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Outer forms of type A, with infinite genus
Sergey V. Tikhonov

Abstract. Let G be an absolutely almost simple algebraic group over a field K. The genus geng (G)
of G is the set of K-isomorphism classes of K-forms G’ of G that have the same K-isomorphism
classes of maximal K-tori as G. We construct an example of outer forms of type A, with infinite
genus.

1. Introduction

Let K be a field and K*% its separable closure. Two absolutely almost simple algebraic
K-groups G; and G, are said to have the same K-isomorphism classes of maximal K-tori
if every maximal K-torus of G; is K-isomorphic to some maximal K-torus of G,, and
vice versa. An algebraic K-group G’ is called a K-form of an algebraic K-group G if G
and G’ are isomorphic over K.

Definition 1.1 ([2, Def. 6.1]). Let G be an absolutely almost simple algebraic group over
a field K. The genus geng (G) of G is the set of K-isomorphism classes of K-forms G’
of G that have the same K-isomorphism classes of maximal K-tori as G.

The genus is trivial in some special cases and it is conjectured to be finite whenever
the field K is finitely generated of “good” characteristic (see details in [6, §8]).
In a similar way one can define the genus of a division algebra.

Definition 1.2. The genus gen(D) of a finite-dimensional central division algebra O over
a field K is defined as the set of classes [D’] € Br(K), where £’ is a central division K-
algebra having the same maximal subfields as .

If O is a finite-dimensional central division K-algebra, then it is well known that
any maximal K-torus of the corresponding algebraic group G = SL; o is of the form
Re/k(Gm) NG (where Rg x (Gyy) is the Weil restriction of the 1-dimensional split torus
Gyn) for some maximal separable subfield £ of O. Thus the results on genus of divi-
sion algebras from [4, 10] rephrased in the language of algebraic groups say that for any
prime p, there exist fields (with infinite transcendence degree over the prime subfield)
over which there are inner forms of type A, with infinite genus. An example of groups
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of type G, with infinite genus is obtained in [1, Rem. 3.6 (b)]. In the present paper, we
construct such an example for outer forms of type A4,.

Let F/K be a quadratic separable field extension and ¢ the non-trivial K-automor-
phism of F. An involution on an F-algebra R is called an F/ K -involution if its restriction
to F is 0. An isomorphism of F-algebras with involution

fi(R, 1) > (R, 1)

is an F-algebra isomorphism f : R — R’ suchthatt’ o f = f ot.Letalso E/F be a
field extension such that E has an automorphism v of order 2 such that ¥|F = o (i.e.,
E has an F/K-involution). Then tg denotes the involution on R ® p E defined by the
formula 7z (r ® e) 1= 7(r) ® Y (e), where r € R, e € E. In particular, if L/ F is a field
extension linearly disjoint to E over F' with an automorphism ¢ of order two extending o,
then ¢ is the automorphism of order two of the field EL = L ® p E which extends ¢.

Let +4 be a central division F-algebra of degree n with an F/ K -involution t. Let L/ F
be a separable field extension of degree n, and let ¢ : L — L be an automorphism of order
two such that ¢|F = o. An embedding of algebras with involution (L, ¢) < (#A, 7) is
by definition an injective F-homomorphism f : L — A suchthat to f = f o¢. It is
known that embeddings of maximal tori into the special unitary group SU(+, ) can be
described in terms of embeddings of fields with involution into the central simple algebra
with involution (+, 7) [5, Prop. 2.3].

In this paper, we construct a field £ and a subfield T C FE such that [E : T] = 2
and there is an infinite set of (pairwise non-isomorphic) division E-algebras of degree 3
with E /T -involution such that a field extension L/ E of degree 3 can be embedded as an
algebra with involution into one algebra of this set if and only if it can be embedded as an
algebra with involution into all other algebras from this set. Passing to the corresponding
special unitary groups, we obtain an example of outer forms of type A, with infinite genus.
The main result of the paper is the following theorem.

Theorem 1.3. There exists a simple simply connected algebraic group G over a (certain)
field T that is an outer form of type A, for which the genus genr (G) is infinite.

Note that the field T constructed in the proof of this theorem is infinitely generated.

Below we use the following notation: Alg;(F/K) is the set of isomorphism classes
of central division F-algebras of degree 3 with F/K involution; Exts(F/K) is the set
of isomorphism classes of field extensions of F of degree 3 with F/K-involution. The
3-torsion of the Brauer group Br(F) is denoted by 3 Br(F'). For a field extension E/F
and a central simple F'-algebra 4, Af denotes the tensor product A @ r £ and resg/r :
Br(F) — Br(E) denotes the restriction homomorphism. The restriction of resg,r to the
subgroup 3 Br(F') will also be denoted by resg, r. For a central simple F-algebra -4, AP
denotes the opposite algebra and A™ denotes A Q@ --- @ A (m times). For a quadratic
form g over K and a field extension E/K, gg denotes the quadratic form obtained by
extension of scalars from K to E. Recall that a field extension E/F is called regular if
E/F is separable and F is algebraically closed in E.



Outer forms of type A, with infinite genus 807
2. Preliminary results

We start with the following.

Lemma 2.1. Let n be a positive integer, F a field of characteristic not dividing 2n, F/K
a quadratic field extension, o the non-trivial K-automorphism of F, A a central simple
F-algebra of degree n, and L/ F a cyclic field extension of degree n. Then there exists a
regular field extension M/ F and a subfield T C M such that [M : T] = 2 and

(1) M = TF and the non-trivial T -automorphism of M extends o,
(2) the composite M L splits Ay,
(3) the homomorphismresp/p : Br(F) — Br(M) is injective.

Proof. Let F(x) be a purely transcendental extension of F of transcendence degree 1. Let
also ¢ be a generator of the Galois group Gal(L(x)/F(x)) and

€= A(l)‘}?(x) ®F(x) (L(x)/F(x),gb,x),

where (L(x)/F(x), ¢, x) is a cyclic F(x)-algebra of degree n. Let also E be the function
field of the Severi—Brauer variety of €. Note that the kernel of the restriction homomor-
phism resg/r(x) : Br(F(x)) — Br(E) is generated by [€] (see, e.g., [8, Cor. 13.16]).

Let B be a central simple F'-algebra of exponent bigger than 1. Assume that B is split
by E, then [BF(x)] = [€'] forsome 1 <i <n.Ifi <n, then the F(x)-algebra €’ ramifies
at the discrete valuation (trivial on F) of F(x) defined by the polynomial x, but Bf(y) is
unramified at this valuation, hence [BF(x)] # [€']. Since the exponent of BF(y) is bigger
than 1, then

[Br] # [€"] = [F(0)].

Thus B F(x) is not split by E, i.e., the homomorphism resg,r : Br(F) — Br(E) is injec-
tive.

Since E splits €, then

[‘A’E] = [(L(X)/F(X), ¢»X)E] = [(EL/E’ ¢/,X)],

where ¢’ is the generator of Gal(EL/E). Thus EL splits Ag.

Note that £/ F is a regular extension of F(x). For the following construction of the
transfer of a regular field extension, we refer to [7, p. 220].

Let o also denotes the K(x)-automorphism of F(x) extending the automorphism o
of F. The automorphism o of F(x) can be extended to an isomorphism (which we also
denote by ) of E and another regular extension of F(x) denoted by E,. Thus the fol-
lowing diagram commutes:

FC F(x)C E

T

FC F(x)C E,.
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Let M = EE; be the free composite over I’ of E and E,. This free composite is
F-isomorphic to the function field of the Severi—Brauer variety of the E; (y)-algebra

AL ) O ) (EaL(9)/Es(3). V', y),

where y is transcendental over E, (we replace x by y since the composite is free) and
Y’ is the generator of the Galois group Gal(EsL(y)/Es(y)). The field M is a regular
extension of F'. The isomorphisms

0:E—-E;, and 0 ':E;, > E

have a unique extension to an automorphism & of M of order two. Let T := T/ g (E) be
the transfer of E with respect to the ground field descent F D K, i.e., T is the subfield of
M of elements fixed under the action of o. Note that the composite T'F coincides with M,
[M :T]=2,and o extends 0.

The algebra Ay is split by M L since Ag is splitby EL.

Finally, the diagram (2.1) induces the following commutative diagram for the corre-
sponding Brauer groups:

Br(F) — Br(F(x)) —— Br(E)

Br(F) — Br(F(x)) — Br(E,) —> Br(M).

The injectivity of res g, r implies the injectivity of resg, , r. Moreover, resyy, g, is injective
by the same arguments as for resg,r, we just replace the ground field F' by E;. Hence
the homomorphism resyy, r is also injective. ]

We also need the following.

Lemma 2.2. Let F be a field of characteristic # 2,3; F/K a quadratic field extension,
o the non-trivial K-automorphism of F, and L/F a field extension of degree 3 with
an automorphism ¢ of order two such that ¢p|F = o. Then there exists a field extension
F(L)/F and a subfield K(L) C F(L) such that [F(L) : K(L)] = 2 and

(1) F(L) = K(L)F and the non-trivial K(L)-automorphism of F(L), denoted by

OF(L), extends o;

(2 [F(L): F]l=2

(3) the composite F(L)L is a cyclic extension of F (L) of degree 3;

(4) the homomorphismrespry/F : 3Br(F) — 3Br(F (L)) is injective.

Proof. If the extension L/F is cyclic, then one can take F(L) := F, K(L) := K, and

OF(L) = 0.
Assume that the extension L/F is not cyclic. Let N be the normal closure of the
extension L? /K, where L? C L is the subfield of elements fixed by ¢. Then F ¢ N and
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NF is the normal closure of the extension L/ F. Thus we have the following diagram of

AN
N

Let H be the Sylow 3-subgroup of the Galois group Gal(N/K). Then N ¥ | the fixed
field of H, is an extension of K of degree 2 and N/N ¥ is a cyclic extension of degree 3.
Hence NF is a cyclic extension of N F of degree 3 and [N¥ F : F] = 2. Let K(L) :=
N and F(L) := K(L)F. Since F ¢ N, then [F(L) : K(L)] = 2 and the field F(L)
has a K(L)-automorphism of order two extending o. Note that F(L)L = NF, hence
F(L)L/F(L) is a cyclic extension of degree 3. Finally, since [F(L) : F] = 2, then the
homomorphism resp(r),F : 3Br(F) — 3Br(F (L)) is injective. |

field extensions:

Remark 2.3. In the notations of Lemma 2.2, for any field extension L’ of F of degree 3,
F(L) and L’ are linearly disjoint over F. Moreover, if L’ has an automorphism ¢’ of order
2 extending o, then the composite (L)L’ has the automorphism ¢’ ) which extends
the automorphisms ¢’ and o f(z).

Lemma 2.4. Let F be a field of characteristic # 2,3, F/K a quadratic field extension,
o the non-trivial K-automorphism of F, A a central simple F-algebra of degree 3 with
an F/K-involution t, and L/ F a field extension of degree 3 with an automorphism ¢
of order two such that ¢|F = o. Then there exists a field extension Fg 1 4)/F and a
subfield K(L,A) C F(K,L,,A) such that [F(K,L,,A) : K(L,,A,)] = 2 and

(1) Fg,p,4) = K@,4)F and the non-trivial Ky, 4)-automorphism of F(k. 1.,4), de-
noted by OFk.L.A)y extends o ;

(2) the homomorphism resp . ; 4 /F 3Br(F) — 3Br(F(k,L,)) is injective;

(3) for any field extension L' of F of degree 3, Fk 1.,.4) and L' are linearly disjoint
over F;

(4) there is an embedding (F(k,L,.4) L. ®Fy 1 a)) > (AFk 1 4y TFk.L.a)) Of algebras
with involution.

Proof. Let F(L), K(L) and of() be as in Lemma 2.2. Let also M and T be fields
obtained by applying Lemma 2.1 for the quadratic field extension F(L)/K(L), the F(L)-
algebra A (1), the cyclic field extension F(L)L/F(L) of degree 3. Then by Lemmas
2.1 and 2.2, the homomorphism resys/r : 3Br(F) — 3Br(M) is injective; for any field
extension L’ of F of degree 3, M and L' are linearly disjoint over F and the composite
ML splits 4Aps. Thus there is an M -embedding ¢ : ML < Aps of M -algebras.
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Note that 4y, has the M/ T-involution 7y which extends T and ML has the auto-
morphism ¢ps of order two extending ¢. By [5, Proposition 3.1], there exists an M/ T -
involution & on sy such thate : (ML, ¢pr) — (A, 8) is an embedding of algebras with
involution.

Let 7(8) and 7 (tpr) be the 3-fold Pfister forms of involutions § and 7y respectively
(see [3, §19.B]). Let T'(w(8)) and T (w(zpr)) be the function fields of 7(8) and 7 ()
respectively. Then the quadratic forms 7 (8)7(z(s)) and 7 (Tar) T (x(zy)) are isotropic and
hence hyperbolic since they are Pfister forms.

Let K(z.,.4) be the free composite over T of the fields 7'(7(8)) and T (;r(tar)). Let also
F(K,L,A) = K(L,A)F. Since F §Z K(L,A)a then [F(K,L,A) . K(L,A)] =2and F(K,L,.A) has
a K(r,.4)-automorphism o, , ,, of order 2 extending 0. Note that the algebraic closure
of Fin Fg,1,4)1s F(L) and [F(L) : F]is either 1 or 2. Therefore, F(x 1, 4) and L’ are
linearly disjoint over F for any field extension L’ of F of degree 3.

The extensions T'(7(8))/T and T (w(zar))/ T are composition of a purely transcen-
dental extension with a quadratic extension, hence the homomorphism

TeSF 1 ay/M 3Br(M) — 3Br(F(x,1,4))

is injective. Hence resp, , 4 /F 3Br(F) — 3Br(F(k,L,4)) is also injective.

The quadratic forms 7 (8)k, 4, and w(tm)k , 4, are hyperbolic. Then by [3, Th. 19.6],
the involutions 8F , . and TF,,  onAF,, . are conjugate. This means that there is
an isomorphism & : (AF; 4)sSFk1.a)) = (AF 1 4y TFk.L.)) OF algebras with invo-
lution.

Moreover, the embedding & : (M L, ¢pr) < (A, 6) of algebras with involution induces
an embedding (F(k,L,4)L: ®Fk 1 4) > (AFk 1 a)s SFk1.a)) Of algebras with involu-
tion. Indeed, Fig,1,4)L = ML Qp F(k,1,4)- Let

EFk,L.A) - ML ®u F(K,L,o‘%) — ‘A’F(K,L,A)
be an F(g, 1 4)-embedding defined by the formula e, , (m ® a) := e(m) ® a, where
me ML,a € F 1 4). Then
EF(k,L,A) (¢F(K,L,=A,) (m® a)) = E€Fk,L.A) (¢M (m) ® OF(k,L,.4) (a))
&(par(m)) ® OF ., 4 (@)
= 8(e(m)) ® OFk, 4 (@)
= 8Fr. (6(m) ® a)

= SF(K,L,A) (EF(K’L“A,) (m ® a))

Thus eF ; 4 is an embedding of algebras with involutions. Then § o ef ., ,, is an em-
bedding (F(k,L,4) L, PF 1 a)) <> (AF k1 a) TFk.L.ay) Of algebras with involution. m

The following construction of the field F(x s, 4) is an adaptation of the construction
from [10] for algebras with involutions. We give the details below for the reader’s conve-
nience.



Outer forms of type A, with infinite genus 811

Proposition 2.5. Let F be a field of characteristic # 2,3; F/K a quadratic field exten-
sion, o the non-trivial K-automorphism of F, A C Alg;(F/K) and S C Ext3(F/K).
Then there exists a field extension F(x s 4)/ F and a subfield K (s, 4) C Fk,s,4) such that
[Fik,s,4) : K(s,4)] =2 and
(1) Fk,s,4) = K(s,4)F and the non-trivial K (s, 4)-automorphism, denoted by
OF(k.5.4) of F(k,s,a) extends o;
(2) the homomorphism resp . g 4 /F 3Br(F) — 3Br(F(k,s,4)) is injective;
(3) for any field extension L' of F of degree 3, F(k 1.4y and L' are linearly disjoint
over F;

4) for any A € A with an F/K-involution T and L € S with a K-automorphism ¢
of order 2 extending o, there is an embedding

(F(K,S,A)L7 ¢F(K,S,A)) — (‘A’F(K,S,A)’ rF(K,S,A))
of algebras with involution.

Proof. Let P :={(L,D) | L € S and D € A} be the set of pairs. Let also < be a well-
ordering on & and let o = (Lo, Do) denote its least element. Set E;, := F(k,1,,0,) and
Ty := K(1,,9,) Where the fields F(x 1.,,0,) and K(r,,9,) are constructed in Lemma 2.4.
Fort = (L, D) € P, set

E~l = U Ep, T = U Ty, T =T (g<tL,0,-) Ei = E~(r<t . g<t1.D,):

t'<t t'<t

where the fields E; and T; are obtained by applying Lemma 2.4 to the quadratic field
extension £ </ T<!, the field extension E<'L/E <! of degree 3, the automorphism ¢z <
of E<'L extending the automorphism ¢ of L and the E <'-algebra Dg <. We also define
Fg,5.4) = Usep Er and K(s 4y 1= Usep Ti-
ByLemma2.4, E;, =T, F and [E; : T;] =2 forany t € . Then F(g s, 4) = K(s5,4)F,
[F(k,s,4) - K(s,4)] = 2 and the non-trivial K (s, 4)-automorphism of F(g s 4) extends o.
By Lemma 2.4 and transfinite induction, the homomorphism

TeSF s 4/ F ° 3Br(F) — 3BI‘(F(K,S,A))

is injective and for any field extension L’ of F of degree 3, Fk, s, 4) and L’ are linearly
disjoint over F'.

Finally, let A € A with an '/ K-involution t, L € S with an automorphism ¢ of order
2 extending o and t = (L, 4). By Lemma 2.4, there is an embedding (E;L, ¢g,) —
(AE,, tg,) of algebras with involution. Moreover, as in the proof of Lemma 2.4, this
embedding induces the embedding

(F(K,S,A)L’ ¢F(K,S,A)) = ('A‘F(K,S,AV TF(K,S,A))

of algebras with involution. ]
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Theorem 2.6. Let F be a field of characteristic # 2,3, F /K a quadratic field extension, o
the non-trivial K -automorphism of F, A C Algs(F/K). Then there exists a field extension
F4/F and a subfield K4 C F4 such that [Fq : K4] = 2 and

(1) Fa=K4F andthe non-trivial K 4-automorphism, denoted by of,, of 4 extends o;

(2) the homomorphismresg, /r : 3Br(F) — 3Br(Fy) is injective;

(3) for any central simple F-algebra B of degree 3 with an F/K -involution 6, the
algebra B, has an F4/ K 4-involution O, extending 0;

(4) if L € Exts(F4/Ky) with a K4-automorphism ¢ of order 2 extending or,, then
there is an embedding
(L.¢) = (AF,. TFy)

of algebras with involution for any A € A with an F /K -involution t.

Proof. Let Fy := F and Ky := K. We recursively define F; and K;, i € Z~g, to be

the fields Fi—1(k;_, Bxis (Fi—1/Ki—1)ures,_, 7 (4) 304 Kim1(Bxi3 (Fi-1/Ki—1)uresp,_, /7 (4)) CON-
structed by applying Proposition 2.5 to the quadratic field extension F;_;/K;_1, the set

I€SF;_,/F (A) C A1g3(Fi_1/Ki_1)

and the set Extz(F;—1/Ki—1).

Let Fy := ;o Fi and K4 := ;- K;. Hence F4 = K4 F and the non-trivial K4-
automorphism oFA_ of F4 extends . Therefore, for any central simple F-algebra B of
degree 3 with an F/ K-involution 8, the F4/K4-involution 8F, extends 6.

By induction and Proposition 2.5, resg,/r : 3Br(F) — 3Br(Fy) is injective.

Assume that A € A with an F/K-involution t and L € Ext3(F4/K4) with an auto-
morphism ¢ of order two extending o r,. Then there exists i > 0 and a field extension L’
of F; of degree 3 such that L = F4 L’ and ¢; := ¢|L’ is a K;-automorphism of order two.
This means that L” € Ext;(F; /K;). By Proposition 2.5, there is an embedding

(Fi+1 L/, o Fi+1) — (‘A’FiJrl ’ TFi+1)

of algebras with involution. As in the proof of Lemma 2.4, this embedding can be extended
to an embedding (L, ¢) — (#AF,, TF,) of algebras with involution. |

3. Construction

As a corollary to Theorem 2.6, we obtain the following.

Theorem 3.1. There exists a field E and a subfield T C E with [E : T]| = 2 such that
there is an infinite set B of pairwise non-isomorphic division E-algebras of degree 3 with
E /T -involution and such that for any field extension L/ E of degree 3 with an automor-
phism ¢ of order 2 extending the non-trivial T -automorphism of E, there is an embedding
(L, @) — (A, T) of algebras with involution for any A € B with an E/ T -involution .
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Proof. Let &3 be a primitive 3th root of unity, K = Q(£3)(x, y, z), the purely transcenden-
tal extension of the field Q(£3) and F = K (+/2). Then for i > 0, the symbol F-algebras
A = ();J_rgy z ,z)3 of degree 3 are pairwise non-isomorphic. Indeed, 4; ramifies at the
discrete valuation (trivial on Q(£3)(v/2)(y, z)) of F = Q(£3)(v/2)(y, z)(x) defined by
the polynomial x + /2y € Q(£3)(+/2)(y, z)[x], but if i # j, then JA; is unramified at
this valuation.

By the projection formula for the corestriction [9, Th. 3.2], we have that the corestric-

tion to K of the F-algebra +4; is similar to the split K-algebra

X+ /2y _
(NF/K(X_—\/E)}Z_),Z)3 =(1,2)s.

Then by [3, Th. 3.1 (2)], the algebra +4; has an F'/ K-involution.
Now we apply Theorem 2.6 for the infinite set A C Alg;(F/K) consisting of algebras
A, 1> 0,andset £ 1= Fy, T := K4, B :=resg,/r(A). [

Remark 3.2. The referee asked the following interesting question. The construction pre-
sented in the proof of the previous theorem yields algebras that are not isomorphic even
as algebras without involution. One may wonder if one can construct (infinite) families
of non-equivalent involutions supported on the same division algebra with isomorphic
maximal invariant subfields.

Now we are in a position to prove the main Theorem 1.3.

Proof. We use notation from Theorem 3.1. Let 4 be an algebra with E/ T -involution t
from the set B. Then the special unitary group G = SU(+A, 7) is a simple simply connected
outer form of type A, over T'.

If A; are A, are different algebras with £/ T-involutions t; and 7, respectively from
the set B, then the algebraic groups SU(s1, 1) and SU(+A;, 12) are not isomorphic by
[3, Th. 26.9]. Moreover, by [5, Prop. 2.3] the groups SU(+1, 71) and SU(A,, 72) have the
same 7 -isomorphism classes of maximal 7 -tori.

Thus, the genus geny (G) is infinite. |

Acknowledgments. The author thanks the referee for helpful suggestions.
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