим значения фокальных радиусов:

$$r_{1} = \sqrt{(x+c)^{2} + y^{2}} = \sqrt{(x+c)^{2} + b^{2} \left(1 - \frac{x^{2}}{a^{2}}\right)} = \sqrt{(x+c)^{2} + (a^{2} - c^{2}) \left(1 - \frac{x^{2}}{a^{2}}\right)} =$$

$$= \sqrt{x^{2} + 2xc + c^{2} + a^{2} - c^{2} - x^{2} + c^{2} \frac{x^{2}}{a^{2}}} = \sqrt{a^{2} + 2xc + c^{2} \frac{x^{2}}{a^{2}}} =$$

$$= \sqrt{\left(a + \frac{c}{a}x\right)^{2}} = \sqrt{(a + \varepsilon x)^{2}} = a + \varepsilon x.$$

При извлечении последнего квадратного корня следует учесть, что $0 < \varepsilon < 1$ и для точки M(x,y) эллипса верно неравенство: $|x| \le a$. Аналогично, $r_2 = a - \varepsilon x$. Заметим, что $r_1 + r_2 = 2a$, т.е. для любой точки эллипса с уравнением (1) сумма расстояний до фокусов постоянна и равна 2a. Отмеченное свойство является характеристическим для эллипса. Это означает, что верно следующее утверждение.

Теорема 1. Пусть F_1 и F_2 — две точки плоскости, расстояние между которыми равно 2c, c>0. Тогда фигура Φ , состоящая из всех точек плоскости, для которых сумма расстояний до F_1 и F_2 постоянна и равна 2a, a>c, есть эллипс. Точки F_1 и F_2 являются фокусами этого эллипса.

Доказательство. Выберем на плоскости прямоугольную систему координат Oxy так, чтобы ось Ox проходила через точки F_1 и F_2 , а начало системы координат совпадало с серединой отрезка F_1F_2 . В этой системе координат точки F_1 и F_2 имеют следующие координаты: $F_1(-c,0)$, $F_2(c,0)$. Пусть M(x,y) – произвольная точка плоскости. Тогда

$$|MF_1| = \sqrt{(x+c)^2 + y^2}, |MF_2| = \sqrt{(x-c)^2 + y^2},$$

Следовательно, уравнение фигуры Ф имеет вид:

$$\sqrt{(x+c)^2 + y^2} + \sqrt{(x-c)^2 + y^2} = 2a.$$
 (2)

Перенесем второй корень в правую часть и возведем обе части уравнения в квадрат. Раскрывая скобки и приводя подобные, получим уравнение:

$$a\sqrt{(x-c)^2 + y^2} = a^2 - xc.$$

Еще раз возводим в квадрат обе части уравнения и приводим подобные:

$$x^{2}(a^{2}-c^{2})+y^{2}a^{2}=a^{2}(a^{2}-c^{2}).$$

Так как по условию a>c, то можно определить число $b=\sqrt{a^2-c^2}>0$, b< a . Разделив обе части последнего уравнения на a^2b^2 , получим, что все точки фигуры Φ удовлетворяют уравнению эллипса:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

Так как $c = \sqrt{a^2 - b^2}$, то точки F_1 и F_2 являются его фокусами. \blacktriangleright

Наряду с каноническим уравнением (1), часто используют параметрическое задание эллипса, которое получается следующим образом. Пусть Oxy – прямоугольная система координат. Рассмотрим две концентрические окружности с центром в точке O и радиусами a и b (рис. 3).

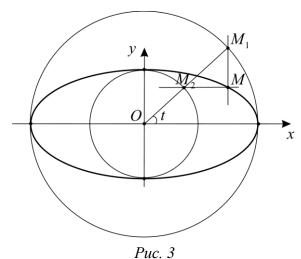


Рис. 3

Пусть t произвольное вещественное число. Из точки O проведем луч, образующий угол t с положительным направлением оси Ox . Этот луч

пересекает окружности в точках $M_1(a\cos t, a\sin t)$ и $M_2(b\cos t, b\sin t)$. Через точку M_1 проведем прямую, параллельную оси Oy, а через точку M_2 проведем прямую, параллельную оси Ox. Эти прямые пересекаются в точке $M(a\cos t, b\sin t)$, которая, очевидно, лежит на эллипсе с уравнением (1). Легко видеть, что если t принимает все вещественные значения, то M пробегает все точки эллипса, следовательно, параметрические уравнения эллипса имеют вид:

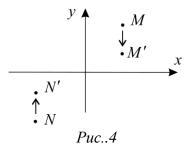
$$\begin{cases} x = a\cos t, \\ y = b\sin t, \ t \in \mathbf{R} \end{cases}$$

Отметим что эллипс может быть получен из окружности преобразованием *сжатия* к диаметру окружности.

Определение 2. Сжатием плоскости \mathbf{E}^2 к прямой Ох вдоль прямой Оу называется отображение $f: \mathbf{E}^2 \to \mathbf{E}^2$, которое на произвольную точку плоскости M(x,y), заданную своими координатами, действует по правилу:

$$M(x, y) \mapsto M'(x, ky)$$
. (3)

Здесь k — фиксированное вещественное число, 0 < k < 1 , которое называется коэффициентом сжатия (рис. 4).



Утверждение 1. Пусть Φ – фигура на плоскости \mathbf{E}^2 , заданная уравнением F(x,y)=0 относительно прямоугольной системы координат Оху. Тогда фигура $\Phi'=f(\Phi)$, полученная из Φ сжатием (3), имеет уравнение $F(x,\frac{y}{k})=0$.

Доказательство. Очевидно, что точка плоскости $M_0'(x_0,y_0)$ принадлежит фигуре Φ' тогда и только тогда, когда она получена преобразованием сжатия из точки $M_0(x_0,\frac{y_0}{k})$ фигуры Φ . Следовательно,

$$M_0'(x_0, y_0) \in \Phi' \iff F(x_0, \frac{y_0}{k}) \equiv 0.$$

В качестве следствия этого утверждения получаем, что применяя преобразование сжатия к окружности Φ с уравнением $x^2 + y^2 = a^2$ относительно прямоугольной системы координат Oxy, получаем фигуру Φ' с уравнением

$$x^2 + \left(\frac{y}{k}\right)^2 = a^2$$
 или $\frac{x^2}{a^2} + \frac{y^2}{(ka)^2} = 1$, т.е. эллипс с полуосями a и $b = ka$.

1.4.2. Гипербола

Определение 3. Гиперболой называется фигура на плоскости \mathbf{E}^2 , которая в некоторой прямоугольной системе координат Оху может быть задана уравнением

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1. {4}$$

 $3 десь \ a \ u \ b - фиксированные положительные числа.$

Уравнение (4) называется каноническим уравнением гиперболы.

Если $M_0(x_0,y_0)$ — точка гиперболы, то из уравнения (4) вытекает, что $|x_0| \ge a$. Это означает, что гипербола — фигура, лежащая вне полосы шириной 2a, которая определяется неравенством: |x| < a. Поскольку в уравнение (4) неизвестные x и y входят в квадратах, то гипербола, также как эллипс, симметрична относительно осей координат и начала координат. Поэтому, чтобы нарисовать гиперболу, достаточно изобразить ее часть, лежащую в первой четверти, и затем достроить недостающие части, пользуясь симметрией. Считая $x \ge 0$, $y \ge 0$, из уравнения (4) получаем, что в первой четверти гипербола задается графиком возрастающей функции

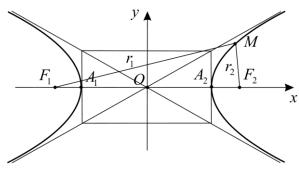
$$y = \frac{b}{a} \sqrt{x^2 - a^2}.$$

У этого графика есть наклонная асимптота с уравнением y = kx + b, где

$$k = \lim_{x \to +\infty} \frac{y(x)}{x} = \lim_{x \to +\infty} \frac{\frac{b}{a} \sqrt{x^2 - a^2}}{x} = \frac{b}{a},$$

$$b = \lim_{x \to +\infty} (y(x) - \frac{b}{a}x) = \lim_{x \to +\infty} (\frac{b}{a} \sqrt{x^2 - a^2} - \frac{b}{a}x) = 0.$$

Далее нетрудно установить, что график функции представляет собой выпуклую вверх кривую, выходящую вертикально из точки $A_2(a,0)$ и асимптотически приближающуюся к прямой $y=\frac{b}{a}x$, но не пересекающую эту прямую. Используя симметрию, получаем изображение всей гиперболы (рис. 5).



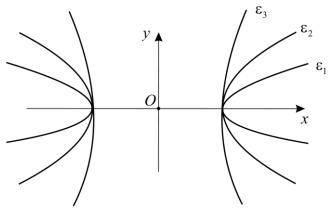
Puc. 5

Гипербола Φ состоит из двух частей (ветвей), обозначим их: $\Phi^+ = \{M(x,y) \in \Phi \mid x > 0\}$ и $\Phi^- = \{M(x,y) \in \Phi \mid x < 0\}$ — соответственно правая и левая ветви на рисунке 6. Точки $A_{\rm I}(-a,0), A_2(a,0)$ принадлежат гиперболе и называются ее вершинами. Числа a и b называются полуосями гиперболы, a — действительная полуось, b — мнимая полуось. Прямая Ox называется действительной осью, прямая Oy называется мнимой осью гиперболы.

Для изображения гиперболы на листе бумаги или на доске обычно поступают следующим образом. Вначале рисуют прямоугольник размерами $2a \times 2b$ со сторонами параллельными осям координат и с центром в начале координат, такой же, как для эллипса с уравнением (1). Этот прямоугольник называется *основным прямоугольником* гиперболы. Затем проводят асимптоты гиперболы $y=\pm \frac{b}{a}x$. Это прямые, на которых лежат диагонали основного прямоугольника. И наконец, рисуют ветви гиперболы Φ^- и Φ^+ так, чтобы они касались основного прямоугольника в вершинах $A_{\rm I}(-a,0)$ и $A_2(a,0)$ и асимптотически приближались к прямым $y=\pm \frac{b}{a}x$.

Определим число
$$c = \sqrt{a^2 + b^2}$$
 . Отношение $\varepsilon = \frac{c}{a} = \sqrt{1 + \left(\frac{b}{a}\right)^2}$, также как

для эллипса, называется эксцентриситетом. Эксцентриситет гиперболы — положительное число, большее единицы, характеризующее ее форму ($\varepsilon_1 < \varepsilon_2 < \varepsilon_3$ на рис. 6). Если ε стремится к 1, то мнимая полуось b значительно меньше действительной полуоси a и гипербола приближается к двум лучам. Если ε стремится к $+\infty$, то мнимая полуось b значительно больше действительной полуоси a и гипербола приближается к паре параллельных прямых.



Puc. 6

У гиперболы с каноническим уравнением (4) имеются **фокусы**, это две точки: $F_1(-c,0)$ и $F_2(c,0)$ (рис. 3.5). Если M(x,y) — произвольная точка гиперболы, то отрезки MF_1 и MF_2 , а также их длины $r_1 = |MF_1|$, $r_2 = |MF_2|$ называются **фокальными радиусами** точки M. Вычислим значения фокальных радиусов:

$$r_{1} = \sqrt{(x+c)^{2} + y^{2}} = \sqrt{(x+c)^{2} + b^{2} \left(\frac{x^{2}}{a^{2}} - 1\right)} = \sqrt{(x+c)^{2} + (c^{2} - a^{2}) \left(\frac{x^{2}}{a^{2}} - 1\right)} =$$

$$= \sqrt{x^{2} + 2xc + c^{2} + c^{2} \frac{x^{2}}{a^{2}} + a^{2} - c^{2} - x^{2}} = \sqrt{a^{2} + 2xc + c^{2} \frac{x^{2}}{a^{2}}} =$$

$$= \sqrt{\left(a + \frac{c}{a}x\right)^{2}} = \sqrt{(a + \varepsilon x)^{2}} = |a + \varepsilon x| = \begin{bmatrix} a + \varepsilon x, ecnu \ x > 0, \\ -(a + \varepsilon x), ecnu \ x < 0. \end{bmatrix}$$

При раскрытии модуля следует учесть, что $\varepsilon > 1$ и для точки M(x, y) гиперболы $|x| \ge a$. Аналогично,

$$r_2 = |a - \varepsilon x| = \begin{bmatrix} -(a - \varepsilon x), ec \pi u & x > 0, \\ a - \varepsilon x, ec \pi u & x < 0. \end{bmatrix}$$

Заметим, что $r_1 - r_2 = 2a$, если $x \in \Phi^+$, и $r_1 - r_2 = -2a$, если $x \in \Phi^-$, т.е. для любой точки гиперболы с уравнением (4) абсолютная величина разности расстояний до фокусов постоянна и равна 2a. Отмеченное свойство является xapakmepucmuчeckum для гиперболы. Это означает, что верна следующая теорема.

Теорема 2. Пусть F_1 и F_2 — две точки плоскости, расстояние между которыми равно 2c, c>0. Тогда фигура Φ , состоящая из всех точек плоскости, для которых абсолютная величина разности расстояний до F_1 и F_2 постоянна и равна 2a, a < c, есть гипербола. Точки F_1 и F_2 являются фокусами этой гиперболы.

Доказательство. Выберем на плоскости прямоугольную систему координат Oxy так, чтобы ось Ox проходила через точки F_1 и F_2 , а начало системы координат совпадало с серединой отрезка F_1F_2 . В этой системе точки F_1 и F_2 имеют следующие координаты: $F_1(-c,0), F_2(c,0)$. Пусть M(x,y) – произвольная точка плоскости. Тогда

$$|MF_1| = \sqrt{(x+c)^2 + y^2}, |MF_2| = \sqrt{(x-c)^2 + y^2},$$

Следовательно, уравнение фигуры Ф имеет вид:

$$\left| \sqrt{(x+c)^2 + y^2} - \sqrt{(x-c)^2 + y^2} \right| = 2a$$
 (5)

ИЛИ

$$\sqrt{(x+c)^2 + y^2} - \sqrt{(x-c)^2 + y^2} = \pm 2a.$$

Перенесем второй корень в правую часть и возведем обе части уравнения в квадрат. Раскрывая скобки и приводя подобные, получим уравнение:

$$\pm a\sqrt{(x-c)^2+y^2} = a^2 - xc.$$

Еще раз возводим в квадрат обе части уравнения и приводим подобные:

$$x^{2}(c^{2}-a^{2})-y^{2}a^{2}=a^{2}(c^{2}-a^{2}).$$

Так как по условию c > a, то можно определить число $b = \sqrt{c^2 - a^2} > 0$. Разделив обе части последнего уравнения на a^2b^2 , получим, что все точки фигуры Φ удовлетворяют уравнению гиперболы:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1.$$

Очевидно, точки F_1 и F_2 являются фокусами этой гиперболы. \blacktriangleright

Наряду с гиперболой, заданной уравнением (4), можно рассматривать гиперболу, которая задается уравнением

$$-\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

Эти две гиперболы называются *сопряженными* друг для друга. У сопряженных гипербол один и тот же основной прямоугольник и совпадают асимптоты, только действительные и мнимые оси меняются местами (рис. 7).



Гиперболу можно задать параметрически. Соответствующие формулы подобны тем, которые использовались при задании эллипса, только обычные синус и косинус заменяются на гиперболические:

$$\begin{cases} x = a \text{ ch} t, \\ y = b \text{ sh} t, \ t \in \mathbf{R}. \end{cases}$$
 (6)

Отметим, что формулы (6) задают только одну ветвь гиперболы, вторая ветвь задается формулами:

$$\begin{cases} x = -a \operatorname{ch} t, \\ y = b \operatorname{sh} t, \ t \in \mathbf{R}. \end{cases}$$

В средней школе *гиперболой* называется график обратно пропорциональной зависимости, т.е. график функции $y = \frac{k}{x}$, $k \neq 0$. Используя материал следующего параграфа, можно показать, что этот график является гиперболой в смысле определения 1.3.3. Для этой гиперболы исходные оси координат являются асимптотами, а прямые с уравнениями $y = \pm x - \text{осями}$. Чтобы это доказать, надо от прямоугольной системы координат *Оху* перейти к другой, повернув

исходную систему координат вокруг точки O на 45° . В новой системе координат рассматриваемый график задается уравнением $\frac{x^2}{2 \mid k \mid} - \frac{y^2}{2 \mid k \mid} = 1$.

1.4.3. Парабола

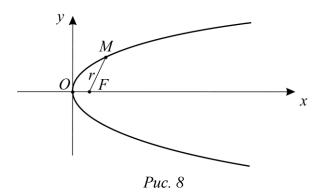
Парабола известна из школьного курса математики. Здесь мы приведем некоторые термины, принятые при рассмотрении параболы в аналитической геометрии.

Любая парабола при подходящем выборе прямоугольной системы координат Oxy (начало системы координат следует совместить с вершиной параболы, ось Oy — с касательной к параболе в вершине, ось Ox направить в ту полуплоскость относительно Oy, в которой лежат ветви параболы) может быть задана уравнением:

$$y^2 = 2px, \ p > 0, \tag{7}$$

которое называется *каноническим уравнением* параболы. Число p называется фокальным параметром параболы, точка $F\left(\frac{p}{2},0\right) - \phi$ окусом. Для параболы с уравнением (7) ось Ox является осью симметрии, точка O(0,0) — вершиной.

Принято считать, что эксцентриситет любой параболы равен единице, $\epsilon = 1$. Эксцентриситет параболы, также как в случаях эллипса и гиперболы, характеризует форму фигуры. Поскольку у всех парабол эксцентриситет постоянен, то это означает, что у всех парабол форма одинакова. В математике в таком случае говорят, что фигуры конформны. Более точно, это означает, что любую параболу можно перевести в любую другую преобразованием подобия, т.е. таким преобразованием, при котором расстояния между соответствующими точками увеличивается (или уменьшается) в одно и тоже число раз. Примером преобразования подобия может служить преобразование плоскости $f: \mathbf{E}^2 \to \mathbf{E}^2$, которое произвольную точку M(x, y) переводит в точку M'(kx, ky), k > 0, Такое преобразование называется гомотетией с центром в точке O(0,0) и соответствующими точками увеличиваются в k раз. Пусть Φ_1 и Φ_2 – две параболы с фокальными параметрами $p_{\rm l}$ и $p_{\rm 2}$, заданные уравнениями соответственно $y^2 = 2p_1x$ и $y^2 = 2p_2x$. Читателю предлагается в качестве упражнения убедиться в том, что первая парабола переводится во вторую гомотетией с коэффициентом $k = \frac{p_2}{p_2}$



Для произвольной точки M(x,y) параболы отрезок MF, а также его длина r = |MF| называются фокальным радиусом точки M. Вычислим значение фокального радиуса:

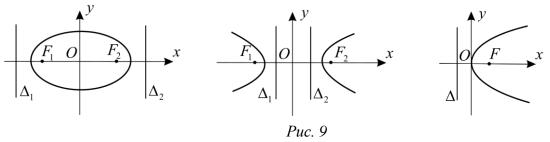
$$r = \sqrt{\left(x - \frac{p}{2}\right)^2 + y^2} = \sqrt{x^2 - px + \frac{p^2}{4} + 2px} = x + \frac{p}{2}.$$

1.4.4. Некоторые общие свойства эллипса, гиперболы и параболы

В этом пункте мы используем обозначения, введенные выше, в частности, мы считаем, что эллипс, гипербола и парабола заданы в прямоугольной системе координат каноническими уравнениями соответственно (1), (3) и (6).

Определение 4. Директрисами эллипса и гиперболы называются две прямые Δ_1 и Δ_2 с уравнениями соответственно $x = -\frac{a}{\varepsilon}$ и $x = \frac{a}{\varepsilon}$. Директрисой

параболы называется прямая Δ с уравнением $x = -\frac{p}{2}$ (рис. 9).



Будем говорить, что в случаях эллипса и гиперболы фокус F_i и директриса Δ_i , i=1,2, соответствуют друг другу. Первое общее свойство трех упомянутых фигур выражается следующим утверждением.

Утверждение 2. Для любой точки эллипса, гиперболы или параболы отношение ее расстояний до фокуса и до соответствующей этому фокусу директрисы постоянно и равно эксцентриситету.

Доказательство. Пусть M(x,y) – произвольная точка эллипса, $r=a+\varepsilon x$ – расстояние от M до левого фокуса F_1 , $d=\left|x+\frac{a}{\varepsilon}\right|=\frac{\varepsilon x+a}{\varepsilon}$ – расстояние от M

до левой директрисы Δ_1 . Тогда $\frac{r}{d} = \varepsilon$. Для правых фокуса и директрисы доказательство аналогично.

Пусть M(x,y) — произвольная точка гиперболы, $r=|a-\epsilon x|$ — расстояние от M до правого фокуса F_1 , $d=\left|x-\frac{a}{\epsilon}\right|=\frac{|\epsilon x-a|}{\epsilon}$ — расстояние от M до правой директрисы Δ_1 . Тогда $\frac{r}{d}=\epsilon$. Для левых фокуса и директрисы доказательство аналогично.

Пусть M(x,y) — произвольная точка параболы, тогда $r = |x + \frac{p}{2}|$ — расстояние от M до фокуса F , $d = \left|x + \frac{p}{2}\right|$ — расстояние от M до директрисы Δ . Тогда $\frac{r}{d} = 1 = \epsilon$.

Доказанное свойство является характеристическим для трех фигур.

Утверждение 3. Пусть Δ — прямая на плоскости \mathbf{E}^2 , F — точка плоскости, не лежащая на Δ , ε — положительное число.

Тогда фигура Φ , состоящая из всех точек плоскости, для которых отношение расстояний до точки F и до прямой Δ постоянно и равно ε , суть: эллипс, если $\varepsilon < 1$; гипербола, если $\varepsilon > 1$; парабола, если $\varepsilon = 1$.

Коротко заключение утверждения можно записать следующим образом:

$$\Phi = \{M \in \mathbf{E}^2 \mid \frac{d(M,F)}{d(M,\Delta)} = \varepsilon\} - \begin{bmatrix} \text{эллипс, если } \varepsilon < 1, \\ \text{гипербола, если } \varepsilon > 1, \\ \text{парабола, если } \varepsilon = 1. \end{bmatrix}$$

Доказательство. Выберем прямоугольную систему координат Oxy на плоскости \mathbf{E}^2 так, что ось Oy совпадает с прямой Δ , а ось Ox проходит через точку F перпендикулярно Δ . Тогда координаты заданной точки: F(k,0), где k – расстояние от F до Δ . Если M(x,y) – произвольная точка плоскости, то уравнение фигуры Φ имеет вид:

$$\frac{\sqrt{(x-k)^2 + y^2}}{|x|} = \varepsilon \text{ или } (x-k)^2 + y^2 = x^2 \varepsilon^2.$$

Преобразовывая уравнение далее, получим:

$$x^{2}(1-\varepsilon^{2}) - 2xk + k^{2} + y^{2} = 0.$$
 (8)

Пусть $\varepsilon \neq 1$. Вынесем множитель $1-\varepsilon^2$ из слагаемых, содержащих x, и дополним оставшиеся члены до полного квадрата:

$$(1-\varepsilon^2)\left(x^2-2x\frac{k}{1-\varepsilon^2}+\frac{k^2}{(1-\varepsilon^2)^2}\right)+y^2=\frac{k^2}{(1-\varepsilon^2)}-k^2$$
или

$$\left(x - \frac{k}{1 - \varepsilon^2}\right)^2 + \frac{y^2}{1 - \varepsilon^2} = \frac{k^2 \varepsilon^2}{(1 - \varepsilon^2)^2}.$$

Введем обозначение $a^2 = \frac{k^2 \epsilon^2}{(1-\epsilon^2)^2}$ и разделим обе части последнего уравнения на a^2 . Получим в итоге следующее уравнение фигуры Φ :

$$\frac{\left(x - \frac{k}{1 - \varepsilon^2}\right)^2}{a^2} + \frac{y^2}{a^2(1 - \varepsilon^2)} = 1.$$
 (9)

Очевидно, что (9) является уравнением эллипса, если ε < 1, и уравнением гиперболы, если ε > 1.

Если в уравнении (8) $\varepsilon = 1$, то его можно переписать в виде $y^2 = 2k(x - \frac{k}{2})$. Последнее уравнение, очевидно, задает параболу.

Читателю предлагается в качестве упражнения убедиться в том, что F и Δ являются для фигуры Φ соответствующими друг другу фокусом и директрисой.

Далее мы найдем уравнения касательных прямых к эллипсу, гиперболе, параболе.

Если ограничиться первой координатной четвертью, то дуга эллипса, лежащая в этой четверти, является графиком функции

$$y = \frac{b}{a}\sqrt{a^2 - x^2}.$$

Из школьного курса математики известно, что уравнение касательной к графику функции y = f(x) в точке $M_0(x_0, y_0)$ имеет вид:

$$y - y_0 = f'(x_0)(x - x_0)$$
.

В рассматриваемом случае

$$f'(x_0) = -\frac{bx_0}{a\sqrt{a^2 - x_0^2}} = -\frac{bx_0}{a^2\sqrt{1 - \frac{x_0^2}{a^2}}} = -\frac{b^2x_0}{a^2y_0}.$$

Следовательно, уравнение касательной:

$$y - y_0 = -\frac{b^2 x_0}{a^2 y_0} (x - x_0)$$
 или $\frac{x x_0}{a^2} + \frac{y y_0}{b^2} = \frac{x_0^2}{a^2} + \frac{y_0^2}{b^2}$.

Так как $\frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} = 1$, получаем окончательно уравнение касательной к эллипсу в точке $M_0(x_0,y_0)$:

$$\frac{xx_0}{a^2} + \frac{yy_0}{b^2} = 1. {10}$$

Учитывая, что эллипс симметричен относительно координатных осей, нетрудно убедиться, что уравнением (10) задается касательная к эллипсу в его произвольной точке.

Аналогично получаются уравнения касательных к гиперболе:

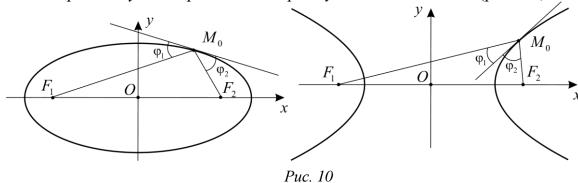
$$\frac{xx_0}{a^2} - \frac{yy_0}{b^2} = 1\tag{11}$$

и параболе:

$$yy_0 = p(x + x_0). (12)$$

Теперь можно установить так называемые «оптические» свойства эллипса, гиперболы и параболы.

Утверждение 4. Касательная в любой точке эллипса или гиперболы составляет равные углы с фокальными радиусами этой точки (рис. 10).



Доказательство. Пусть $M_0(x_0, y_0)$ – точка эллипса. Рассмотрим векторы $\overrightarrow{F_1M_0}(x_0+c,y_0)$ и $\overrightarrow{M_0F_2}(c-x_0,-y_0)$, а также направляющий вектор $\overrightarrow{m}\left(\frac{y_0}{b^2},-\frac{x_0}{a^2}\right)$

касательной. Пусть ϕ_1 и ϕ_2 – величины углов соответственно между $\overrightarrow{F_1M_0}$ и \overrightarrow{m} , и между $\overrightarrow{M_0F_2}$ и \vec{m} . Тогда:

$$\cos \varphi_{1} = \frac{\frac{(x_{0}+c)y_{0}}{b^{2}} - \frac{x_{0}y_{0}}{a^{2}}}{|\vec{m}|\sqrt{(x_{0}+c)^{2}+y_{0}^{2}}} = \frac{x_{0}y_{0}(a^{2}-b^{2}) + cy_{0}a^{2}}{a^{2}b^{2}|\vec{m}|r_{1}} = \frac{cy_{0}(a^{2}+cx_{0})}{a^{2}b^{2}|\vec{m}|r_{1}} = \frac{\varepsilon y_{0}}{b^{2}|\vec{m}|r_{1}};$$

$$\cos \varphi_{2} = \frac{\frac{(c-x_{0})y_{0}}{b^{2}} + \frac{x_{0}y_{0}}{a^{2}}}{|\vec{m}|\sqrt{(c-x_{0})^{2}+y_{0}^{2}}} = \frac{x_{0}y_{0}(b^{2}-a^{2}) + cy_{0}a^{2}}{a^{2}b^{2}|\vec{m}|r_{2}} = \frac{cy_{0}(a^{2}-cx_{0})}{a^{2}b^{2}|\vec{m}|r_{2}} = \frac{\varepsilon y_{0}}{b^{2}|\vec{m}|r_{2}};$$

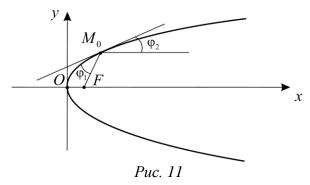
Таким образом, $\phi_1 = \phi_2$. Доказательство в случае гиперболы проводится аналогично. ▶

Если считать, что модели эллипса и гиперболы выполнены из зеркального материала, то можно сформулировать физическую (оптическую) интерпретацию доказанных свойств:

луч, выпущенный из одного фокуса эллипса, отразившись от эллипса, попадает в другой фокус;

луч, выпущенный из одного фокуса, отразившись от гиперболы, идет по прямой, проходящей через второй фокус и точку отражения.

Утверждение 5. Касательная в любой точке параболы составляет равные углы с фокальным радиусом этой точки и осью параболы (рис. 11).



Доказательство. Пусть $M_0(x_0,y_0)$ — точка параболы. Рассмотрим вектор $\overrightarrow{FM_0}(x_0-\frac{p}{2},y_0)$ и направляющий вектор $\overrightarrow{m}(y_0,p)$ касательной. Пусть ϕ_1 и ϕ_2 — величины углов соответственно между $\overrightarrow{FM_0}$ и \overrightarrow{m} , и между \overrightarrow{m} и осью параболы. Поскольку в рассматриваемом случае ось параболы совпадает с координатной осью Ox, то ϕ_2 — величина угла между \overrightarrow{m} и базисным вектором $\overrightarrow{i}(1,0)$ системы координат. Тогда:

$$\cos \varphi_1 = \frac{(x_0 - \frac{p}{2})y_0 + y_0 p}{r |\vec{m}|} = \frac{x_0 y_0 + \frac{p}{2} y_0}{(x_0 + \frac{p}{2}) |\vec{m}|} = \frac{y_0}{|\vec{m}|};$$

$$\cos \varphi_2 = \frac{y_0}{|\vec{m}|}$$
. Таким образом, $\varphi_1 = \varphi_2$.

Физическая (оптическая) интерпретация доказанного свойства параболы следующая: луч, выпущенный из фокуса, отразившись от параболы, идет по прямой, параллельной оси параболы. На этом свойстве основаны конструкции прожекторов, фар, передающих и принимающих антенн, в том числе параболических телевизионных.

Отметим, что помимо приведенного, существуют и другие доказательства оптических свойств, в том числе и чисто геометрические, не использующие уравнений. Заинтересовавшийся читатель может предложить свой вариант, а также найти различные доказательства в математической литературе или интернете.

1.5. Понятие аффинного пространства. Плоскости в аффинном пространстве и их уравнения

1.5.1. Определение, примеры и простейшие свойства аффинного пространства

Понятие $a\phi\phi$ инного пространства возникает как обобщение понятий пространства ${\bf E}^3$, плоскости ${\bf E}^2$ и прямой ${\bf E}^1$. При этом поступают обычно следующим образом: выделяются некоторые существенные свойства обобщаемых понятий, эти свойства формулируются как аксиомы и новое

понятие возникает как объект, удовлетворяющий данным аксиомам. В нашем конкретном случае мы отмечаем следующие общие свойства пространства \mathbf{E}^3 , плоскости \mathbf{E}^2 и прямой \mathbf{E}^1 :

- (і) каждый из этих объектов является множеством точек;
- (ii) каждая упорядоченная пара точек определяет вектор, множество которых составляет векторное пространство $V(\mathbf{E}^n)$, n = 1, 2, 3;
- (iii) от любой точки единственным образом можно отложить любой вектор, получив при этом точку (конец соответствующего направленного отрезка).

Аксиоматизация этих свойств приводит к следующему определению.

Определение 1. Пусть A – непустое множество, элементы которого будут называться точками и обозначаться прописными латинскими буквами $A = \{A, ...\}$. Пусть $V = \{\vec{a}, ...\}$ – векторное пространство над полем F. Пусть, далее, каждой упорядоченной паре точек (A, B) поставлен в соответствие вектор, который будем обозначать \overrightarrow{AB} . Множество A: называется аффинным пространством, связанным с векторным пространством V, если выполняются две аксиомы:

 $A_{\bf I}$. Для любой точки $A \in A$ и любого вектора $\vec{a} \in {\bf V}$ существует единственная точка $B \in A$ такая, что $\overrightarrow{AB} = \vec{a}$;

 $A_{\mathbf{II}}$. Для любых точек $A,B,C\in A$ верно соотношение Шаля:

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$
.

Тот факт, что каждой упорядоченной паре точек $(A,B), A,B \in A$, ставится в соответствие вектор $\overrightarrow{AB} \in \mathbf{V}$ означает, что задано отображение

$$\Phi: A \times A \to V, (A,B) \mapsto \Phi(A,B) \equiv \overrightarrow{AB}.$$
 (1)

Аксиомы $A_{\rm I}$ и $A_{\rm II}$ описывают свойства этого отображения. Отметим, что аксиома $A_{\rm I}$ означает фактически, что задано отображение

$$A \times V \rightarrow A$$
.

сопоставляющее паре (A, \vec{a}) точку B такую, что $\vec{a} = \overrightarrow{AB}$. Итак, в аффинном пространстве любой вектор можно отложить от любой точки и получить однозначно определенную точку.

Определение 2. Размерностью аффинного пространства, связанного с конечномерным векторным пространством V, называется размерность пространства V; n -мерное аффинное пространство обозначается A^n . Если V бесконечномерно, то аффинное пространство A также называется бесконечномерным. Нуль-мерное аффинное пространство A^0 называется аффинной точкой, 1-мерное аффинное пространство A^1 называется аффинной прямой.

Замечание. Обозначение \overrightarrow{AB} для вектора $\Phi(A,B)$, по виду совпадающее с обозначением класса эквивалентных отрезков, есть на самом деле лишь

условность, позволяющая подчеркнуть близость этих понятий в определенном контексте (но не их совпадение). Ниже будет показано, что для любого векторного пространства существует аффинное пространство, связанное с ним. Поэтому векторы, определяемые парами точек аффинного пространства, могут иметь различную природу, они могут являться числами, многочленами, функциями, матрицами и т.д.

Приведем некоторые следствия, непосредственно вытекающие из определения аффинного пространства.

Утверждение 1. Пусть $A, B \in A$. Тогда $\overrightarrow{AB} = \overrightarrow{0}$ тогда и только тогда, когда A = B .

Доказательство. Полагая A = B = C из соотношения Шаля получаем: $\overrightarrow{AA} + \overrightarrow{AA} = \overrightarrow{AA}$, откуда $\overrightarrow{AA} = \overrightarrow{0}$. Из доказанного вытекает, что $\Psi(A, \overrightarrow{0}) = A$, т.е. откладывая от точки A нулевой вектор, получаем исходную точку A. Если теперь для точек A, B верно равенство $\overrightarrow{AB} = \overrightarrow{0}$, т.е. $\Psi(A, \overrightarrow{0}) = B$, то в силу однозначности откладывания вектора от точки получаем A = B. ◀

Утверждение 2. Для любых точек $A,B \in A$ верно равенство $\overrightarrow{AB} = -\overrightarrow{BA}$

Доказательство. $\overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{0}$ ввиду соотношения Шаля и утверждения 1. Следовательно, $\overrightarrow{AB} = -\overrightarrow{BA}$. ▶

В отображении Φ зафиксируем первый аргумент, положив $\mathit{A} = \mathit{O}$. Получим отображение

$$\Phi_o: \mathbf{A} \to \mathbf{V}, M \mapsto \overrightarrow{OM}. \tag{2}$$

Вектор \overrightarrow{OM} называется paduyc-вектором точки M .

Утверждение 3. Для любой точки $O \in A$ отображение (2), ставящее в соответствие каждой точке ее радиус-вектор, является биекцией между множеством всех точек аффинного пространства A и множеством всех векторов векторного пространства V.

Доказательство. Пусть $\vec{a} \in \mathbf{V}$, тогда для $M = \Psi(O, \vec{a})$ имеем: $\overrightarrow{OM} = \vec{a}$, следовательно, отображение Φ_o сюръективно. Если $\Phi_o(A) = \Phi_o(B)$, т.е. $\overrightarrow{OA} = \overrightarrow{OB}$, то применяя соотношение Шаля, получаем: $\overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OA}$, т.е. $\overrightarrow{AB} = \vec{0}$. Утверждение 1 теперь влечет, что A = B, т.е. Φ_o инъективно. \blacktriangleleft

Таким образом, отображение Φ_{o} отождествляет точки с векторами, поэтому Φ_{o} будем называть *векторизацией* аффинного пространства A .

Примеры аффинных пространств

1. Прежде всего, примерами аффинных пространств служат пространство \mathbf{E}^3 , плоскость \mathbf{E}^2 и прямая \mathbf{E}^1 , поскольку именно их свойства аксиоматизировались в определении 1.4.1. Эти аффинные пространства связаны с векторными пространствами соответственно $V(\mathbf{E}^3), V(\mathbf{E}^2), V(\mathbf{E}^1)$. Отображение Φ здесь возникает, если для каждой упорядоченной пары точек (A, B)

построить вначале направленный отрезок AB , а затем класс эквивалентности этого отрезка, т.е. вектор \overrightarrow{AB} .

2. Пусть $\{A\}$ — одноэлементное множество, $\mathbf{V} = \{\vec{0}\}$ — нулевое векторное пространство над полем \mathbf{F} . Зададим отображение Φ следующим (единственно возможным) образом:

$$\Phi(A,A) = \vec{0}$$
.

Очевидно, выполняются аксиомы $A_{\mathbf{I}}$ и $A_{\mathbf{II}}$. Следовательно, любое одноэлементное множество может рассматриваться как нульмерное аффинное пространство (аффинная точка), связанное с нулевым векторным пространством над произвольным полем \mathbf{F} .

Покажем теперь, что для любого векторного пространства существует аффинное пространство, связанное с ним, в частности, существуют аффинные пространства любой размерности, а также бесконечномерные аффинные пространства.

3. Пусть V – произвольное векторное пространство над полем F. Положим A = V, т.е. будем рассматривать каждый элемент множества V и как вектор, и как точку. Рассмотрим следующее отображение:

$$\Phi: A \times A \rightarrow V, (\vec{a}, \vec{b}) \mapsto \vec{b} - \vec{a}.$$

Упражнение. Проверьте, что выполняются аксиомы $A_{\mathbf{I}}$ и $A_{\mathbf{II}}$.

Таким образом, любое векторное пространство может рассматриваться как аффинное пространство, связанное с самим собой.

В частности, если в качестве векторного пространства **V** взять векторное пространство строк $\mathbf{F}^{\mathbf{n}} = \{(\alpha_1, \alpha_2, ..., \alpha_n) \mid \alpha_i \in \mathbf{F}\}$, то множество $\mathbf{F}^{\mathbf{n}}$ можно рассматривать как аффинное пространство, связанное с векторным пространством $\mathbf{F}^{\mathbf{n}}$. В этом случае $\mathbf{F}^{\mathbf{n}}$ называется n-мерным арифметическим аффинным пространством над полем \mathbf{F} . В этом примере вектор \overrightarrow{AB} , построенный по паре точек $A = (\alpha_1, \alpha_2, ..., \alpha_n)$, $B = (\beta_1, \beta_2, ..., \beta_n)$ имеет вид: $\overrightarrow{AB} = (\beta_1 - \alpha_1, ..., \beta_n - \alpha_n)$.

1.5.2. Плоскости (подпространства) в аффинном пространстве

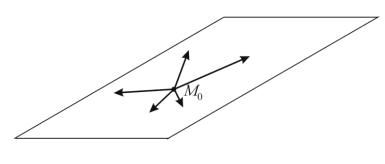
Определим важное понятие *подпространства* аффинного пространства, обобщающее понятия прямых и плоскостей в пространстве \mathbf{E}^3 .

Определение 3. Пусть A- аффинное пространство, связанное с векторным пространством $V; M_0-$ некоторая точка пространства A; W- подпространство векторного пространства V. **Подпространством** аффинного пространства A называется множество

$$B = \{ M \in A \mid \overrightarrow{M_0 M} \in \mathbf{W} \}. \tag{3}$$

Для подпространства В точка M_0 называется начальной точкой, а $\mathbf{W}-$ направляющим пространством.

Итак, подпространство аффинного пространства состоит из всех точек, получающихся откладыванием от фиксированной точки M_0 всевозможных векторов некоторого подпространства \mathbf{W} векторного пространства \mathbf{V} (рис. 1).



Puc. 1

Подпространство В аффинного пространства A , определяемое формулой (3), т.е. подпространство с начальной точкой $M_0 \in A$ и направляющим пространством $\mathbf{W} \subset \mathbf{V}$ будем обозначать $M_0 + \mathbf{W}$.

Примерами подпространств в ${\bf E}^3$ как в аффинном пространстве служат прямые и плоскости. Действительно, если Δ — прямая в ${\bf E}^3$ с начальной точкой M_0 и направляющим вектором \vec{a} , то Δ состоит из всех точек $M\in {\bf E}^3$ таких, что $\overline{M_0M}=t\vec{a},t\in {\bf R}$. Это означает, что $\Delta=M_0+{\bf W}^1$, где ${\bf W}^1=L(\vec{a})$ — одномерное подпространство $V({\bf E}^3)$, порожденное вектором \vec{a} . Точно также, плоскость π в ${\bf E}^3$ можно определить как подпространство: $\pi=M_0+{\bf W}^2$. Здесь M_0 — начальная точка плоскости π , ${\bf W}^2=V(\pi)$ — двумерное подпространство пространства $V({\bf E}^3)$, состоящее из всех векторов плоскости π .

Учитывая сказанное выше, подпространства аффинного пространства принято называть также *плоскостями*. Подпространство $B=M_0+\mathbf{W}$, которое задается формулой (5), называется *плоскостью* в аффинном пространстве A с *начальной точкой* M_0 и *направляющим пространством* \mathbf{W} . Если $\dim \mathbf{W}=k$, то B называется k *-мерной плоскостью* в аффинном пространстве A. В дальнейшем мы будем придерживаться этой терминологии, носящей более геометрический характер. В n -мерном аффинном пространстве A^n существуют плоскости любой размерности $k, 0 \le k \le n$. Это следует из того, что в связанном с A^n n -мерном векторном пространстве \mathbf{V}^n существуют подпространства соответствующих размерностей.

Важную роль в аффинном пространстве играют гиперплоскости.

Определение 4. Пусть $A - a\phi\phi$ инное пространство, связанное с векторным пространством V. Плоскость $B = M_0 + W$ в пространстве A называется **гиперплоскостью**, если ее направляющее пространство W имеет коразмерность 1 в пространстве V.

В частности, гиперплоскость в n -мерном аффинном пространстве — это (n-1) -мерная плоскость.

Утверждение 4. Пусть $(B_i)_{i\in I}$ — семейство плоскостей в аффинном пространстве A и \mathbf{W}_i — направляющее пространство плоскости B_i для любого $i\in I$. Тогда либо $\bigcap_{i\in I} B_i = \varnothing$, либо $\mathbf{B} = \bigcap_{i\in I} B_i$ — плоскость в пространстве A с направляющим пространством $\mathbf{W} = \bigcap_{i\in I} \mathbf{W}_i$.

Доказательство. Пусть $\mathbf{B} = \bigcap_{i \in I} \mathbf{B}_i \neq \emptyset$ и $M_0 \in \mathbf{B}$. Тогда верны следующие эквивалентности:

$$(M \in \bigcap_{i \in I} \mathbf{B}_i) \Leftrightarrow (\forall i \in I \ M \in \mathbf{B}_i) \Leftrightarrow (\forall i \in I \ \overrightarrow{M_0 M} \in \mathbf{W}_i) \Leftrightarrow (\overrightarrow{M_0 M} \in \bigcap_{i \in I} \mathbf{W}_i).$$

Сравнивая начало и конец в цепочке эквивалентностей, получаем, что В-является плоскостью в \mathbf{A} с начальной точкой \mathbf{M}_0 и направляющим пространством $\mathbf{W} = \bigcap \mathbf{W}_i$.

Укажем необходимые и достаточные условия для того, чтобы две плоскости имели непустое пересечение.

Утверждение 5. Пусть $B = M_0 + W$ и $P = N_0 + U -$ плоскости в аффинном пространстве A.

- $\overrightarrow{MN} \in \mathbf{W} + \mathbf{U}$.
- (ii) Если существуют точки $M\in B$ и $N\in P$ такие, что $\overrightarrow{MN}\in \mathbf{W}+\mathbf{U}$, то $B\cap P\neq \emptyset$.

Полезна словесная формулировка этого утверждения:

две плоскости аффинного пространства пересекаются (т. е. их пересечение не пусто) тогда и только тогда, когда вектор-мостик (вектор, «соединяющий» точки плоскостей) принадлежит сумме направляющих пространств этих плоскостей.

Доказательство. (i) Пусть $P \in \mathbf{B} \cap \mathbf{P}$. Тогда $\overrightarrow{MP} \in \mathbf{W}, \overrightarrow{PN} \in \mathbf{U}$. Следовательно, $\overrightarrow{MN} = \overrightarrow{MP} + \overrightarrow{PN} \in \mathbf{W} + \mathbf{U}$.

(ii) Пусть $\overrightarrow{MN} \in \mathbf{W} + \mathbf{U}$. Это означает, что $\overrightarrow{MN} = \vec{a} + \vec{b}$, где $\vec{a} \in \mathbf{W}$, $\vec{b} \in \mathbf{U}$. Выберем точки $P_1 = M + \vec{a} \in \mathbf{B}$ и $P_2 = N - \vec{b} \in \mathbf{P}$. Тогда $\overrightarrow{P_1P_2} = \overrightarrow{P_1M} + \overrightarrow{MN} + \overrightarrow{NP_2} = -\vec{a} + (\vec{a} + \vec{b}) - \vec{b} = \vec{0}$, т. е. $P_1 = P_2$. Таким образом, плоскости В и Р имеют непустое пересечение. ▶

Пусть $A^n - n$ -мерное аффинное пространство, связанное с векторным пространством V^n над полем F .

Определение 5. Аффинным репером (или аффинной системой координат) в n -мерном аффинном пространстве A^n называется упорядоченный набор $(O, \vec{e}_1, ..., \vec{e}_n)$, состоящий из фиксированной точки O

пространства A^n и базиса $(\vec{e}_1,...,\vec{e}_n)$ векторного пространства V^n . **Координатами** точки $M \in A^n$ в репере $(O,\vec{e}_1,...,\vec{e}_n)$ называются координаты ее радиус-вектора \overrightarrow{OM} в базисе $(\vec{e}_1,...,\vec{e}_n)$.

Таким образом, координаты точки $M \in A^n$ в данном репере $(O, \vec{e}_1, ..., \vec{e}_n)$ – это упорядоченный набор $(x_1, ..., x_n)$ элементов поля $\mathbf F$ такой, что

$$\overrightarrow{OM} = x_1 \vec{e}_1 + \dots + x_n \vec{e}_n.$$

Если точка M имеет координаты $(x_1,...,x_n)$, то используют запись $M(x_1,...,x_n)$.

Рассмотрим способы задания плоскостей в пространстве A^n . Пусть $B^k = M_0 + \mathbf{W}^k - k$ -мерная плоскость в n -мерном аффинном пространстве A^n , k > 0.

Зафиксируем в A^n точку O и обозначим: $\vec{r}_0 = \overrightarrow{OM}_0$ — радиус-вектор начальной точки M_0 плоскости B^k ; $\vec{r} = \overrightarrow{OM}$ — радиус-вектор произвольной точки $M \in A^n$. Пусть $(\vec{a}_1, \vec{a}_2, ..., \vec{a}_k)$ — базис направляющего пространства \mathbf{W}^k плоскости B^k . Далее, исходя из определения плоскости, запишем несколько эквивалентных утверждений:

$$M \in \mathbf{B}^k \iff \overline{M_0 M} = \vec{r} - \vec{r_0} \in W^k \iff \exists t_1, t_2, ..., t_k \in \mathbf{F}, \ \vec{r} - \vec{r_0} = t_1 \vec{a_1} + t_2 \vec{a_2} + ... + t_k \vec{a_k}.$$

Таким образом, радиус-вектор \vec{r} произвольной точки M плоскости может быть записан в виде:

$$\vec{r} = \vec{r}_0 + t_1 \vec{a}_1 + t_2 \vec{a}_2 + \dots + t_k \vec{a}_k. \tag{4}$$

Возникает биективное отображение

$$\vec{r}: \mathbf{F}^k \to \overrightarrow{\mathbf{B}^k}, (t_1, t_2, ..., t_k) \mapsto \vec{r_0} + t_1 \vec{a_1} + t_2 \vec{a_2} + ... + t_k \vec{a_k}$$
 (5)

k -й декартовой степени \mathbf{F}^k основного поля \mathbf{F} на множество радиус-векторов $\overline{\mathbf{B}}^k$ всех точек плоскости \mathbf{B}^k . Отображение (5) является параметризацией множества $\overline{\mathbf{B}}^k$, оно называется *векторно-параметрическим* заданием плоскости \mathbf{B}^k . Допуская вольность речи, равенство (5) называют также *векторно-параметрическим уравнением* плоскости \mathbf{B}^k , символы $t_1, t_2, ..., t_k$ из этого равенства – *параметрами*.

Пусть теперь $(O, \vec{e}_1,...,\vec{e}_n)$ — аффинный репер в пространстве A^n ; $(x_1^0,...,x_n^0)$ — координаты в этом репере начальной точки M_0 плоскости B^k (совпадающие с координатами радиус-вектора \vec{r}_0 в базисе $(\vec{e}_1,...,\vec{e}_n)$); $(x_1,...,x_n)$ — координаты произвольной точки $M \in A^n$ (совпадающие с координатами радиусвектора \vec{r} в базисе $(\vec{e}_1,...,\vec{e}_n)$); $(\alpha_{1j},...,\alpha_{nj})$, $j \in \{1,2,...,k\}$, — координаты вектора \vec{a}_j в базисе $(\vec{e}_1,...,\vec{e}_n)$. Используя эти обозначения, перепишем векторное равенство (4) в координатах. Получим:

$$\begin{cases} x_{1} = x_{1}^{0} + t_{1}\alpha_{11} + t_{2}\alpha_{12} + \dots + t_{k}\alpha_{1k}, \\ x_{2} = x_{2}^{0} + t_{1}\alpha_{21} + t_{2}\alpha_{22} + \dots + t_{k}\alpha_{2k}, \\ \dots \\ x_{n} = x_{n}^{0} + t_{1}\alpha_{n1} + t_{2}\alpha_{n2} + \dots + t_{k}\alpha_{nk}. \end{cases}$$

$$(6)$$

Возникает биективное отображение k -й декартовой степени \mathbf{F}^k основного поля \mathbf{F} на множество $\tilde{\mathbf{B}}^k$ координат всех точек плоскости \mathbf{B}^k

$$x: \mathbf{F}^k \to \tilde{\mathbf{B}}^k, t = (t_1, t_2, ..., t_k) \mapsto (x_1(t), x_2(t), ..., x_n(t)),$$

где $x_1(t), x_2(t), ..., x_n(t)$ определяются из равенств (6):

$$x_i(t) = x_i^0 + t_1\alpha_{i1} + t_2\alpha_{i2} + \dots + t_k\alpha_{ik}, \ i \in \{1, 2, \dots, n\}.$$

Равенства (6) называются также *параметрическими уравнениями в* **координатах** плоскости B^k . Наиболее часто встречается координатно-параметрическое задание прямой, оно имеет вид:

$$\begin{cases} x_1 = x_1^0 + t l_1, \\ x_2 = x_2^0 + t l_2, \\ \dots \\ x_n = x_n^0 + t l_n. \end{cases}$$

Здесь $(x_1^0,...,x_n^0)$ — координаты начальной точки прямой; $(l_1,...,l_n)$ — координаты *направляющего вектора* прямой — базисного вектора направляющего пространства.

Если $(O, \vec{e}_1,...,\vec{e}_n)$ — аффинный репер в пространстве A^n , то любое уравнение $f(x_1,...,x_n)=0$ с n неизвестными задает в A^n фигуру, состоящую из всех точек пространства, координаты которых являются решениями этого уравнения. Выясним, какую фигуру задает линейное уравнение вида

$$a_1 x_1 + a_2 x_2 + \dots + a_n x_n = b, (7)$$

где $a_1, a_2, ..., a_n, b \in \mathbf{F}$.

Мы считаем, что хотя бы один из коэффициентов при неизвестных в уравнении (8) отличен от нуля. Пусть для определенности $a_n \neq 0$. Тогда

$$x_n = \frac{b}{a_n} - \frac{a_1}{a_n} x_1 - \dots - \frac{a_{n-1}}{a_n} x_{n-1} - \dots$$

общее решение уравнения (6), здесь $x_1,...,x_{n-1}$ – свободные неизвестные, каждый из которых независимо от других может принимать любые значения из поля **F**. Эти неизвестные примем за параметры, обозначив $t_i = x_i$, $i \in \{1,...,n-1\}$. Теперь все решения уравнения (6) можно представить в виде:

$$\begin{cases} x_{1} = t_{1}, \\ \dots \\ x_{n-1} = t_{n-1}, \\ x_{n} = \frac{b}{a_{n}} - \frac{a_{1}}{a_{n}} t_{1} - \dots - \frac{a_{n-1}}{a_{n}} t_{n-1}. \end{cases}$$
(8)

Сравнивая (6) с (8), можно утверждать, что равенства (8) являются параметрическими уравнениями гиперплоскости $\pi_{n-1} = M_0 + \mathbf{W}^{n-1}$ в пространстве \mathbf{A}^n . Здесь $M_0(0,...,0,\frac{b}{a_n})$ — начальная точка этой гиперплоскости, а базис направляющего пространства \mathbf{W}^{n-1} образуют векторы $\vec{b}_1(1,0,...,0,-\frac{a_1}{a_n}),\ \vec{b}_2(0,1,...,0,-\frac{a_2}{a_n}),...,\vec{b}_{n-1}(0,...,0,1,-\frac{a_{n-1}}{a_n})$ или векторы $\vec{c}_1(a_n,0,...,0,-a_1),\ \vec{c}_2(0,a_n,...,0,-a_2),...,\vec{c}_{n-1}(0,...,0,a_n,-a_{n-1}).$

Заметим, что соответствующее (8) однородное уравнение

$$a_1 x_1 + a_2 x_2 + \dots + a_n x_n = 0 (9)$$

задает подпространство \mathbf{W}^{n-1} векторного пространства \mathbf{V}^n (если зафиксировать в \mathbf{V}^n базис $(\vec{e}_1,...,\vec{e}_n)$). Таким образом, мы доказали следующее утверждение.

Утверждение 6. Пусть $(O, \vec{e}_1, ..., \vec{e}_n)$ – аффинный репер в пространстве A^n . Каждое линейное уравнение (7), в котором есть отличные от нуля коэффициенты при неизвестных, задает гиперплоскость π_{n-1} в пространстве A^n . Направляющее пространство \mathbf{W}^{n-1} гиперплоскости π_{n-1} задается в базисе $(\vec{e}_1, ..., \vec{e}_n)$ соответствующим однородным уравнением (9).

Уравнение (7) называется *общим уравнением* гиперплоскости π_{n-1} в репере $(O, \vec{e}_1, ..., \vec{e}_n).$

Рассмотрим теперь систему линейных уравнений:

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\
\dots \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m.
\end{cases} (10)$$

Эта система может быть *несовместной* (не иметь решений). Тогда (10) задает пустое множество. Пусть система совместна. Тогда каждое из уравнений системы задает плоскость в пространстве A^n (гиперплоскость либо все пространство A^n). Следовательно, система (10) задает пересечение m плоскостей и поскольку оно непустое, то в соответствие с утверждением 4, система (10) задает плоскость B^k в пространстве A^n , направляющее

пространство которой \mathbf{W}^k есть пересечение направляющих пространств плоскостей, задаваемых каждым из уравнений системы (10). Таким образом, подпространство \mathbf{W}^k задается (при фиксировании в \mathbf{V}^n базиса $(\vec{e}_1,...,\vec{e}_n)$) соответствующей однородной системой:

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0, \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0, \\
\dots \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0.
\end{cases} (11)$$

Из теории систем линейных уравнений известно, что число k, т. е. размерность \mathbf{W}^k (а также плоскости \mathbf{B}^k), вычисляется по формуле:

$$k = n - r$$
,

где r — ранг матрицы (a_{ij}) .

Определение 6. Пусть $(O, \vec{e}_1, ..., \vec{e}_n)$ – аффинный репер в пространстве A^n . Если система уравнений (10) задает плоскость B^k в пространстве A^n , то говорят, что (9) – общие уравнения плоскости B^k в репере $(O, \vec{e}_1, ..., \vec{e}_n)$.

Покажем, что верно и обратное, т.е. любая плоскость в данном репере $(O, \vec{e}_1,...,\vec{e}_n)$ аффинного пространства \mathbf{A}^n может быть задана общими уравнениями. Пусть $\mathbf{B}^k = M_0 + \mathbf{W}^k - k$ -мерная плоскость в n -мерном аффинном пространстве \mathbf{A}^n . Из теории систем линейных уравнений известно, что при фиксировании базиса $(\vec{e}_1,...,\vec{e}_n)$ векторного пространства \mathbf{V}^n для любого подпространства \mathbf{W}^k существует однородная система линейных уравнений (10), задающая \mathbf{W}^k . Пусть начальная точка M_0 плоскости \mathbf{B}^k имеет в репере $(O, \vec{e}_1,...,\vec{e}_n)$ координаты $(x_1^0,...,x_n^0)$. Для каждого $i \in \{1,...,m\}$ определим элемент $b_i \in \mathbf{F}$ равенством:

$$b_i = a_{i1}x_1^0 + a_{i2}x_2^0 + \dots + a_{in}x_n^0$$

и рассмотрим систему линейных уравнений (10), в правых частях которых стоят определенные выше b_i . Полученная система (10) совместна ($(x_1^0,...,x_n^0)$ – решение системы), следовательно, как отмечено выше, она задает некоторую плоскость в пространстве \mathbf{A}^n , направляющее пространство которой задается соответствующей однородной системой, т. е. совпадает с \mathbf{W}^k . Если заметить, что эта плоскость проходит через точку M_0 ($(x_1^0,...,x_n^0)$ – решение системы), то можно утверждать, что система (10) задает плоскость \mathbf{B}^k . Проведенные рассуждения показывают, что справедлива следующая теорема, устанавливающая тесную связь между плоскостями в конечномерных аффинных пространствах и системами линейных уравнений.

Теорема 1. Пусть $(O, \vec{e}_1, ..., \vec{e}_n)$ — репер в аффинном пространстве A^n . Тогда:

- (i) каждая совместная система линейных уравнений (10) задает в данном репере плоскость \mathbf{B}^k , направляющее пространство которой задается соответствующей однородной системой (11). Размерность плоскости определяется формулой $k = n rang(a_{ii})$;
- (ii) любая плоскость в пространстве A^n может быть задана в данном репере системой линейных уравнений (10).

Упражнение (i) Докажите, что минимальное число уравнений в системе (9), задающей k -мерную плоскость в n -мерном аффинном пространстве, равно n-k.

(ii) Пусть $(O, \vec{e}_1,...,\vec{e}_n)$ – репер в аффинном пространстве A^n . Запишите параметрические и общие уравнения координатных плоскостей, определяемых этим репером.

1.5.3. Аффинная оболочка множества точек. Взаимное расположение двух плоскостей в аффинном пространстве Aⁿ.

В аффинном пространстве можно определить аналог линейной оболочки подмножества векторов векторного пространства.

Определение 7. Пусть S — непустое подмножество аффинного пространства A . **Аффинной оболочкой** Aff(S) множества S называется наименьшая по включению плоскость в A , содержащая S.

Термин наименьшая по включению означает, что Aff(S) содержится в каждой плоскости, содержащей множество S. Аффинная оболочка существует для любого непустого подмножества S. Действительно, семейство $(B_i)_{i\in I}$, $S \subset B_i \ \forall i \in I$, всех плоскостей в A, содержащих S, не пусто, поскольку все аффинное пространство A содержит S, т.е. является одной из таких плоскостей. Рассмотрим пересечение этого семейства $B = \bigcap_{i \in I} B_i$. Поскольку

множество S содержится в каждой плоскости B_i , то $S \subset B$ и, следовательно, $B \neq \emptyset$. Согласно утверждению 1.4.2, $B = \bigcap_{i \in I} B_i$ – плоскость в A , содержащая

множество S. Кроме того, по построению, плоскость B содержится B каждой плоскости, содержащей S, т.е. является наименьшей из таких плоскостей. Таким образом, B = Aff(S).

Рассмотрим подробнее аффинную оболочку конечного множества точек, содержащего k+1 точку: $S=\{M_0,...,M_k\}, k\in\{0,1,...\}$. Пусть B- плоскость с начальной точкой M_0 и направляющим подпространством $L(\overline{M_0M_1},...,\overline{M_0M_k})$, являющимся линейной оболочкой векторов $\overline{M_0M_1},...,\overline{M_0M_k}$. Плоскости B, очевидно, принадлежат все точки $M_0,...,M_k$, а сама она содержится в любой плоскости, содержащей точки $M_0,...,M_k$. Следовательно, B=Aff(S), в частности, направляющее пространство аффинной оболочки $Aff(M_0,...,M_k)$

совпадает с линейной оболочкой $L(\overline{M_0M_1},...,\overline{M_0M_k})$. Отсюда следует, что $\dim Aff(M_0,...,M_k) \leq k$. При максимально возможном значении этой размерности, т.е. в случае, когда векторы $\overline{M_0M_1},...,\overline{M_0M_k}$ линейно независимы, используют следующую терминологию.

Определение 8. Точки $M_0,...,M_k$ аффинного пространства A называются аффинно независимыми (или точками общего положения), если $\dim Aff(M_0,...,M_k)=k$.

Если В и Р — плоскости в аффинном пространстве, то, как легко видеть, их объединение В \bigcup Р в общем случае не является плоскостью. Например, объединение двух различных прямых в пространстве \mathbf{E}^3 не является ни прямой ни плоскостью, ни совпадает со всем пространством. Эта ситуация такая же, как для подпространств \mathbf{W} , \mathbf{U} векторного пространства \mathbf{V} . В линейной алгебре объединение $\mathbf{W} \bigcup \mathbf{U}$ заменяется операцией суммы подпространств $\mathbf{W} + \mathbf{U}$, в результате которой получают наименьшее по включению подпространство, содержащее \mathbf{W} и \mathbf{U} . Точно так же поступают в геометрии.

Определение 9. Пусть B и P — плоскости B аффинном пространстве A. **Суммой** плоскости B и плоскости P называется плоскость B+P, являющаяся аффинной оболочкой объединения $B \cup P$:

$$B + P = Aff(B \cup P)$$

Итак, сумма плоскостей B+P- это наименьшая по включению плоскость, содержащая обе плоскости B и P. Поскольку $B \cup P \subset B+P$, то в качестве начальной точки плоскости B+P= можно брать любую точку одной из плоскостей, B или P. Что касается направляющего пространства плоскости B+P= то оно описывается в следующем утверждении.

Утверждение 7. Пусть В и Р — плоскости в аффинном пространстве А с направляющими пространствами соответственно \mathbf{W} и \mathbf{U} ; \mathbf{T} — направляющее пространство суммы $\mathbf{B} + \mathbf{P}$ =

- (i) $Ecnu\ B \cap P \neq \emptyset$, $mo\ T = W + U$.
- (ii) Если $B \cap P = \emptyset$, то $T = W + U + L(\overrightarrow{MN})$, где M и N произвольные точки соответственно плоскостей B и P.

Следствие. Пусть $B = M + \mathbf{W}$ и P = N + U -конечномерные плоскости в аффинном пространстве A; $k = \dim B$, $m = \dim P$, $d = \dim(\mathbf{W} \cap \mathbf{U})$.

Tогда плоскость B + P также конечномерна u ее размерность $s = \dim(B + P)$ вычисляется следующим образом:

- (i) если $B \cap P \neq \emptyset$, то s = k + m d;
- (ii) если $B \cap P = \emptyset$, то s = k + m d + 1.

Доказательство. Поскольку размерности плоскостей определяются как размерности их направляющих пространств, то формулы (i) и (ii) вытекают из

соответствующих формул линейной алгебры с учетом доказанного выше утверждения 7. В случае (i) работает формула

$$\dim(\mathbf{W} + \mathbf{U}) = \dim \mathbf{W} + \dim \mathbf{U} - \dim(\mathbf{W} \cap \mathbf{U})$$
.

В случае (ii) принимаем в расчет то, что $\overrightarrow{MN} \notin \mathbf{W} + \mathbf{U}$, следовательно, $\mathbf{W} + \mathbf{U} + L(\overrightarrow{MN}) = (\mathbf{W} + \mathbf{U}) \oplus L(\overrightarrow{MN})$.

Определение 10. Пусть B и P — плоскости в аффинном пространстве A; k,m,s,d, $(k \le m)$ — числа, определенные в формулировке следствия из утверждения 7. Упорядоченная четверка чисел (k,m,s,d) называется характеристикой пары плоскостей (B,P).

Пусть В = M_0 + ${\bf W}$ и Р = N_0 + ${\bf U}$ – плоскости в аффинном пространстве A.

Проанализируем их возможное взаимное расположение. Будем различать несколько случаев, принимая в расчет пересечение $B \cap P$ самих плоскостей и пересечение $\mathbf{W} \cap \mathbf{U}$ их направляющих пространств. Отметим, прежде всего, что если плоскости пересекаются, т. е. $B \cap P \neq \emptyset$, то, их пересечение есть плоскость с направляющим пространством $\mathbf{W} \cap \mathbf{U}$.

Пусть плоскости не пересекаются, т.е. $B \cap P = \emptyset$. Рассмотрим пересечение их направляющих пространств $\mathbf{W} \cap \mathbf{U}$, которое всегда не пусто.

Если пересечение направляющих пространств максимально возможное, т.е. $\mathbf{W} \cap \mathbf{U} = \mathbf{W}$ или $\mathbf{W} \cap \mathbf{U} = \mathbf{U}$, (что эквивалентно соответственно условиям $\mathbf{W} \subset \mathbf{U}$ или $\mathbf{U} \subset \mathbf{W}$), то будем говорить, что плоскости В и Р *параллельны*. Можно, для наглядности, по аналогии с пространством \mathbf{E}^3 считать, что ненулевой вектор направляющего пространства задает в плоскости *направление*. Тогда плоскости параллельны, если они не пересекаются, но все направления одной плоскости являются направлениями другой плоскости.

Если пересечение направляющих пространств минимально, т.е. $\mathbf{W} \cap \mathbf{U} = \{\vec{0}\}$ (у плоскостей В и Р нет общих направлений), то будем говорить, что плоскости В и Р *скрещиваются*.

Возможная альтернатива для двух описанных выше ситуаций следующая: для направляющих пространств выполняется условия:

$$\mathbf{W} \cap \mathbf{U} \neq \{\vec{0}\}, \mathbf{W} \cap \mathbf{U} \neq \mathbf{W}, \mathbf{W} \cap \mathbf{U} \neq \mathbf{U}$$

(у непересекающихся плоскостей В и Р есть общие направления, но множество таких направлений не совпадает с множеством направлений ни одной из плоскостей). В таком случае будем говорить, что плоскости В и Р частично параллельны.

Отметим, что по характеристике (k, m, s, d) пары В и Р конечномерных плоскостей определяются размерности плоскостей $(k \ u \ m)$, а также тип их взаимного расположения:

• плоскости пересекаются, если s = k + m - d и не пересекаются, если s = k + m - d + 1;

- плоскости параллельны, если d = k и s = m + 1;
- плоскости частично параллельны, если 0 < d < k и s = k + m d + 1;
- плоскости скрещиваются, если d = 0 и s = k + m + 1.

Упражнение. Докажите, что существует шесть различных вариантов (с различными характеристиками) взаимного расположения пары двумерных плоскостей и что все они реализуются в пятимерном аффинном пространстве. Выпишите характеристики пар плоскостей в каждом из шести случаев.

2. ПРАКТИЧЕСКИЙ РАЗДЕЛ

2.1. Фигуры и уравнения Занятие 1.

 Φ игура — любое множество точек Φ пространства \mathbf{E}^3 , в том числе и пустое. Аналитическая геометрия изучает фигуры с помощью алгебры, используя **метод координат**. Φ игура называется **плоской**, если существует плоскость, в которой лежат все точки фигуры.

Вначале будем рассматривать плоские фигуры, лежащие в плоскости \mathbf{E}^2 . Eсли Oху — система координат на плоскости, то любая фигура $\Phi \subset \mathbf{E}^2$ может быть задана уравнением с двумя неизвестными:

$$F(x,y) = 0. (1)$$

Здесь F – функция двух вещественных переменных $x,y\in \square$, т.е. некоторое правило, по которому упорядоченной паре вещественных чисел (x,y) из области определения $\mathbf{D}(F)$ функции F ставиться в соответствие число $F(x,y)\in \square$. Тот факт, что (1) – уравнение фигуры Φ означает, по определению, что Φ состоит из всех точек плоскости, координаты которых являются решениями уравнения (1), т.е.

$$\Phi = \{M(c_1, c_2) \in \mathbf{E}^2 \mid (c_1, c_2) - \text{решение } (1)\}.$$

Любое уравнение (1) задает на плоскости вполне определенную фигуру, однако одна и та же фигура может быть задана различными уравнениями.

Далее будем решать задачи двух типов: имея уравнение (1), определять (рисовать) соответствующую фигуру и наоборот для данной фигуры составлять уравнение (1), которое ее задает.

Нарисуйте фигуры, которые задаются уравнениями:

- 1. x + y 2 = 0;
- 2. $y^2 4y 2x + 4 = 0$;
- 3. $x^2 + y^2 + x + y = 0$;
- 4. xy + 2 = 0.

Составьте уравнения следующих фигур:

- 1. вертикальной (горизонтальной) прямой, проходящей через точку $M_{\scriptscriptstyle 0}(2,-3)$;
- 2. произвольной окружности с центром в точке $M_0(x_0, y_0)$ и радиусом r > 0.
 - 3. точки $M_0(2,-3)$.

Задание на дом.

1. Нарисуйте фигуры, которые задаются условиями:

- 1) $(x-2)^2 + (y+2)^2 = 4$;
- 2) |x-2| + |y+2| = 2;
- 3) $\max\{|x-2|, |y+2|\} = 2.$
 - 2. Составьте уравнение двоеточия.
- 3. Пусть F_1 и F_1 точки плоскости, расстояние между которыми равно 2c > 0. Составьте уравнение фигуры, состоящей из всех точек плоскости, для которых разность расстояний до F_1 и F_1 равна 2a, a < c. Нарисуйте данную фигуру.

Основная задача. Пусть F_1 и F_1 — точки плоскости, расстояние между которыми равно 2c > 0. Составьте уравнение фигуры, состоящей из всех точек плоскости, для которых сумма расстояний до F_1 и F_1 равна 2a, a > c. Нарисуйте данную фигуру.

Задание на дом.

1. Нарисуйте фигуры, которые задаются условиями:

1)
$$(x-2)^2 + (y+2)^2 = 4$$
;

- 2) |x-2| + |y+2| = 2;
- 3) $\max\{|x-2|, |y+2|\} = 2$.
 - 2. Составьте уравнение двоеточия.
- 3. Пусть F_1 и F_1 точки плоскости, расстояние между которыми равно 2c > 0. Составьте уравнение фигуры, состоящей из всех точек плоскости, для которых разность расстояний до F_1 и F_1 равна 2a, a < c. Нарисуйте данную фигуру.

Занятие 2.

- 1. Проверка домашнего задания.
- **2.** Определить полярную систему координат. Записать связь между полярными и декартовыми координатами.
 - **3.** Задачи.
- 1) Напишите в полярной системе координат уравнения а) окружности с центром в начале координат; б) вертикальной (горизонтальной) прямой, проходящей через точку $M_0(2,-3)$;
- 2) Нарисуйте фигуры, заданные уравнениями в полярной системе координат: a) $r = \varphi$; б) $r = \sin n \varphi$; n = 1,2,3,4.
- **4.** Определить системы координат в пространстве: декартову прямоугольную, сферическую и цилиндрическую. Записать связь между сферическими (цилиндрическими) и декартовыми координатами.

Задание на дом.

- 1. Нарисуйте фигуру, которая задается в полярной системе координат уравнением $r = 2(1 \cos \varphi)$.
- 2. Пусть F_1 и F_1 точки плоскости. Составьте уравнение фигуры, состоящей из всех точек плоскости, для которых отношение расстояний до F_1 и F_1 равно k > 0. Нарисуйте данную фигуру.
- 3. Какая фигура в пространстве в декартовой прямоугольной системе координат задается уравнением $x^2 + y^2 = z^2$?

2.2. Векторы

Занятие 3. В аудитории: [6]: № 1; 4; 11; 19; 14... На дом: [6], № 8; 22; 15; ...

Занятие 4. В аудитории: [6]: № 23; 25; 28; 32; 43... На дом: [6]: № 26; 42; 29

Занятие 5. (*скалярное произведение векторов*). [5]: № 419; 420; 424; 445; [6]: 144(!); 148... На дом: [5], № 423; 428; 446; [6]: 145; 149...

Занятия 6 и 7. (векторное и смешанное произведения векторов). В аудитории: [5]: № 461; 465; 468; 470; 489; 490; [6]: 175; 196; 209... На дом: [5], № 467; 472; 474; 491; 501; [6]: № 177; 197; 208...

Занятие 8. – контрольная работа по векторам.

2.3. Прямые и плоскости

Занятия 9 — 11. (*прямая на плоскости*). В аудитории: [6]: № 363; 367; 383; 391; 405; 416; 423; 431; 433; 446; 450; 465; 473... На дом: [6], № 364; 368; 387; 406; 418; 424; 434; 451;457; 460; ...

Занятия 12 − **14.** (*плоскость и прямая в пространстве*). В аудитории: [6]: № 491; 492; 500; 504; 530; 534; 539; 567; 580; 578; 606; 585; ... На дом: [6]: <math>№ 514; 512; 520; 532; 537; 569; 582; 583; 604;621; ...

Занятие 15. – контрольная работа по прямым и плоскостям.

2.4. Фигуры 2 порядка на плоскости

Занятия 16 – **17.** В аудитории: [6]: № 759; 760; 769; 805 (1, 6, 8, 10); 807(1,.14). На дом: [6]: № 761; 762; 733; 805 (3, 7, 11); 807 и др. (каждому студенту индивидуальное задание).

2.5. Фигуры второго порядка в пространстве

Занятие 18. В аудитории: [6]: № 945, 946, 976, 981, 985, 987, 997, 1001, 1102. На дом: [6]: № 950, 947, 975, 979, 986, 988, 998, 1009, 1071, 1149.

2.6. Аффинные преобразования и движения

В аудитории: [6]: № 1159, 1153, 1163, 1166, 1175, 1187, 1229, 1234, 1102. На дом: [6]: № 1158, 1154, 1171, 1167, 1177, 1188, 1232, 1237.

2.7. Плоскости в аффинных пространствах

Работаем в аффинном (евклидовом векторном, евклидовом точечном) пространстве строк $\mathbf{R}^{\mathbf{n}}$ (n = 4,5, ...)

- **1.** Выясните, лежат ли точки A,B,C на одной прямой.
- 1) A = (2,1,-2,0), B = (1,-3,-3,1), C = (4,9,0,-2);
- 2) A = (-1,0,2,2), B = (2,1,0,4), C = (-2,-1,3,0).
- **2.** Найдите размерность плоскости $A\!f\!f(M_0,M_1,M_2,...)$, являющейся аффинной оболочкой точек $M_0,M_1,M_2,....$
 - 1) $M_0 = (0, -1, 1, 2), M_1 = (-1, 4, 0, 1), M_2 = (-2, 1, -3, -1), M_3 = (-1, 12, 2, 2);$

2)

$$M_0 = (0,1,3,-3), M_1 = (-1,0,2,2), M_2 = (2,1,0,4), M_3 = (-2,-1,3,0), M_4 = (-1,1,2,-2).$$

3. Выясните взаимное расположение плоскостей B = Aff(A,B,C) и $P = Aff(A_1,B_1,C_1)$:

$$A = (2, -1, 0, 4), B = (-1, 2, 0, 3), C = (3, 0, 1, 1),$$

 $A_1 = (1, 1, 1, 1), B_1 = (8, -4, -4, 6), C_1 = (-3, 3, 3, 0).$

Ответ: частично параллельны.

4. Выясните взаимное расположение плоскостей $\mathbf{B}^2 = M_0 + L(\vec{a}_1, \vec{a}_2)$ и $\mathbf{P}^2 = N_0 + L(\vec{b}_1, \vec{b}_2)$:

$$M_0 = (1,1,2,1,0), \vec{a}_1 = (2,1,-1,1,3), \vec{a}_2 = (-3,-1,2,2,-1),$$

$$N_0 = (0, 2, 7, 7, 4), \ \vec{b_1} = (-1, 2, 3, 1, 1), \ \vec{b_2} = (1, -1, 1, 2, 1).$$

Ответ: пересекаются в точке $Q_0 = (0,1,3,4,2)$.

В аудитории: [6]: № 1612, 1614, 1616, 1166, 1630, 1633 первый вектор (1,2,2,-1), 1640, 1644, 1657, 1662, 1666.

На дом: [6]: № 1621, 1613, 1615, 1617, 1641, 1646, 1658, 1659, 1673.

2.8. Квадрики в аффинных пространствах [6]: № 1052, 1046.

3. РАЗДЕЛ КОНТРОЛЯ ЗНАНИЙ

3.1. Примерные варианты контрольных работ *Контрольная работа № 1.* Тема: векторы; операции над векторами

- **1.** Пусть M точка пересечения медиан треугольника ABC . Выразите векторы $\overrightarrow{MA}, \overrightarrow{MB}, \overrightarrow{MC}$ через векторы $\overrightarrow{a} = \overrightarrow{AB}$ и $\overrightarrow{b} = \overrightarrow{BC}$.
- **2.** Пусть $(\vec{i},\vec{j},\vec{k})$ правый ортонормированный базис. Даны векторы $\vec{a}=5\vec{i}-4\vec{j}+\vec{k},\; \vec{b}=3\vec{i}+2\vec{j}+\vec{k},\; \vec{c}=-3\vec{i}+\vec{j}-2\vec{k}.$ Найдите: 1) координаты вектора $\vec{d}=\vec{a}-2\vec{b}+\vec{c}$ в базисе $(\vec{i},\vec{j},\vec{k})$; 2) величину угла между векторами \vec{b} и \vec{c} ; 3) длину вектора $\vec{c}\times\vec{b}$; 4) смешанное произведение $\vec{b}\vec{c}\vec{d}$.
- **3.** Найдите длину вектора $\vec{p} = \vec{a} + \vec{b} \vec{c}$, если $\vec{a}, \vec{b}, \vec{c}$ компланарные векторы такие, что $|\vec{a}| = 3$, $|\vec{b}| = 2$, $|\vec{c}| = 5$; величины углов между векторами \vec{a} и \vec{b} , а также между \vec{b} и \vec{c} равны $\frac{\pi}{3}$.
- **4.** Объем параллелепипеда ABCDA'B'C'D' равен 10. E,F,G- точки пересечения диагоналей граней параллелепипеда, не проходящих через вершину A. Найдите объем пирамиды AEFG.
- **5.** ABC равносторонний треугольник, вписанный в окружность радиуса R, M точка окружности, отличная от A, B, C. Найдите $\left| MA \right|^2 + \left| MB \right|^2 + \left| MC \right|^2$.

Контрольная работа № 2. Тема: прямые и плоскости

- **1**. Дана прямая Δ : $\begin{cases} x = -1 + 3t, \\ y = 2 2t. \end{cases}$
- 1) Для прямой Δ найдите: направляющий вектор; нормальный вектор; угловой коэффициент; общее уравнение.
- 2) Напишите уравнения прямых Δ_1 и Δ_2 , параллельных Δ и отстоящих от Δ на расстояние $d=\sqrt{13}$.
- 3) Найдите точку, симметричную точке M(6,6) относительно прямой Δ **2.** Даны точки A(3,5) и B(-1,-2). На прямой 7x-6y+1=0 найдите точку C такую, что площадь треугольника ABC равна 1.
- **3.** Найдите точки пересечения прямой $\begin{cases} 6x + 2y z 9 = 0, \\ 3x + 2y + 2z 12 = 0 \end{cases}$ координатными плоскостями.
- **4.** Луч света проходит через точку $M_1(1,-1,-1)$ и, отразившись от плоскости $\pi: x-y-z-6=0$, проходит через точку $M_2(-1,2,0)$. Напишите уравнения прямых, содержащих соответственно лучи падающий и отраженный.

Контрольная работа N_2 3 . Тема: аффинные преобразования и движения плоскости E^2 и пространства E^3

- **1.** В какие прямые перейдут координатные оси при повороте плоскости на угол $\frac{\pi}{4}$ вокруг точки $M_0(-1,3)$?
 - 2. Найдите инвариантные прямые аффинного преобразования f:

$$f:\begin{cases} x' = y - 9, \\ y' = 9x + 1. \end{cases}$$

Как запишется преобразование в системе координат, в которой координатными осями являются инвариантные прямые?

- **3.** Пусть Oxy прямоугольная система координат на плоскости. Напишите формулы, задающие композицию двух движений: $f = f_2 \circ f_1$, где f_1 симметрия плоскости относительно оси Ox, f_2 симметрия плоскости относительно прямой, проходящей через начало координат и составляющей угол 120° с осью Ox.
- **4.** Докажите, что плоскость x-y=0 пересекает поверхность $2y^2+z^2-2x=0$ по окружности. Найдите центр и радиус этой окружности.
- **5.** Пусть f_1 , f_2 , f_3 , f_4 симметрии плоскости $\mathbf{E^2}$ относительно прямых. Композиция этих отображений $f = f_1 f_2 f_3 f_4$ может быть одним из следующих преобразований:
 - 1) параллельный перенос;
 - 2) поворот плоскости вокруг неподвижной точки;
 - 3) симметрия относительно прямой;
 - 4) скользящая симметрия;
 - 5) тождественное отображение.

Контрольная работа № 4. Тема: системы координат в аффинном пространстве; уравнения плоскостей; взаимное расположение плоскостей

1. Напишите параметрические уравнения плоскости, являющейся аффинной оболочкой точек

$$A = (1,1,-2,2), B = (-3,1,4,4), C = (-1,2,3,6), D = (0,2,-1,3), E = (-1,0,1,2)$$

2. Даны плоскости $\mathbf{B}^2 = M_0 + W^2$ и $\mathbf{P}^2 = N_0 + U^2$ в аффинном пространстве \mathbf{R}^4 .

Здесь
$$M_0 = (2,5,1,5), W^2 = \langle (1,3,-1,2), (2,4,-3,5) \rangle;$$

 $N_0 = (0,-3,-1,-2), U^2 = \langle (1,5,3,5), (2,4,-6,1) \rangle.$

Определите взаимное расположение этих плоскостей.

- 3. Напишите общее уравнение аффинной оболочки плоскостей $\mathbf{B}^2 = M_0 + W^2 \text{ и P}^2 = N_0 + U^2 \text{ из задачи 2}.$
- 3.2. Варианты индивидуальных заданий по теме: кривые второго порядка на плоскости
- **1.** Определите тип, размеры и расположение фигуры второго порядка, заданной данным уравнением. Сделайте рисунок.

$$6xy + 8y^2 - 12x - 26y + 11 = 0.$$

2. Определите тип, размеры и расположение фигуры второго порядка, заданной данным уравнением. Сделайте рисунок.

$$4x^2 + 12xy - y^2 - 8x - 12y - 5 = 0.$$

3. Определите тип, размеры и расположение фигуры второго порядка, заданной данным уравнением. Сделайте рисунок.

$$16x^2 + 24xy + 9y^2 + 110x - 230y - 475 = 0.$$

4. Определите тип, размеры и расположение фигуры второго порядка, заданной данным уравнением. Сделайте рисунок.

$$5y^2 + 12xy - 12x - 22y - 19 = 0.$$

5. Определите тип, размеры и расположение фигуры второго порядка, заданной данным уравнением. Сделайте рисунок.

$$5x^2 + 4xy + 2y^2 - 8x - 6y - 1 = 0.$$

6. Определите тип, размеры и расположение фигуры второго порядка, заданной данным уравнением. Сделайте рисунок.

$$6xy - 8y^2 + 12x - 26y - 11 = 0.$$

7. Определите тип, размеры и расположение фигуры второго порядка, заданной данным уравнением. Сделайте рисунок.

$$7x^2 - 24xy - 38x + 24y + 175 = 0.$$

8. Определите тип, размеры и расположение фигуры второго порядка, заданной данным уравнением. Сделайте рисунок.

$$9x^2 + 24xy + 16y^2 - 40x + 30y = 0.$$

9. Определите тип, размеры и расположение фигуры второго порядка, заданной данным уравнением. Сделайте рисунок.

$$4x^2 - 4xy + y^2 - 2x - 14y + 7 = 0.$$

10. Определите тип, размеры и расположение фигуры второго порядка, заданной данным уравнением. Сделайте рисунок.

$$4x^2 - 4xy + y^2 - 3x + 4y - 7 = 0.$$

11. Определите тип, размеры и расположение фигуры второго порядка, заданной данным уравнением. Сделайте рисунок.

$$6x^2 - 4xy + 9y^2 - 8x + 16y - 2 = 0.$$

12. Определите тип, размеры и расположение фигуры второго порядка, заданной данным уравнением. Сделайте рисунок.

$$6xy + 8y^2 - 12x - 26y + 11 = 0.$$

13. Определите тип, размеры и расположение фигуры второго порядка, заданной данным уравнением. Сделайте рисунок.

$$4x^2 + 12xy - y^2 - 8x - 12y - 5 = 0.$$

14. Определите тип, размеры и расположение фигуры второго порядка, заданной данным уравнением. Сделайте рисунок.

$$x^{2} - 4xy + 4y^{2} + 4x - 3y - 7 = 0.$$

15. Определите тип, размеры и расположение фигуры второго порядка, заданной данным уравнением. Сделайте рисунок.

$$5y^2 + 12xy - 12x - 22y - 19 = 0.$$

16. Определите тип, размеры и расположение фигуры второго порядка, заданной данным уравнением. Сделайте рисунок.

$$7x^2 + 16xy - 23y^2 - 14x - 16y - 218 = 0.$$

17. Определите тип, размеры и расположение фигуры второго порядка, заданной данным уравнением. Сделайте рисунок.

$$5x^2 + 4xy + 8y^2 - 32x - 56y + 116 = 0.$$

18. Определите тип, размеры и расположение фигуры второго порядка, заданной данным уравнением. Сделайте рисунок.

$$25x^2 - 14xy + 25y^2 + 64x - 64y + 224 = 0.$$

19. Определите тип, размеры и расположение фигуры второго порядка, заданной данным уравнением. Сделайте рисунок.

$$3x^2 + 10xy + 3y^2 - 2x - 14y - 13 = 0.$$

20. Определите тип, размеры и расположение фигуры второго порядка, заданной данным уравнением. Сделайте рисунок.

$$9x^2 - 24xy + 16y^2 - 20x + 110y - 50 = 0.$$

21. Определите тип, размеры и расположение фигуры второго порядка, заданной данным уравнением. Сделайте рисунок.

$$3x^2 + 4xy + 12x + 16y - 36 = 0.$$

22. Определите тип, размеры и расположение фигуры второго порядка, заданной данным уравнением. Сделайте рисунок.

$$6xy + 8y^2 - 12x - 26y + 11 = 0.$$

23. Определите тип, размеры и расположение фигуры второго порядка, заданной данным уравнением. Сделайте рисунок.

$$4x^2 + 12xy - y^2 - 8x - 12y - 5 = 0.$$

24. Определите тип, размеры и расположение фигуры второго порядка, заданной данным уравнением. Сделайте рисунок.

$$16x^2 + 24xy + 9y^2 + 110x - 230y - 475 = 0.$$

25. Определите тип, размеры и расположение фигуры второго порядка, заданной данным уравнением. Сделайте рисунок.

$$5y^2 + 12xy - 12x - 22y - 19 = 0.$$

26. Определите тип, размеры и расположение фигуры второго порядка, заданной данным уравнением. Сделайте рисунок.

$$5x^2 + 4xy + 2y^2 - 8x - 6y - 1 = 0.$$

3.3. Варианты итогового тестирования по дисциплине «Аналитическая геометрия»

Вариант 1

No	Содержание вопроса	Варианты ответа
п/п		
1.	Даны точки: $A(1; -3)$, $B(5; 7)$. Найдите середину C отрезка AB .	1) <i>C</i> (0;0);
		2) <i>C</i> (3; 0);
		3) <i>C</i> (–3; 4);
		4) C(3; 2);
		5) <i>C</i> (2; 5).
2.	Даны два вектора: $\vec{a}(1;3;4)$ и $\vec{b}(-$	1) $\vec{x}(3;5;10)$;
	$(2;1;2)$. Найдите вектор \vec{x} такой, что	2) \vec{x} (6;11;14);
	$4\vec{a} - \vec{b} - \vec{x} = 0.$	3) \vec{x} (3;5;7);
		4) \vec{x} (6;5;9);
		5) $\vec{x}(-6;11;7)$.
3.	Угол между векторами $\overrightarrow{m}(1;1;1)$ и $\overrightarrow{n}(2;1;3)$ равен:	1)arccos2 $\sqrt{\frac{3}{14}}$;
		2) 90°;
		3) 45°;
		4) $\arccos \frac{1}{3}$;
		5) 60°.
4.	Вычислите длину вектора $\vec{a} \times \vec{b}$,	$1) \qquad \sqrt{24};$
	если $\vec{a}(2;1;0)$, $\vec{b}(0;-1;2)$.	2) $\sqrt{37}$;
		3) $\sqrt{53}$; 4) $\sqrt{75}$;
		5) $\sqrt{28}$.
5.	Площадь треугольника с	1) 30;
	вершинами	2) 15;
	A(-5;0), $B(-2;3)$ и $C(6;1)$ равна:	3) 10;
		4) 20;
		5) 25.
6.	Вычислите объем	1) 112;
	параллелепипеда, построенного на векторах $a(9,1,4)$, $b(7,-5,8)$, $c(4,0,0)$, отложенных от некоторой точки.	2) 448;
		3) 224;
	omomentum of necotopon toach.	4) 117

		5) 56.
7.	В декартовой системе координат Oxy общее уравнение прямой, для которой известны точка $A(1,-3)$ и направляющий вектор $a(2,1)$, имеет вид:	1) $2x + y - 5 = 0$; 2) $x + 2y - 3 = 0$; 3) $x - 2y - 7 = 0$; 4) $x - 2y - 5 = 0$;
		$5) \ x + 2y - 7 = 0.$
8.	Найдите координаты точки пересечения прямой $x = 1 + 2t, y = 3 - t, z = 5 - 3t$ с плоскостью Oxz .	1) (5,0,0); 2) (0,0,7); 3) (7,0,-4); 4) (9,1,0);
		5) (3,0,-4).
9.	Прямые на евклидовой плоскости, заданные в прямоугольной системе координат уравнениями $x + 2y - 1 = 0$ и $2x + ky - 5 = 0$, параллельны, если k равно:	1) 4; 2) - 4; 3) 2; 4) 1; 5) 3.
10.	Плоскость в пространстве ${\bf E}^3$, заданная в прямоугольной системе координат уравнением $x-y+z=0$, перпендикулярна вектору с координатами:	1) (2,0,2); 2) (3,-3,3); 3) (1,1,2); 4) (1,1,0); 5) (3,4,5).
11.	Если расстояние между параллельными плоскостями с уравнениями $2x-y+2z+D=0 \text{ и } 2x-y+2z-4=0$ равно 4, то значение D равно:	1) – 12 или – 4; 2) – 12 или 4; 3) – 16 или 32; 4) 8 или – 16 ; 5) 12 или 4.
12.	Фигура на плоскости, заданная в некотором аффинном репере уравнением	 эллипсом; гиперболой; параболой;

	$x^2 + 2y^2 - 2x + 8y - 7 = 0,$ является:	4) парой пересекающихся прямых; 5) парой параллельных прямых.
13.	Укажите координаты неподвижной точки аффинного преобразования	1) (1,0); 2) (1,4); 3) (5,-4); 4) (3,4) 5) (4,5).
14.	Если в аффинном пространстве \mathbf{A}^4 прямая $x_1=-2+3t, x_2=3-2t, x_3=-1+4t, x_4=4-t$ параллельна гиперплоскости $4x_1-2x_2+Cx_3-8x_4+1=0$, то значение C равно:	1) - 6; 2) - 3; 3) 6; 4) 3; 5) 12.
15.	В пространстве A^5 системой уравнений задана плоскость. Какова размерность плоскости? $-4\ x_1+4\ x_3-x_4-2\ x_5=-2$ $4\ x_1+x_3-x_4-3\ x_5=-2$ $8\ x_1-3\ x_3-x_5=0$	1) 0; 2) 4; 3) 2; 4) 3; 5) 1.
16.	Эллипс задан в прямоугольной декартовой системе координат Oxy уравнением $\frac{x^2}{35} + \frac{y^2}{10} = 1$. Найдите фокусы эллипса.	1) $F_1(-\sqrt{35};0)$ и $F_2(\sqrt{35};0)$; 2) $F_1(0;-5)$ и $F_2(0;5)$; 3) $\mathbf{F_1}(-5;0)$ и $\mathbf{F_2}(5;0)$; 4) $F_1(0;-\sqrt{10})$ и $F_2(0;\sqrt{10})$; 5) $F_1(-3\sqrt{5};0)$ и $F_2(3\sqrt{5};0)$.
17.	Фигура в пространстве ${\bf E}^3$, заданная в декартовой системе координат $Oxyz$ уравнением $\frac{x^2}{5} - \frac{y^2}{10} = 0$, является:	1) однополостным гиперболоидом; 2) парой параллельных плоскостей; 3) парой пересекающихся плоскостей; 4) гиперболическим параболоидом; 5) гиперболой.

Вариант 2

No॒	Содержание вопроса	Варианты ответа
п/п		
1.	Зная точки $A(2; 3), C(5; 7),$ где $C-$ середина отрезка AB , найдите точку B .	1) <i>B</i> (8; 11);
		2) <i>B</i> (-2;1);
		3) <i>B</i> (3; 4);
		4) <i>B</i> (5; 2);
		5) <i>B</i> (7; 10).
2.	Даны два вектора: \vec{a} (2;1;3) и \vec{b} (–	1) $\vec{x}(8;5;-2);$
	$7;4;-5$). Найдите вектор \vec{x} такой, что	2) $\vec{x}(5;1;7)$;
	$5\vec{a}+2\vec{b}-\vec{x}=0.$	3) $\vec{x}(-4;13;5)$;
		4) $\vec{x}(1;9;3);$
		5) $\vec{x}(3;1;9)$.
3.	Угол между векторами $\overrightarrow{m}(1;0;-1)$	1) 30°;
	и $\vec{n}(2;1;1)$ равен:	2) 90°;
		3) 120°;
		4) $\operatorname{arccos}\left(\frac{1}{2\sqrt{3}}\right)$;
		5) 60°.
4.	Вычислите длину вектора $\vec{a} \times \vec{b}$,	1) $\sqrt{9}$;
	если $\vec{a}(1;3;4)$, $\vec{b}(0;2;3)$.	2) $\sqrt{14}$;
		3) $\sqrt{21}$;
		4) $\sqrt{18}$;
		5) $\sqrt{15}$.
5.	Площадь треугольника с вершинами	1) 40;
	A(-5;0), $B(-2;4)$ и $C(6;0)$	2) 14;
	равна:	3) 22;
		4) 18;
		5) 44.

7.	Вычислите объем параллелепипеда, построенного на векторах $a(2,-8,6)$, $b(-5,7,4)$, $c(0,1,0)$, отложенных от некоторой точки. В декартовой системе координат Oxy общее уравнение прямой, для	1) 38; 2) 19; 3) 26; 4) 74 5) 78. 1) 2x + y - 5 = 0;
8.	которой известны точка $A(1,-3)$ и нормальный вектор $n(2,1)$, имеет вид:	2) $x+2y-3=0$; 3) $x-2y-7=0$; 4) $2x+y+1=0$; 5) $2x-y+5=0$.
o.	пересечения прямой $x = 1 + 2t, y = 3 - t, z = 6 - 3t$ с плоскостью Oxy .	2) (0,0,7); 3) (7,0,0); 4) (-5,4,0); 5) (5,1,0).
9.	Прямые на евклидовой плоскости, заданные в прямоугольной системе координат уравнениями $x-y=0$ и $x+ky+2=0$, перпендикулярны, если k равно:	1) -1; 2) 1; 3) 2; 4) -2; 5) 3.
10.	Плоскость в пространстве ${\bf E}^3$, заданная в прямоугольной системе координат уравнением $x+4y+z+1=0$, перпендикулярна вектору с координатами:	1) (1,-4,1); 2) (-4,1,0); 3) (4,-1,1); 4) (8,-2,8) 5) (2,8,2).
11.	Если расстояние между параллельными плоскостями с уравнениями $x+2y-2z+D=0 \text{ и } x+2y-2z-5=0$ равно 3, то значение D равно:	1) – 18 или – 7; 2) 4 или – 14 ; 3) – 19 или 22; 4) 11 или – 21; 5) 12 или 9.

12.	Фигура на плоскости, заданная в некотором аффинном репере уравнением $2x^2 - y^2 + 8x + 8y - 16 = 0,$ является:	1) эллипсом; 2) гиперболой; 3) параболой; 4) парой пересекающихся прямых; 5) парой параллельных прямых.
13.	Укажите координаты неподвижной точки аффинного преобразования	1) (5,-4); 2) (2,1); 3) (1,2); 4) (3,3); 5) (-1,4).
15.	Если в аффинном пространстве \mathbf{A}^4 прямая $x_1 = -1 + 2t, x_2 = 2 - t, x_3 = -1 + 3t, x_4 = 1 + t$ параллельна гиперплоскости $x_1 + 2x_2 + x_3 - Cx_4 - 1 = 0$, то значение C равно: В пространстве \mathbf{A}^5 системой уравнений задана плоскость. Какова размерность плоскости? $4 x_1 - 2 x_2 + x_3 - 4 x_4 - x_5 = 3$ $x_1 - x_2 - 2 x_3 - 3 x_4 = -3$	1) -1; 2) 2; 3) 3; 4) 8; 5) -6. 1) 1; 2) 2; 3) 3; 4) 4 5) 5.
16.	$-7 x_1 + 3 x_2 - 4 x_3 + 5 x_4 + 2 x_5 = -9$ Эллипс задан в прямоугольной декартовой системе координат <i>Оху</i> уравнением $\frac{x^2}{25} + \frac{y^2}{36} = 1$. Найдите фокусы эллипса.	1) $F_1(-\sqrt{11};0)$ и $F_2(\sqrt{11};0)$; 2) $F_1(0;-5)$ и $F_2(0;5)$; 3) $F_1(-5;0)$ и $F_2(5;0)$; 4) $\mathbf{F_1}(0;-\sqrt{11})$ и $\mathbf{F_2}(0;\sqrt{11})$; 5) $F_1(-\sqrt{41};0)$ и $F_2(\sqrt{41};0)$.

17.	Фигура в пространстве ${\bf E}^3$, заданная в декартовой системе координат $Oxyz$	1) однополостным гиперболоидом;
	уравнением $\frac{x^2}{5} - \frac{y^2}{10} = 2z$, является:	2) парой параллельных плоскостей;
		3) эллиптическим параболоидом;
		4) гиперболическим параболоидом;
		5) гиперболическим цилиндром.

3.4. Примерный перечень вопросов к экзамену 1 семестр

- 1. Эквивалентные направленные отрезки.
- 2. Понятие вектора. Коллинеарные и компланарные векторы.
- 3. Операция сложения векторов и ее свойства.
- 4. Операция умножения векторов на числа и ее свойства.
- 5. Линейно зависимые и линейно независимые системы векторов.
- 6. Геометрические критерии линейной зависимости.
- 7. Алгебраические критерии линейной зависимости.
- 8. Проекции и их свойства.
- 9. Базисы. Координаты вектора в данном базисе.
- 10. Формулы преобразования координат векторов при переходе от одного базиса к другому.
 - 11. Скалярное произведение векторов и его свойства.
 - 12. Векторное произведение векторов и его свойства.
 - 13. Смешанное произведение векторов и его свойства.
 - 14. Критерии компланарности трех векторов.
- 15. Аффинные реперы. Координаты точки в данном репере. Формулы преобразования координат точек при переходе от одного репера к другому.
- 16. Формулы преобразования координат точек на плоскости при переходе от одной прямоугольной системы координат к другой.
 - 17. Различные виды уравнений прямой на плоскости ${\bf E}^2$.
- 18. Определение взаимного расположения двух прямых на плоскости по их уравнениям.
 - 19. Величина угла между двумя прямыми. Расстояние от точки до прямой.
 - 20. Геометрический смысл линейного неравенства с двумя переменными.
 - 21. Плоскость в пространстве E^3 . Различные виды уравнений плоскости.
- 22. Определение взаимного расположения двух плоскостей по их уравнениям.
 - 23. Прямая в пространстве E^3 . Различные виды уравнений прямой в E^3 .
- 24. Определение взаимного расположения прямых и плоскостей в пространстве ${\bf E}^3$.
- 25. Расстояние от точки до плоскости и расстояние от точки до прямой в пространстве ${\bf E}^3$.
 - 26. Эллипс.
 - 27. Гипербола.
 - 28. Парабола.
 - 29. Фигуры второго порядка на плоскости E^2 .
- 30. Единое определение эллипса, гиперболы и параболы с помощью фокуса и директрисы.
 - 31. Касательные к эллипсу, гиперболе, параболе.
 - 32. Оптические свойства эллипса, гиперболы и параболы.
 - 33. Фигуры вращения в пространстве E^3 .

- 34. Цилиндрические и конические фигуры в пространстве E^3 .
- 35. Эллипсоиды.
- 36. Гиперболоиды.
- 37. Эллиптические параболоиды.
- 38. Гиперболические параболоиды.
- 39. Фигуры второго порядка в пространстве \mathbf{E}^3 .
- 40. Плоские сечения пространственных фигур второго порядка.
- 41. Прямолинейные образующие однополостного гиперболоида и гиперболического параболоида.

2 семестр

- 1. Понятие аффинного преобразования плоскости ${\bf E}^2$ и пространства ${\bf E}^3$. Примеры.
- 2. Отображение, обратное для аффинного преобразования. Группы аффинных преобразований $Aff(\mathbf{E}^2)$ и $Aff(\mathbf{E}^3)$.
 - 3. Образы прямой и плоскости при аффинном преобразовании.
 - 4. Линейный оператор, индуцированный аффинным преобразованием.
- 5. Простое отношение точек, сохранение простого отношения точек при аффинном преобразовании.
 - 6. Координатная запись аффинного преобразования.
- 7. Геометрический смысл определителя матрицы аффинного преобразования.
- 8. Инвариантные точки и инвариантные прямые аффинного преобразования плоскости \mathbf{E}^2 .
 - 9. Движения плоскости ${\bf E}^2$ и пространства ${\bf E}^3$. Примеры.
- 10. Координатная запись движений. Классификация движений плоскости \mathbf{E}^2 и пространства \mathbf{E}^3 .
 - 11. Понятие аффинного пространства. Примеры.
- 12. Радиус-вектор точек аффинного пространства, биекция аффинного пространства и связанного с ним векторного пространства при фиксировании точки.
- 13. Аффинные реперы и координаты в аффинном пространстве. Формулы преобразования координат.
- 14. Понятие плоскости в аффинном пространстве. Начальная точка и направляющее пространство плоскости.
- 15. Пересечение плоскостей в аффинном пространстве. Аффинная оболочка множества точек.
 - 16. Сумма плоскостей в аффинном пространстве.
 - 17. Аффинно независимые точки в аффинном пространстве.
- 18. Взаимное расположение двух плоскостей в аффинном пространстве. Характеристика пары плоскостей.
- 19. Параметрические и общие уравнения плоскостей в аффинном пространстве.

- 20. Определение взаимного расположения двух плоскостей по их уравнениям.
- 21. Фигуры второго порядка (квадрики) в вещественных аффинных пространствах. Нормальные уравнения квадрик.

4. ВСПОМОГАТЕЛЬНЫЙ РАЗДЕЛ

4.1. Рекомендуемая литература

Основная:

- 1. Александров, П. С. Курс аналитической геометрии и линейной алгебры: учебник для вузов / П. С. Александров. 4-е изд., стер. Санкт-Петербург. Лань, 2022. 512 с.
- 2. *Кононов, С. Г.* Аналитическая геометрия: учеб. пособие для студ. учреждений высш. образования по математическим спец. / С. Г. Кононов; БГУ. Минск: БГУ, 2014. 238 с. [Электронный ресурс]. Режим доступа: http://elib.bsu.by/handle/123456789/113440. Дата доступа: 29.09.2024.
- 3. *Клетеник, Д. В.* Сборник задач по аналитической геометрии: учебное пособие / Д. В. Клетеник; под ред. Н. В. Ефимова. Изд. 17-е, стер. Санкт-Петербург; Москва; Краснодар: Лань, 2022. 223 с.
- 4. *Постников, М. М.* Аналитическая геометрия / Постников М. М. 3-е изд., испр. Санкт-Петербург: Лань, 2022. 416 с.

Дополнительная:

- 5. Бурдун А.А., Мурашко Е.А., Толкачев М.М., Феденко А.С. Сборник задач по алгебре и аналитической геометрии: учебное пособие. Минск: Университетское, 1999. 302 с. [Электронный ресурс]. Режим доступа: https://elib.bsu.by/handle/123456789/13294. Дата доступа: 29.09.2024.
- 6. *Моденов П.С., Пархоменко А.С.* Сборник задач по аналитической геометрии: учебное пособие. М., Наука, 1976. 384 с.
- 7. *Кострикин А.И.*, *Манин Ю.И*. Линейная алгебра и геометрия: учебное пособие. М., Наука, 1986.
- 8. Постников М.М. Лекции по геометрии. Семестр І. Аналитическая геометрия: учебное пособие. М., Наука, 1979. 336 с.
- 9. *Милованов М.В., Тышкевич Р.И., Феденко А.С.* Алгебра и аналитическая геометрия: в 2 ч.: учебное пособие. Минск: Вышэйшая школа, 1984. Ч. 1. 302 с. [Электронный ресурс]. Режим доступа: https://elib.bsu.by/handle/123456789/13296. - Дата доступа: 29.09.2024.
- 11. *Милованов М.В., Толкачев М.М., Тышкевич Р.И., Феденко А.С.* Алгебра и аналитическая геометрия: в 2 ч.: учебное пособие. Минск: Вышэйшая школа, 1987. Ч. 2. 269 с. [Электронный ресурс]. Режим доступа: https://elib.bsu.by/handle/123456789/13296. Дата доступа: 29.09.2024.

4.2. Электронные ресурсы

1. Кононов С.Г., Кукрак Г.О. Аналитическая геометрия: учебная программа учреждения высшего образования по учебной дисциплине для специальности: 6-05-0533- 06 Математика. № УД-479/б. [Электронный

- ресурс]. Режим доступа: https://elib.bsu.by/handle/123456789/308107. Дата доступа 29.09.2024.
- 2. Суворов В.В. Плоскости в аффинном пространстве : учеб. материалы [Электронный ресурс]. Режим доступа: https://elib.bsu.by/handle/123456789/318130 Дата доступа 29.09.2024.