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Abstract: We consider a multi-server queueing system with a visible queue and an arrival flow that is
dynamically dependent on the system’s rating. This rating reflects the level of customer satisfaction
with the quality and price of the provided service. A higher rating implies a higher arrival rate,
which motivates the service provider to increase the price of the service. A steady-state analysis
of this system using the proposed mechanism for changing the rating and a threshold strategy for
changing the price is performed. This is carried out via the consideration of a suitably constructed
multidimensional Markov chain. The impact of the variation in the threshold defining the strategy
for changing the price on the key performance indicators is numerically illustrated. The results can be
used to make managerial decisions, leading to an increase in the effectiveness of system operations.
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1. Introduction

Currently, there is a high level of competition between service providers in various
fields: mobile communications, restaurants, hotels, entertainment, insurance, retail busi-
nesses, air transportation, etc. Customers have a wide range of instruments to help them in
choosing between providers of similar kinds of services. Among them, the Internet plays
an essential role, where a lot of versatile information about the ratings of different providers
is available. Platforms such as Google Reviews, Amazon Customer Reviews, TripAdvisor,
Skytrax, Traveler, Trustpilot, Zomato, Yelp, Booking, etc., should be mentioned. Ratings are
also formed through Web-based consumer opinion platforms (e.g., epinions.com (accessed
on 1 April 2024)). The Internet enables customers to share their opinions on, and experi-
ences with, goods and services with a multitude of other consumers, that is, to engage in
electronic word-of-mouth (eWOM) communication; see [1]. The concept of eWOM was
introduced in the mid-1990s, when the Internet was beginning to change how consumers
interacted with each other. eWOM can generally be defined as the sharing and exchange of
information among consumers about a product or company via the Internet, social media,
and mobile communication.

The rating of any service system reflects customer satisfaction as a measure of the
divergence between what customers anticipate from a service or product before they buy it
and how they feel about it after using it. Ratings may shift consumers toward higher-rated
sellers while simultaneously causing congestion in their service facilities, in particular, long
waiting times, refusals in service provisioning, etc. The tasks relating to the account of
these phenomena can be solved with the help of queueing theory.
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The influence of ratings on the performance of different service providers accounting
for possible congestion is widely analyzed in the vast existing literature; see, e.g., [2–13].
In [2], the influence of daily deal promotions on online ratings was investigated. In [3],
it is noted that customers have to wait for service in many service industries. When
customers have a choice, this waiting may influence their service experience, sojourn time,
and, ultimately, spending, reneging, and return behavior. The results of [3], based on real
statistics, show that a longer waiting time relates to reneging behavior, with a longer time
until a customer returns to the system again. The authors of [4] studied the demand and
capacity management problem in a restaurant system. A queueing-based optimization
model with an underlying state-dependent quasi-birth-and-death process was developed
to address the dynamic and nonlinearity difficulties. In particular, the model considered in
[4] explicitly captures the demand changes with respect to the system’s congestion state on
a near-real-time dynamic basis. In [5], a situation is considered wherein a service provider
serves two types of customers: sophisticated and naive. Sophisticated customers are
well informed of service-related information and make their joining-or-balking decisions
strategically, whereas naive customers do not have such information and rely on online
rating information to make such decisions. It is demonstrated that, under certain conditions,
a service provider can increase its profitability by simply ‘dancing’ its price, that is, replacing
the static pricing strategy with a high–low cyclic pricing strategy. In [6], the relationship
between reviews and sales is examined, and the role of reviewer identity disclosure in
electronic markets is clarified. The authors of [7] proposed a model to assess service
availability based on user tolerance. The availability of a given service is calculated by
using the waiting time for it, as well as the varying tolerances that different people have
for the waiting time. The findings of [8] reveal that queueing time and staff courtesy are
the most important factors (besides cleanliness, seating areas, signage, food services, retail
options, and Wi-Fi availability) influencing the overall airport service rating. The research
implemented in [8] offers a resource for improving service quality and operational efficiency
in the airport industry. In [9], specific guidelines are provided for managerial interventions
to improve service quality and guests’ satisfaction for each grading category in hotels in
South Africa whose star grading differs. In [10], the multi-server queueing model with
additional servers (assistants) providing help to the main servers when they encounter
problems is considered a model of real-world systems with customers’ self-service. An
arrival flow is assumed to be the essential generalization of the known Markov arrival
process in the case of the dynamic dependence of the parameters on the rating of the system.
The rating is the process defined at any moment by the quality of service of previously
arrived customers. The possibilities of customers’ balking and impatience are taken into
account. In [11], a queueing model wherein two service provider systems compete for
customers is considered. The comparative rating of two providers is introduced, and
customers make a choice between two providers based on this rating. The possibility of
increasing the revenue of the service provider via a suitable price alteration corresponding
to the change in the rating, which is the focus of the current paper, was not explored
in [10,11]. A few summaries of the pertinent literature are available in all the mentioned
papers, as well as in [12]. In [12], along with an extensive literature review, a situation is
analyzed wherein companies compete with each other on the basis of the waiting time that
their customers experience, along with the price they charge for their service.

Besides global ratings, each service provider can create an internal rating. This rating
can combine the global rating of the provider available on the Internet with its evaluation
of customer satisfaction. Internal ratings can be created in the form of online digital
questionnaires, allowing the collection of feedback directly from customers to compile
detailed information about several facets of the customer experience. Data from user-
generated online material, such as social networking platforms and review websites, can be
scraped by the provider. Also, the provider can make the customer survey in different forms:
via selective personal oral or written communication, the completion of a questionnaire
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selectively distributed by the service provider, a customer’s voluntary visit to the provider’s
website, etc.

A high global rating of a provider can help to attract more potential customers. The
disadvantage of the global rating is that it is formed outside of the provider, and the
exact mechanism of rating formation is hardly known. The local rating supported by the
provider can be counted using its algorithm and is easily and permanently available to
the provider. The analysis of data obtained from customers allows the system manager
to identify problems and customer needs, as well as evaluate the effectiveness of system
operation. Depending on the customer’s answers, the rating of the system can either
increase or decrease. The rating can be used by the provider for the effective management
of customer service in the following way. We suppose that information about customer
satisfaction (and the rating) is dynamically updated and used by the service provider’s
manager. In general, a high rating of the service system is profitable for the service provider.
A higher rating causes a higher customer arrival rate, with the potential to obtain greater
revenue from each customer service, given a fixed price in this period. At the same time, a
high rating of the system is a good reason for the provider to increase the price of the service
to obtain more revenue beyond that attributable to the increased arrival rate. Sooner or later,
after the rating increases, it may decrease. The reasons for that are clear. The higher arrival
rate caused by the rating increase implies, given a fixed number of service devices and
service rates, a worse quality of service and, in particular, a higher probability of customer
loss due to a refusal to enter the overcrowded system (balking) and due to impatience
(abandonment or reneging during the waiting time). Balking and reneging are inherent
features of the majority of real-world systems. Balking and reneging, in combination with
a higher service price, may eventually lead to a decrease in the rating. This, in turn, will
cause a decrease in the arrival rate and the necessity to reduce the price. The dependence
of system revenue on the rating and price is quite complicated, and good decisions can
hardly be made just based on the experience and intuition of the system manager. Thus, if
the system manager would like to choose the appropriate moments at which the price can
be increased or has to be decreased, a thorough mathematical analysis of the variants of
rating and price choice is required.

In this paper, we consider a reasonable mechanism for local rating counting and
a policy for price-level control depending on the current rating of the service system.
The system is analyzed via an investigation of a suitably constructed multidimensional
Markov chain. The methodology of the implemented analysis can be adopted for various
modifications of the mechanisms for rating determination based on counting the admission
or rejection of a customer and his or her opinion about the quality of the received service
and its price adequacy.

A brief outline of this article’s presentation is as follows. Rating and price formation
mechanisms are described in Section 2. The queueing model with rating-dependent arrivals
under study is also formulated in this section. In Section 3, a description of the system’s
Markov process is given. The block-structured generator of this process is derived, and the
derivation is explained. The calculation of the stationary distribution of the system states is
briefly covered in Section 4. Formulas for the calculation of its performance measures are
also presented in this section. Section 5 contains a numerical example and an illustration
of how the obtained results can be used for the optimization of the system operation via
the appropriate choice of the thresholds defining the policy for price adjustment. The
conclusion is presented in Section 6.

2. Rating and Price Formation Mechanisms and Queueing Model

We consider a queueing system consisting of an infinite buffer and N independent,
identical servers. The structure of the system operation and its main components are shown
in Figure 1.

We assume that customers arrive at the system in a flow defined by the rating-
dependent Markov arrival process (RMAP). The RMAP is a generalization of the standard
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Markov arrival process (MAP) (see, e.g., [14–19]), which, in turn, is recognized as an essen-
tially general and better model of flows in many real-world scenarios than the stationary
Poisson arrival process, which is widely used in the queueing literature. The MAP model
of arrivals makes it possible to account for variations in the instantaneous arrival rate and
possible dependence on inter-arrival times.
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Figure 1. The structure of the system.

The customer arrival intensity dynamically depends on the current value of the rating
of the system. Such a rating is an integer number, which varies in the range from 1 to R,
where R is the maximum rating. The arrivals in the RMAP are governed by the irreducible
underlying Markov chain (MC) νt, t ≥ 0, whose transition rates depend on the parameter
r, r = 1, R, which defines the current rating of the system. The state space of MC νt is the
set {1, 2, . . . , W}. If the rating of the system is r, then the transition rates are defined by the
matrices D(r)

0 and D(r)
1 of size W. The matrix D(r)

0 defines the transition rates of the process

νt at which customers do not arrive. The matrix D(r)
1 defines the transition rates of the

process νt at which customer arrivals occur. The average arrival rate of the RMAP, when
the rating of the system is r, is denoted by λr, which can be defined by

λr = θ(r)D(r)
1 e, r = 1, R,

where θ(r) is an invariant probability vector of the MAP defined by the matrices D(r)
0 and

D(r)
1 , and e = (1, 1, . . . , 1)T . Here and below, a notation like r = 1, R means that the variable

r takes values from the set {1, 2, . . . , R}.
We do not specify the concrete form of the matrices D(r)

0 and D(r)
1 . We only assume

that an increase in rating cannot imply a decrease in the average arrival rate; i.e., we assume
the following inequalities to be satisfied:

λ1 ≤ λ2 ≤ . . .≤λR.

The rating of the system and the price of the service may dynamically change depend-
ing on the results of the customer survey. We assume that an arbitrary arriving customer
will give his or her opinion, which will be accounted for in the rating update, with the prob-
ability b and that the customer will not participate in the survey with the complementary
probability 1 − b.

It is assumed that the customer participating in the survey evaluates two items: the
length of the queue and the price of the service. The mechanism for changing the rating
of the system is as follows. The queue in the system is visible. An arriving customer
observes the current length of the queue. This can occur by visually observing the queue,
by receiving information from the provider in verbal form, by comparing the number
printed on his or her ticket with the number of customers receiving service displayed on
the screen, etc. If there are i customers in the system at the arrival moment, the customer
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joins the system with the probability qi or refuses to wait and leaves the system forever
(balks) with the complementary probability 1 − qi.

If an interviewed customer enters the buffer when there are i customers in the system,
then the following three scenarios are possible. With the probability a(1)i , the customer
judges the queue length as short and increases the system rating by one. With the probability
a(2)i , he or she judges the queue as too long and decreases the rating by one. With the

probability 1 − a(1)i − a(2)i , the customer judges the queue length as acceptable and does not
change the rating. If the surveyed customer leaves the system upon arrival, the customer
always decreases the system rating by one.

The price of services in the system is dynamically changed as well. The system’s
price level is changed in the range from 1 to P, where P corresponds to the maximum
price level. At a fixed price level p, p = 1, P, if an interviewed customer is satisfied with
the price level, the rating of the system increases by one with the probability c(1)p . With

the probability c(2)p , an interviewed customer states that the prices are too high, and the

rating of the system decreases by one. With the probability 1 − c(1)p − c(2)p , the interviewed
customers are indifferent to the price level, and the rating is not changed.

The mechanism of the dynamic change in pricing is as follows. The current price re-
mains unaltered for an amount of time that is exponentially distributed with the parameter
γ, γ > 0. After this time, the system revises its prices depending on the current rating. The
policy of revision is defined by the two integer thresholds r1 and r2, 1 ≤ r1 < r2 ≤ R. If
the current rating belongs to the interval [1, r1] (the rating is relatively low), then the price
level is decreased by one if it is not already the minimum. If the current rating is in the
interval [r2, R] (the rating is relatively high), the price level is increased by one if it is not
the maximum. The prices are not changed if the system’s rating is in the interval (r1, r2),
i.e., if the rating is in the middle of the interval.

The customer service time has an exponential distribution with the parameter µ, µ > 0.
We assume that customers can be impatient and leave the buffer and depart from the

system after an exponentially distributed amount of time with the parameter α,
α > 0. Impatience is an important feature of many real-world systems, and, therefore,
its consideration is mandatory for building an adequate model of a real system. The
literature related to queueing models with customer impatience is quite extensive; see,
e.g., [20–25].

The quantitative effect of variations in the thresholds r1 and r2 is difficult to estimate
intuitively. Therefore, a mathematical analysis of the system is necessary to evaluate this
effect if we would like to optimize the quality of the system operation. We provide such an
analysis below.

3. The Markov Process Describing the System and the Derivation of Its Generator

Let
it, it ≥ 0, be the number of customers in the system;
rt, rt = 1, R, be the system’s rating,
pt, pt = 1, P, be the price level;
νt, νt = 1, W, be the state of the underlying process of the RMAP at time t, t ≥ 0.
The behavior of the queueing system under study is described by a regular irreducible

MC with continuous time:
ξt = {it, rt, pt, νt}, t ≥ 0.

The irreducibility of this MC follows from the usually imposed assumption of irreducibility
of the underlying process νt describing the mechanisms for changing ratings and prices,
the component it is able to transition from any state i to the neighboring states i − 1 and
i + 1.

Let us renumber the states of the MC ξt in the direct lexicographical order of the
components (it, rt, pt, νt) and refer to the set of states of the chain having the value i
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for the first component of the MC as level i, i ≥ 0. The set of states of the chain having
the values (i, r) for the first and second components of the MC is called the macrostate
(i, r), i ≥ 0, r = 1, R.

Let us introduce the following denotations.
⊗ is the symbol of the Kronecker product of matrices; see, for example, [26].
δr,r′ denotes Kronecker’s delta. It is equal to 1 if r = r′ and equal to 0 otherwise.
In is the identity matrix, and On is the zero matrix, the dimension of which is indicated

by a subscript n if necessary.
diag{c1, c2, . . . , cn} is the diagonal matrix with the diagonal elements c1, c2, . . . , cn.
I−r , I+r , and I0

r , r = 1, R, are the square matrices of size P and are defined as follows:

I−r =




1 0 0 . . . 0 0
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0

, r = 1, r1,

OP, r = r1 + 1, R,

I+r =



OP, r = 1, r2 − 1,
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1
0 0 0 . . . 0 1

, r = r2, R,

I0
r =

{
IP, r = r1 + 1, r2 − 1,
OP, r = 1, r1

⋃
r = r2, R.

The following assertion is valid.

Theorem 1. The generator Q of the MC ξt, t ≥ 0, has the following block tridiagonal structure:

Q =


Q0,0 Q0,1 O O O . . .
Q1,0 Q1,1 Q1,2 O O . . .
O Q2,1 Q2,2 Q2,3 O . . .
O O Q3,2 Q3,3 Q3,4 . . .
...

...
...

...
...

. . .

 (1)

where the non-zero blocks Qi,j, |i − j| ≤ 1, contain the intensities of transitions from level i to
level j. They, in turn, consist of sub-blocks (Qi,j)r,r′ that determine the transition rates from the
macrostate (i, r) to the macrostate (j, r′).

These blocks and sub-blocks are defined as follows:
The diagonal blocks Qi,i, i ≥ 0, have the form Qi,i = (Qi,i)r,r′ , r, r′ = 1, R, where the

non-zero blocks (Qi,i)r,r′ are given by

(Qi,i)r,r = IP ⊗ D(r)
0 + (1 − b)(1 − qi)IP ⊗ D(r)

1 − µmin{i, N}IPW − αmax{0, i − N}IPW−

−γIPW + γ(I−r + I+r + I0
r )⊗ IW + δr,1b(1 − qi)IP ⊗ D(1)

1 , r = 1, R,

(Qi,i)r,r−1 = b(1 − qi)IP ⊗ D(r)
1 , r = 2, R,

The upper diagonal blocks Qi,i+1, i ≥ 0, have the form Qi,i+1 = (Qi,i+1)r,r′ , |r − r′| ≤ 1, r, r′ =
1, R, where the non-zero blocks are given by

(Qi,i+1)r,r = (1 − b)qi IP ⊗ D(r)
1 + δr,1bqia

(2)
i IP ⊗ D(1)

1 +
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+(1 − δr,R)bqi(1 − a(1)i − a(2)i )IP ⊗ D(r)
1 + δr,Rbqi(1 − a(2)i )IP ⊗ D(R)

1 , r = 1, R,

(Qi,i+1)r,r+1 = bqia
(1)
i IP ⊗ D(r)

1 , r = 1, R − 1,

(Qi,i+1)r,r−1 = bqia
(2)
i IP ⊗ D(r)

1 , r = 2, R,

The subdiagonal blocks Qi,i−1, i ≥ 1, have the form Qi,i−1 = (Qi,i−1)r,r′ , |r − r′| ≤ 1, r, r′ = 1, R,
where the non-zero blocks are defined as

(Qi,i−1)r,r = αmax{0, i − N}IPW + (1 − b)µmin{i, N}IPW+

+bµmin{i, N}diag{1 − c(1)p − c(2)p , p = 1, P} ⊗ IW+

+δr,1bµmin{i, N}diag{c(2)p , p = 1, P} ⊗ IW+

+δr,Rbµmin{i, N}diag{c(1)p , p = 1, P} ⊗ IW , r = 1, R,

(Qi,i−1)r,r−1 = bµmin{i, N}diag{c(2)p , p = 1, P} ⊗ IW , r = 2, R,

(Qi,i−1)r,r+1 = bµmin{i, N}diag{c(1)p , p = 1, P} ⊗ IW , r = 1, R − 1.

Proof. The theorem is proved by analyzing the intensities of all possible transitions of the
MC ξt during an infinitesimal period. Since, during such a period, customers enter and are
serviced in the system one at a time, the matrices Qi,j, i, j ≥ 0, are zero matrices for all i, j
such that |i − j| > 1. This explains the presence of only three block diagonals in formula (1)
of the generator Q.

The blocks Qi,j, |i− j| ≤ 1, are built from the matrices (Qi,j)r,r′ containing the transition
rates of the MC ξt from the macrostate (i, r) to the macrostate (j, r′), r, r′ = 1, R.

Let us explain the forms of all these blocks.
The matrices Qi,i, i ≥ 0, have the non-zero diagonal blocks (Qi,i)r,r, r = 1, R, and

subdiagonal blocks (Qi,i)r,r−1, r = 2, R. This is explained by the fact that when the number
of customers does not change during an interval of infinitesimal length, the system rating
can only decrease or remain the same.

The diagonal elements of the diagonal blocks (Qi,i)r,r, r = 1, R, of the Qi,i matrices
are negative. Their modules determine the intensity of departure of the MC ξt from the
respective state. The MC ξt can exit from its current state in the following cases:

• The underlying process νt of the customer’s arrival leaves the current state. The
corresponding transition intensities are determined by the modules of the diagonal
entries of the matrices IP ⊗ D(r)

0 , r = 1, R.
• A customer is serviced. The corresponding transition rates are given by the matrices

µmin{i, N}IPW , r = 1, R.
• A customer reneges (leaves the buffer) due to impatience. The matrices αmax{0, i −

N}IPW , r = 1, R, set the corresponding intensities.
• The price level is changed. The transition rates are determined by the diagonal entries

of the matrix γIPW − γ(I−r + I+r + I0
r )⊗ IW , r = 1, R.

Note that if the underlying process νt makes a transition from some state ν to the same
state with the generation of a customer and (i) the arriving customer refuses to wait, balks
(leaves the system), and does not participate in the survey or (ii) the arriving customer
refuses to wait, leaves the system, and participates in the survey when the rating of the
system is already the lowest (r = 1), the state of the MC ξt does not change. To this end,
to the diagonal entries of the matrices (Qi,i)r,r, we have to add the diagonal entries of the

matrices (1 − b)(1 − qi)IP ⊗ D(r)
1 in case (i) and matrices δr,1b(1 − qi)IP ⊗ D(1)

1 , r = 1, R, in
case (ii) that define the corresponding intensities.
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The off-diagonal entries of the matrices (Qi,i)r,r, r = 1, R, of the matrices Qi,i determine
the transition rates of the MC ξt without changing the values of the components i and r.
These transitions are defined by the following:

• The off-diagonal entries of the matrices IP ⊗ D(r)
0 , r = 1, R, when the underlying

process νt makes a jump without a customer generation;
• The off-diagonal entries of the matrices (1 − b)(1 − qi)IP ⊗ D(r)

1 , r = 1, R, when an
arriving customer abandons the system at the entrance and he or she is not surveyed;

• The off-diagonal entries of the matrices δr,1b(1 − qi)IP ⊗ D(1)
1 , r = 1, R, when an

arriving customer abandons the system at the entrance and he or she is surveyed, but
the system already has the lowest rating;

• The off-diagonal entries of the matrices γ(I−r + I+r + I0
r ) ⊗ IW , r = 1, R, when the

system changes its price level.

The blocks (Qi,i)r,r−1, r = 2, R, given by the matrices b(1 − qi)IP ⊗ D(r)
1 contain the

rates of transitions of the MC ξt occurring when the system rating decreases by one. This
can happen only when an arriving customer leaves the system at the entrance due an
unwillingness to wait, participates in the survey, and decreases the system rating.

The matrices Qi,i+1, i ≥ 0, have the non-zero diagonal blocks (Qi,i+1)r,r, r = 1, R,
subdiagonal blocks (Qi,i+1)r,r−1, r = 2, R, and upper diagonal blocks (Qi,i+1)r,r+1, r =
1, R − 1. Let us explain the expressions for these blocks.

First, consider the diagonal blocks (Qi,i+1)r,r, r = 1, R, that contain the transition rates
of the MC ξt when the number of customers increases while the system rating remains the
same. This can occur when an arriving customer joins the system and one of the following
occurs:

• The customer does not participate in the survey. The corresponding transition rates

are given by the entries of the matrices (1 − b)qi IP ⊗ D(r)
1 , r = 1, R.

• The customer participates in the survey and (i) states that the queue length is ac-
ceptable and does not change the rating; (ii) considers the queue length too long
and wants to decrease the rating, but the system already has the lowest rating; (iii)
considers the queue length short and wants to increase the rating, but the system
already has the highest rating. The corresponding rates are given by the matrices
(1 − δr,R)bqi(1 − a(1)i − a(2)i )IP ⊗ D(r)

1 in case (i), matrices δr,1bqia
(2)
i IP ⊗ D(1)

1 in case

(ii), and matrices δr,Rbqi(1 − a(2)i )IP ⊗ D(R)
1 in case (iii).

Then, consider the blocks (Qi,i+1)r,r+1, r = 1, R − 1, and (Qi,i+1)r,r−1, r = 2, R, de-

fined by the matrices bqia
(1)
i IP ⊗ D(r)

1 and bqia
(2)
i IP ⊗ D(r)

1 , respectively, which specify the
transition intensity of the MC ξt in the case where an arriving customer joins the system
and considers that the system’s rating should be increased or decreased based on the
survey’s results.

The subdiagonal blocks Qi,i−1, i ≥ 1, contain the rates of the MC ξt transitions when
the number of customers decreases by one. This can occur when a customer leaves the
buffer due to impatience or a customer receives service in the system.

The non-zero diagonal blocks (Qi,i−1)r,r, r = 1, R, that suit the occasion when the
system’s rating does not change are specified by the following matrices:

(a) αmax{0, i − N}IPW if a customer reneges (leaves the buffer) due to impatience;
(b) (1 − b)µmin{i, N}IPW if a customer who received service is not interviewed;
(c) bµmin{i, N}diag{1 − c(1)p − c(2)p , p = 1, P} ⊗ IW if a customer interviewed after

service is indifferent to the price level;
(d) δr,1bµmin{i, N}diag{c(2)p , p = 1, P} ⊗ IW if a customer interviewed after service

states that the prices are too high and the rating of the system can be decreased by one, but
the system already has the lowest rating,
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(e) δr,Rbµmin{i, N}diag{c(1)p , p = 1, P} ⊗ IW if a customer interviewed after service is
satisfied with the price level and the rating of the system can be increased by one, but the
system already has the highest rating.

The blocks (Qi,i−1)r,r+1, r = 1, R − 1, and (Qi,i−1)r,r−1, r = 2, R, defined by the ma-

trices bµmin{i, N}diag{c(1)p , p = 1, P} ⊗ IW and bµmin{i, N}diag{c(2)p , p = 1, P} ⊗ IW ,
respectively, contain the transition intensities of the MC ξt in the case where the system
rating increases or decreases based on the results of the survey of the serviced customer.

The theorem has been proven.

4. The Stationary Distribution of the System States and the Calculation of Its
Performance Measures

The generator Q of the MC ξt defined by formula (1) is a block tridiagonal matrix
of infinite size. Therefore, this MC can be classified as a quasi-birth-and-death (QBD)
process; for a definition, see, e.g., [17,19,27]. Unfortunately, due to the dependence of
some probabilities (qi, a(1)i , and a(2)i ) defining the behavior of the system on the number
of customers present in the system and due to the impatience of customers, the generator
does not possess a quasi-Toeplitz property. This means that the values of the blocks Qi,j
depend not only on the difference j − i but also on i and j separately. Thus, the constructed
QBD does not fit the class of the level-independent QBD, for which a coherent theory was
formulated by M. Neuts; see his seminal book [27] and also books [17,19].

Fortunately, it is clear that in real-world applications, the mentioned probabilities
qi, a(1)i , and a(2)i have to possess, when the number i of customers staying in the system
tends to infinity, the following asymptotic properties: the probability qi that the customer
chooses to enter the system tends to some value q, the probability a(1)i that the customer

judges the queue length as short tends to some value a(1), and the probability a(2)i that the
customer judges the queue length as too long tends to some value a(2). The most realistic
values of these limit values are q = 0, a(1) = 0, a(2) = 1.

After imposing the assumption about these limits’ existence, it is possible to prove the
following statement.

Lemma 1. The MC ξt falls to the class of Asymptotically Quasi-Toeplitz Markov Chains (AQTMCs)
introduced in [28]; see also the book [19].

Proof. Essentially, the definition of an AQTMC given in [28] requires the existence of
limiting matrices Q0, Q1, and Q2, defined by

Qk = − lim
i→∞

(I ◦ Qi,i)
−1Qi,i+k−1 + δk,1 I, k = 0, 1, 2,

where ◦ means Hadamard’s product of matrices (see, e.g., [29]). Using the explicit form of
the blocks of the generator Q, it is possible to check that these limits exist for the MC ξt
and are defined by the formula

Q0 = I, Q1 = O, Q2 = O.

Thus, the MC ξt satisfies the definition of an AQTMC. Lemma 1 isproven.

Theorem 2. The MC ξt is ergodic for all values of parameters of the queueing system under study.

Proof. According to [28], the sufficient condition for the ergodicity of an AQTMC is the
fulfillment of the inequality

yQ0e > yQ2e
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where the row vector y is the unique solution of the system

y = y(Q0 +Q1 +Q2), ye = 1.

Because Q0 = I and Q2 = O, the required inequality is trivially fulfilled. Theorem 2 is
proven.

This implies that the MC ξt has a stationary distribution.
Let πi be the row vector of stationary probabilities of the states of the MC ξt, which

constitute the level i, i ≥ 0, and let π(i, r) be the row vector of stationary probabilities of
the states of the MC ξt, which constitute the macrostate (i, r), i ≥ 0, r = 1, R. Let the vector
π(i, r) be partitioned into sub-vectors: π(i, r) = (π(i, r, 1), π(i, r, 2), . . . , π(i, r, P)).

The problem of the computation of the vectors of the stationary probabilities πi, i ≥ 0,
as the solution of the infinite system of Chapman–Kolmogorov equations is pretty difficult.
But because the MC ξt belongs to the class of AQMTCs, the numerically stable algorithm
developed in [28] can be adopted for the computation of these vectors. More recent
modifications of this effective method can be found, e.g., in [30,31].

After computing the vectors πi, i ≥ 0, it is feasible to calculate several performance
metrics for the considered queueing system.

The mean number of customers in the buffer is calculated using the formula

Lbu f =
∞

∑
i=N+1

(i − N)πie.

It is worth noting that, here, the multiplication of the row vector πi by the column vector e
corresponds to the summation of the probabilities of the states of the MC ξt that belong to
level i, and, correspondingly, πie is the probability that i customers reside in the system at
an arbitrary moment, i ≥ 0.

The mean number of occupied servers is given by

Nserv =
∞

∑
i=0

min{i, N}πie.

The mean number of customers in the system is obtained using the formula

L =
∞

∑
i=1

iπie = Lbu f + Nserv.

The average value of the system’s rating is calculated using the formula

R̄ =
∞

∑
i=0

R

∑
r=1

rπ(i, r)e.

The average price level is equal to

P̄ =
∞

∑
i=0

R

∑
r=1

P

∑
p=1

pπ(i, r, p)e.

The average intensity β of the price level change is given by

β = γ
∞

∑
i=0

(
r1

∑
r=1

P

∑
p=2

π(i, r, p)e +
R

∑
r=r2

P−1

∑
p=1

π(i, r, p)e

)
.

A short explanation of this formula is as follows. The parameter γ, γ > 0, is the rate of
the occurrence of moments of a possible change in price. The expression in brackets is the
probability that the rating has to be changed at such a moment. The first summand is the
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probability that the rating has to be decreased. The second summand is the probability that
the rating has to be increased.

The average intensity of the output flow of satisfactorily serviced customers is calcu-
lated by the formula

µout =
∞

∑
i=0

µmin{i, N}πie.

The average rate of system arrivals is calculated as

λ =
∞

∑
i=0

R

∑
r=1

π(i, r)(IP ⊗ D(r)
1 )e.

The probability that an arriving customer will find an idle server andstart service as
soon as he/she arrives is found by the formula

Pto−serv =
1
λ

N−1

∑
i=0

R

∑
r=1

qiπ(i, r)(IP ⊗ D(r)
1 )e.

The probability that an arriving customer will find all servers busy and join the buffer
is equal to

Pto−bu f =
1
λ

∞

∑
i=N

R

∑
r=1

qiπ(i, r)(IP ⊗ D(r)
1 )e.

The probability that an arriving customer will abandon the system due to a disinclina-
tion to join the system is found by the formula

Parr−loss =
1
λ

∞

∑
i=0

R

∑
r=1

(1 − qi)π(i, r)(IP ⊗ D(r)
1 )e.

The loss probability of an arbitrary customer who leaves the buffer due to impatience
is obtained using the formula

Pimp−loss =
αLbu f

λ
.

The loss probability of an arbitrary customer is given by

Ploss = Parr−loss + Pimp−loss = 1 − µout

λ
.

Remark 1. The last formula presents two different ways to compute the probability Ploss. This fact
can be used for the control, along with other possible means of testing, of the accuracy of computation
of the blocks of the generator (1), the vectors of stationary probabilities, and performance measures of
the system.

5. Numerical Example

The goals of this numerical example are to highlight the impact of the control parame-
ters r1 and r2 on the key performance measures of the system and to illustrate the possibility
of applying the results of the implemented analysis for managerial goals. Unfortunately,
we have no access to data from any real system operations. Therefore, in this numerical
example, the system’s parameters are selectedbased on common sense.

Consider the base MAP, which is defined by the matrices

D0 =

(
−1.77143 0.0571429
0.0571429 −0.628571

)
,

D1 =

(
1.65714 0.0571429

0.0114286 0.56

)
.
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This base MAP has the average arrival rate λ̃ = 1. The coefficient of correlation of the
neighboring inter-arrival times is 0.143251, and the squared coefficient of variation is
1.52206.

Let us assume that the rating of the system varies in the range from 1 to R, where
R = 20. Using the base MAP, we construct the RMAP of customers that arrive at the
system. The matrices determined by this RMAP are calculated as follows:

D(r)
0 = (1 +

r − 1
2

)D0, D(r)
1 = (1 +

r − 1
2

)D1, r = 1, 20.

When the system rating is r, the average arrival rate of the RMAP is denoted by λr and is
calculated by the formula λr = 0.5(r + 1), r = 1, 20.

The number of servers N is considered to be 15, and the service rate µ is 0.5. The
probability of an arbitrary customer being surveyed b is equal to 0.001.

The probabilities qi, a(1)i and a(2)i , i ≥ 0, are defined as follows:

qi =

{
1, i < N,
1 − i−N

i−N+ 3000
i

, i ≥ N;

a(1)i =

{
1, i < N,
1 − i−N

i−N+10 , i ≥ N;
a(2)i =

{
0, i < N,

i−N
i−N+20 , i ≥ N.

The system’s price level varies from 1 to P, where P = 10. The probabilities c(1)p and

c(2)p , p = 1, 10, are defined as

c(1)p = 0.9 − p − 1
p

, c(2)p = 0.09 +
p − 1
1.2p

.

The intensity of the price change γ is assumed to be 0.0002, and the intensity of impatience
α is 0.02.

We vary the rating parameter r1 in the interval [1, 19] and the rating parameter r2 in
the interval [r1 + 1, 20] with step 1.

Figures 2–4 illustrate the dependence of the average number L of customers in the
system, the average number Lbu f of customers in the buffer, and the average number of
busy servers Nserv on the parameters r1 and r2, respectively.
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Figure 2. The dependence of the average number L of customers in the system on the parameters r1

and r2.
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Figure 3. The dependence of the average number Lbu f of customers in the buffer on the parameters
r1 and r2.
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Figure 4. The dependence of the average number Nserv of busy servers on the parameters r1 and r2.

Figures 5–8 illustrate the dependence of the average system’s rating R̄, the average
price level P̄, the average arrival intensity λ, and the average intensity β of the price level
change on the parameters r1 and r2, respectively.
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Figure 5. The dependence of the average system’s rating R̄ on the parameters r1 and r2.
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Figure 6. The dependence of the average price level P̄ on the parameters r1 and r2.

As is seen in Figures 2–4, the average values L, Lbu f , and Nserv decrease with the
increase in the parameters r1 and r2. This can be explained as follows. With an increase in
the parameter r1, the system rarely decreases the price level, and with an increase in r2, the
system rarely increases the price level. As a result, an increase in the parameters r1 and r2
leads to a decrease in the average price level; see Figure 6. From Figure 6, we can conclude
that the highest average price level is equal to 9.76246 and is achieved at r1 = 1 and r2 = 2.
The minimum average price level is equal to 1.318 and is achieved at r1 = 19 and r2 = 20.
As a result, with the increase in the parameters r1 and r2, customers are more often satisfied
with the price level, which leads to an increase in the average system rating. Thus, as is
seen in Figure 5, the average rating grows with the increase in the parameters r1 and r2.
Note that the minimum rating is achieved at r1 = 1 and r2 = 2 and is equal to 6.69775; the
maximum value of R̄ is 17.79044 for r1 = 19 and r2 = 20. Since we assume that the arrival
intensity of the RMAP is a nondecreasing function of the rating r, a higher average rating
implies a higher average arrival intensity; see Figure 7. The minimum arrival rate is equal
to 3.84887 for r1 = 1 and r2 = 2 when the average price level is the maximum, and the
maximum arrival rate is equal to 9.39522 for r1 = 19 and r2 = 20 when the average price
level is the minimum. The growth in the average arrival intensity explains the growth in
the values L, Lbu f , and Nserv with the increase in the parameters r1 and r2.
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Figure 7. The dependence of the average arrival rate λ on the parameters r1 and r2.
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Figure 8. The dependence of the average intensity β of the price level change on the parameters r1

and r2.

The dependence of the average intensity β of the price level change on the parameters
r1 and r2 is quite tricky. We can only conclude that, at a fixed value of r1, the intensity β
decreases with the increase in the parameter r2, and at a fixed value of r2, the intensity β
increases with the increase in the parameter r2. This can be explained as follows. When
the rating of the system is in the interval (r1, r2), the price level does not change. When
the difference between r1 and r2 is bigger, the length of this interval is also bigger, and
the system rarely changes the price level, and the intensity β decreases. Note that, in the
considered example, the maximum value of β is 0.00019931 and is achieved when r1 = 12
and r2 = 13. The minimum value of β is 2.39 × 10−6 and is achieved when r1 = 1 and
r2 = 20.

Figures 9–11 illustrate the dependence of the probability Parr−loss that a customer
leaves the system upon arrival, the loss probability Pimp−loss of an arbitrary customer who
leaves the buffer due to impatience, and the total loss probability Ploss on the parameters r1
and r2, respectively.
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Figure 9. The dependence of the probability Parr−loss that a customer leaves the system upon arrival
on the parameters r1 and r2.
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Figure 10. The dependence of the loss probability Pimp−loss of an arbitrary customer who leaves the
buffer due to impatience on the parameters r1 and r2.
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Figure 11. The dependence of the loss probability Ploss on the parameters r1 and r2.

As one can see from Figures 9–12, an increase in the parameters r1 and r2 leads
to an increase in all presented loss probabilities. This is a result of raising the average
arrival rate λ at the system with the increase in the parameters r1 and r2. The shape of the
dependencies looks similar; the difference is only in the values. The minimum values of
the loss probabilities are achieved at r1 = 1 and r2 = 2 and are equal to Parr−loss = 0.02113,
Pimp−loss = 0.00634, and Ploss = 0.02747. The maximum values of the loss probabilities are
achieved at r1 = 19 and r2 = 20 and are equal to Parr−loss = 0.18802, Pimp−loss = 0.0372,
and Ploss = 0.22522. Thus, in this numerical example, the total loss probability Ploss can
vary by about 10 times depending on the values of the parameters r1 and r2. However, the
customer loss probability does not always define the quality of the system’s operation since
the loss probability does not define the system’s profit.

To be able to estimate the system’s profit and define the optimal values of the control
parameters r1 and r2 that maximize the profit, let us assume that the quality of the system’s
operation can be described by the cost criterion E, which is defined as follows:

E = E(r1, r2) = aµout(1 + 0.1P̄)− cλPloss − dβ.

Here, the parameters a, c, and d are cost coefficients that have the following meaning:

• a is the average profit from servicing one customer.
• c is the charge for the loss of one customer. It may include lost profits and reputational

costs.
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• d is the charge related to a change in price.
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Figure 12. The 2D dependence of the loss probability of Ploss on the parameter r2, r2 > r1, for several
values of the parameter r1.

Note that the value aµout(1 + 0.1P̄) defines the profit obtained by the system per unit
of time. The multiplier (1 + 0.1P̄) appears here to account for the fact that if all other
parameters’ values are equal, a greater price level implies a greater profit.

Here, we assume that the cost coefficients have the following values:

a = 1, c = 2, d = 1000.

Figure 13 illustrates the dependence of the cost criterion E on the parameters r1 and r2.
Figure 14 illustrates the corresponding 2D dependence of the cost criterion E on the

parameters r1 and r2.
Based on the result of our computations, we can conclude that the optimal value of the

cost criterion is E∗ = 7.17452. This value is achieved when r1 = 5 and r2 = 12. In simple
words, to obtain the maximum profit, a system manager has to decrease the price level
if the rating drops to 5 and increase the price level if the rating is greater than or equal
to 12. If the rating of the system is in the interval [6, 11] at the moment of a price level
reconsideration, the price level has to remain unchanged.

Based on Figures 13 and 14, we can conclude that the cost criterion takes close-
to-maximum values when the values of the parameters r1 and r2 are small. When the
parameters r1 and r2 are large, the profit significantly decreases. The minimum value of
the cost criterion E is 3.89727 for r1 = 19 and r2 = 20. This can be explained by the fact
that we chose quite a large value for the coefficient c. Thus, the penalty for a customer loss
is severe, and, as was mentioned above, for small values of the parameters r1 and r2, the
loss probability of customers is the minimum. If someone changes the cost coefficients,
the shape of the dependence of the cost criterion E on the parameters r1 and r2 may be
different. This makes it impossible to predict the optimal values of the parameters r1 and
r2 in advance without computations. This explains the necessity of analytical modeling for
such systems.
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Figure 13. The dependence of the cost criterion E on the parameters r1 and r2.
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Figure 14. The 2D dependence of the cost criterion E on the parameter r2, r2 > r1, for several values
of the parameter r1.

6. Conclusions

In this paper, a rating-counting mechanism for a multi-server queue with an infinite
buffer and impatient customers is presented. The rating varies in a fixed, finite range
depending on the results of a customer survey. Customers evaluate the degree of their
satisfaction by the length of the queue that they encounter upon arrival and by the price
of service. A higher rating of the system implies a higher customer arrival rate and the
possibility of increasing the price of service. The regulation of the price allows an increase
in the revenue of the service provider and implicitly controls the rating and, consequently,
the customer’s arrival rate. Customers arrive according to the RMAP. The model of
the RMAP allows for modeling the arrival process correlated with rating-dependent
instantaneous rates.

At fixed thresholds defining the policy for control by price, the behavior of the system
is described by a four-dimensional MC, with the components including the number of
customers in the system, the current rating of the system, the price level, and the underlying
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process of arrival. An explicit expression for the generator of this MC is obtained. Under
realistic assumptions about the form of the dependence of the probabilities of system
balking, evaluating the current queue length as too short or too long, the obtained MC
belongs to the class of AQTMCs investigated in [19,28,30,31]. This allows us to state that
the considered system is always stable and compute its stationary distribution and the
key performance indicators of the system. Numerical results confirming the feasibility of
the presented formulas and giving insight into the quantitative behavior of the system are
presented. The possibility of making the best decision about the thresholds defining the
policy for control by price is illustrated.

The obtained results can be expanded to systems with distinct mechanisms for
counting ratings and controlling prices. Also, the results can be extended to systems
with customer retrials (see, e.g., [32–36]) and, more generally, phase-type distributions
(see, e.g., [27,37–39]) and the generalized phase-type distribution of service time (see,
e.g., [40,41]).
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