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Abstract: This paper presents a coaxial counter-rotating planetary transmission system. The trans-
mission system under study is a two-stage planetary gear train (PGT) comprising a fixed-axes PGT
and a differential PGT. A dynamic model of the transmission system is established, considering
both the excitations caused by the time-varying mesh stiffness (TMS) and the transmission errors,
respectively. The Runge–Kutta algorithm is used to calculate and analyze the dynamic characteristics
of the system. This includes studying dynamic meshing forces, planet gear displacements, and
load-sharing coefficients (LSCs) under both internal and external excitations, as well as different
input torques. The results indicate that when considering external excitations, the variations in the
meshing force curves become more pronounced. The radial displacements of the planet gears in the
differential PGT are greater than that in the fixed-axes PGT. With increasing input torque, the average
displacements of the planet gears in all directions tend to increase. The differential PGT, transmitting
a higher power, demonstrates a better load-sharing performance compared to the fixed-axes PGT.

Keywords: coaxial counter-rotating planetary transmission system; internal and external excitations;
load-sharing coefficient; dynamic response

1. Introduction

The coaxial counter-rotating planetary transmission system under investigation in this
study is a two-stage PGT consisting of a fixed-axes PGT and a differential PGT. Planetary
gear transmissions are favored for their high torque density, smooth output, compact
design, and high efficiency. The coaxial counter-rotating planetary transmission system
brings numerous advantages to the power transmission of helicopter rotor shafts and ship
propellers. This type of transmission system enhances transmission efficiency, reduces
energy loss, thereby extending equipment operating time, particularly suitable for equip-
ment with long-duration operations, such as with helicopters and ships. Furthermore,
the coaxial counter-rotating planetary transmission system, by concentrating power trans-
mission along a single axis, saves space, allowing for more compact equipment design,
which is adaptable to the limited space environment in aerospace and maritime sectors.
The transmission system provides precise and smooth power transmission, improving the
maneuverability and stability of helicopters and ships, particularly evident when operating
in complex environments. Due to the typically fewer mechanical connections in coaxial
counter-rotating planetary transmission systems, their maintenance costs are relatively low,
contributing to reduced operational costs and prolonged equipment lifespan.

The field of PGTs has witnessed substantial enrichment through the noteworthy con-
tributions of numerous scholars dedicated to exploring the dynamic characteristics of these
systems. Bahk et al. [1] introduced a computational model to analyze the excitation of teeth
profiles following modification. They conducted additional investigations to examine the
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effects of profile modification on the dynamic response of the system through the utilization
of perturbation analysis. Shen et al. [2] introduced a torsional dynamic model specifically
designed for planet gears. This model incorporates multiple elements, including gear
wear, TMS, unloaded static transmission errors, and gear backlash. By incorporating these
elements into the dynamic model, they aimed to provide a more comprehensive under-
standing of the behavior of planet gears under torsional loads. Xu et al. [3] employed a
discretization technique to transform the continuous gear profile into a set of discrete points,
which were subsequently utilized for planet gear modeling. Gu et al. [4,5] investigated the
trajectories of components and the distribution of loads in planet gears, taking into account
eccentricity errors and positional errors. Guo et al. [6] employed real-time excitations in
harmonic balance to investigate the dynamics of wind turbine planetary gear sets. Huangfu
et al. [7] proposed a continuous-discrete model for helical gears. Based on the dynamics
model proposed, they investigated the transmission effects of planet gears, the influence
of bolt constraints, and gear vibration. Han et al. [8] presented a three-dimensional load
tooth contact analysis (3DLTCA) model considering changes in the center distance and root
crack discontinuity of planet gears, and they calculated the dynamic response under the
combined effects of assembly errors and crack discontinuities. Wang et al. [9], based on
the translational–rotational dynamic model of planetary gear systems, studied the effects
of multiple excitations on the vibration response of various planet gear components. Liu
et al. [10] coupled the concentrated mass dynamic submodel of sun gears and planet gears
with the reduced-order finite element submodel and used this model to analyze the coupled
dynamics of flexible planet gears under high-speed and variable-speed conditions.

In the field of multistage compound planet gears and coaxial counter-rotating gears,
Liu et al. [11] proposed a dynamic model for the Dual-Planetary Gear System (DPGS) that
integrates the dynamic characteristics of the planet bearing rollers and retainers. Fyler
et al. [12] proposed a two-dimensional steady-state discrete dynamic model for a dual-stag
planetary gear set. They obtained the forced vibration response to gear mesh excitations
by applying the modal summation technique. Guo et al. [13] investigated the vibration
and acoustic characteristics of a power-split hybrid transmission utilizing a compound
planetary gear set through numerical processes and refined dynamics modeling. Tung
et al. [14] developed a time-varying reduced-order numerical model for a compound
reducer, enabling the prediction of its meshing frequencies and harmonics. Zhang et al. [15]
established a translational–torsional concentrated mass dynamic model for a compound
planetary gear set, calculating eccentric load coefficients under the influence of excitations
such as tooth wear accumulation and transmission errors. Yang et al. [16] proposed a
multinode dynamic model for a marine compound gear transmission system, investigating
its modal characteristics and dynamic responses. Li et al. [17] developed a dynamic
model for a two-stage parallel-axis gear system with variable mesh stiffness, revealing the
variations in system vibration under the interaction of coaxial gear ratios and meshing
phases. Zhang et al. [18] employed a concentrated mass method to establish a translational–
rotational dynamic model for a planetary gear system, analyzing the natural frequencies
and mode characteristics of a coaxial counter-rotating helicopter main gearbox. Ryali
et al. [19] developed a hybrid planet dynamic load distribution model, employing finite
element substructuring techniques to ensure computational efficiency and investigated the
influence of planet carrier flexibility on the quasi-static and dynamic responses of planetary
gear sets. Lai et al. [20] proposed a flexible–rigid coupling dynamics (FRCD) model for
Ravigneaux planetary gear sets (RPGS) with unloaded floating sun gears and studied the
influence of the sun gear position on planet dynamic responses, revealing the mechanism
of floating ring gear vibration. Wang et al. [21] proposed a novel split-type structure for
first- and second-stage gears of planetary reducers. Through rigid body dynamics theory,
dynamic simulations, noise tests, and dynamic stability tests were conducted to determine
the dynamic characteristics of the entire system. Cui et al. [22], focusing on compound
planetary gears, established a bending–torsional coupled dynamic model of the system
based on Lagrange’s equations, investigating the bending–torsional coupled meshing
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deformations and translations and torsions of various engagements. Zhang et al. [23]
studied the inherent vibration modes of Ravigneaux compound planetary gear trains
(PGT), proposing a two degrees of freedom simplified dynamic model of planet gears
considering nonlinearities, such as time-varying mesh stiffness and backlash, and obtaining
numerical solutions for the bifurcation and dynamic instability of two groups of planetary
gear systems.

In summary, the dynamics models of PGTs are mainly divided into concentrated
mass analysis models, finite element analysis models, and rigid–flexible coupling analysis
models. In the concentrated mass analysis model, the masses of all components (sun
gear, planet gears, ring gear, carrier) in the PGTs are concentrated at single points, and
these concentrated mass points are interconnected by springs with stiffness and damping.
The finite element model utilizes finite element software to conduct dynamic analysis
of gear transmission systems to obtain contact stresses, bending stresses, etc., while the
rigid–flexible coupling model is a modeling method that treats components with large
deformations as flexible based on the concentrated mass method.

The aforementioned studies on the dynamics of planet gears have mostly focused
on single-stage transmissions or simple two-stage serial planetary transmissions with
a single input and single output. There has been relatively limited research on coaxial
counter-rotating planetary transmission systems composed of fixed-axes PGT and differ-
ential PGT. Although finite element analysis models and rigid–flexible coupling analysis
models can extract more dynamic information, there are issues such as low efficiency when
solving complex systems. Therefore, for complex mechanisms like coaxial counter-rotating
planetary transmission systems, employing concentrated mass analysis models can most
quickly extract dynamic information that is closer to reality. When using finite element
analysis models and rigid–flexible coupling analysis models for calculations, it often takes
several hours or even days. However, using the model proposed in this paper for numerical
calculations only takes a few minutes. Moreover, when the parameters of the transmission
system change, simply replacing the parameters in the program is sufficient, avoiding
the complex process of repetitive modeling and grid partitioning required by the finite
element method. From the results, which are provided in Section 5 of this paper, through
the comparison between ADAMS dynamic simulation and the results of this paper, also
proves the correctness of the model.

Therefore, this paper investigates the coaxial counter-rotating planetary transmission
system, establishing a dynamic model of the transmission system that considers time-
varying mesh stiffness and transmission error excitations. The dynamic characteristics of
the system are computed and analyzed using the Runge–Kutta algorithm. This includes
studying dynamic meshing forces, planet gear displacements, and load-sharing coefficients
(LSCs) under both internal and external excitations, as well as different input torques. The
main original findings in this study can be directly employed as preliminary principles for
the design of coaxial counter-rotating planetary transmission systems.

2. Composition of the Transmission System

The diagrammatic representation and model of the coaxial counter-rotating plane-
tary transmission system are shown in Figure 1. The entire system is composed of the
central components (sun gears—a and s; left ring gears—dL; right ring gears—dR; left ring
gears—rL; right ring gears—rR; carriers—c and h; and planet gears—mi and pi), as well as
the input shaft and output shaft. This transmission design incorporates a combination of
fixed-axes and differential PGTs. The input power is divided into two segments within the
system. A specific portion is designated for the fixed-axes PGT, flowing from the sun gear,
a, to the ring gear, d. Concurrently, the remaining section is allocated for the differential
PGT, starting from the sun gear s and further distributed to the carrier, h, and ring gear, r.
The transmission system is represented in the form of the Wolf–Arnaudov symbol [24], as
shown in Figure 2. In the figure, tI and tII denote the transmission ratio of the fixed-axes
PGT and the differential PGT, respectively, and tI = tII = t.
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Figure 2. Diagram of the coaxial counter-rotating planetary transmission system represented by the
Wolf–Arnaudov symbol.

3. Dynamic Model of the Transmission System
3.1. Dynamic Model

Taking the example of the differential PGT, the dynamic model, illustrated in Figure 3,
is established taking into account parameter excitations, such as TMS, dynamic transmission
errors, and support conditions, during the gear meshing process. The fixed-axes PGT
follows a similar model, with only different subscripts. Each component in this model has
four degrees of freedom. The variables xj, yj, and zj (j = a, m, dL, dR, m1, . . ., mN, s, h, rL,
rR, p1, . . ., pN) represent the translational displacements of the sun gear, carrier, ring gear,
and each planet gear in the x, y, and z directions, respectively. The component torsional
displacements around the z-axis are represented by θzj. The symbols k, c, and e in the figure
stand for mesh stiffness, mesh damping, and transmission errors, respectively, with distinct
components denoted by subscripts. The left and right gears are represented, respectively, by
the subscripts L and R. Bearing stiffness is represented by subscripts with b. As an example, kbxs
represents the support stiffness of the sun gear, s, in the x-direction. Similarly, kspiL represents
the mesh stiffness of the left-side gear pair between the sun gear, s, and the planet gear, p.
Likewise, the remaining symbols utilized in the model adhere to the identical notation.
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3.2. Calculation of Component Relative Displacements

The generalized coordinate and mass matrix of each component are as follows:{
Xj = [xj, yj, zj, θzj]

T

Mj = diag[mj, mj, mj, Jj]
, (1)

where Mj represents the mass of the component, and Jj represents the moment of inertia
with respect to the axis of rotation of the component.

For the purpose of modeling and solving the dynamic model, a fixed coordinate system,
o − xyz, is chosen for the fixed-axes PGT, while a follower coordinate system, oh − xhyhzh, is
selected for the differential PGT, with the carrier serving as the reference. The displacements
and deformations of the components are projected onto meshing lines to obtain the relative
displacements among the components.

3.2.1. Relative Displacements between Sun gear and Planet gears

As an illustration, the relationship between the i-th planet gear, p, and the sun gear,
s, in the differential PGT, as shown in Figure 4. In the figure, ψpi represents the angular
position of the planet gear.
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Along the meshing line, the elastic compression deformation of sun gear, a, and planet
gear, mi, can be expressed as positive for compression and negative for tension, as follows:

δamij = (xa sin ψami + ya cos ψami − xmi sin αami − ymi cos αami + rbaθza − rbmθzmi) cos βb ± (−za + zmi) sin βb − eamij(t), (2)

where j can take on the values of either L or R; ψami represents the angle between the
meshing line, ami, and the horizontal axis; αami represents the pressure angle; rba and rbm
represent the base circle radius of the sun gear, a, and planet gear, m; βb represents the
helix angle; eamij represents the transmission error between the sun gear, a, and planet gear,
m; and the superscript sign (±) applies to the left-side gear, while the subscript sign (±)
applies to the right-side gear.

The elastic compression deformation of the sun gear s and planet gear, pi, along the
meshing line is as follows:

δspij = (xs sin ψspi + ys cos ψspi − xpi sin αspi − ypi cos αspi + rbsθzs − rbpθzpi) cos βb ± (−zs + zpi) sin βb − espij(t), (3)

where ψspi represents the angle between the meshing line, spi, and the horizontal axis; αspi
represents the pressure angle; rbs and rbp represent the base circle radii of the sun gear, s,
and planet gear, p; and espij represents the transmission error between the sun gear, s, and
planet gear, p.
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3.2.2. Relative Displacements between the Ring gear and Planet Gears

As an illustration, the relationship between the i-th planet gear, p, and the ring gear, r,
in the differential PGT is shown in Figure 5.
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The elastic compression deformation of the ring gear, d, and planet gear, mi, along the
meshing line is as follows:

δdmij = (−xdj sin ψdmi + ydj cos ψdmi + xmi sin αdmi − ymi cos αdmi + rbmθzmi − rbdθzdj) cos βb ± (zdj − zmi) sin βb − edmij(t), (4)

where ψdmi represents the angle between the meshing line, dmi, and the horizontal axis; αdmi
represents the pressure angle; rbd represents the base radius of the ring gear, d; and edmij
represents the transmission error between the ring gear, d, and planet gear, m.

The elastic compression deformation of the ring gear r and planet gear pi along the
meshing line is as follows:

δrpij = (−xrj sin ψrpi + yrj cos ψrpi + xpi sin αrpi − ypi cos αrpi + rbpθzpij − rbrθzrj) cos βb ± (zrj − zpi) sin βb − erpij(t), (5)

where ψrpi represents the angle between the meshing line, rpi, and the horizontal axis; αrpi
represents the pressure angle; rbr represents the base circle radius of the ring gear, r; and
erpij represents the transmission error between the ring gear, r, and planet gear, p.

3.2.3. Relative Displacements between the Carrier and Planet Gears

The relationship between the planet gear, p, and the carrier, h, in the differential PGT
is shown in Figure 6.
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Neglecting the clearance of the bearings, the supporting bearings are approximated
by a simplified model using stiffness and damping. Therefore, the relative displacements
between the carrier, h, and the planet gear, pi, projected onto the carrier’s coordinate axes
xh, yh, and zh are as follows:

δxhpi = xh − xpi cos ψpi + ypi sin ψpi − rhθzh sin ψpi
δyhpi = yh − xpi sin ψpi − ypi cos ψpi + rhθzh cos ψpi
δzhpi = zh − zpi
θzhpi = θzh + θzpi

, (6)

where ψpi represents the angle between the xpi axis of the planet gear p and the xh axis of
the carrier.

The relative displacements between the carrier, h, and the planet gear, pi, projected
onto the planet gear’s coordinate axes xpi, ypi, and zpi are as follows:

δxpih = xpi − xh cos ψpi − yh sin ψpi
δypih = ypi + xh sin ψpi − yh cos ψpi − rhθzh
δzpih = zpi − zh
θzpih = θzpi + θzh

, (7)

3.3. Derivation of the Motion Differential Equations

In the dynamic model, a load torque, Tout1, is applied to the output shaft of the
ring gear, rR; a load torque, Tout2, is applied to the output shaft of the carrier, h; and an
input torque, Tin, is applied to the sun gear, a. By analyzing the forces acting on each
component and employing the Lagrange equations, the motion differential equations for
each component, considering the translational motion along the xj, yj, and zj axes and the
torsional motion around the zj axis (totaling four degrees of freedom), can be established.

3.3.1. Motion Differential Equation for the Sun Gear, a

The bearing support force acting on the sun gear, a, is as follows:
Fbxa = cbxa

.
xa + kbxaxa

Fbya = cbya
.
ya + kbyaya

Fbza = cbza
.
za + kbzaza

Mbθza = cbθza
.
θza + kbθzaθza

, (8)

where kxas, kyas, kzas, and kθzas represent the support stiffnesses of the bearing in the respec-
tive directions, and cbxa, cbya, cbza, and cbθza represent the support dampings of the bearing.

The support force of the shaft acting on the sun gear, a, is as follows:
Fxas = cxas(

.
xa −

.
xs) + kxas(xa − xs)

Fyas = cyas(
.
ya −

.
ys) + kyas(ya − ys)

Fzas = czas(
.
za −

.
zs) + kzas(za − zs)

Mθzas = cθzas(
.
θza −

.
θzs) + kθzas(θza − θzs)

, (9)

where kxas, kyas, kza, and kθzas represent the support stiffnesses of the shaft in the respective
directions, and cxas, cyas, czas, and cθzas represent the support dampings.

The force acting on the sun gear, a, as a result of its mesh with the planet gear, mi, is
as follows: {

FamiL = kamiLδamiL + camiL
.
δamiL

FamiR = kamiRδamiR + camiR
.
δamiR

, (10)

where kamiL and kamiR represent the mesh stiffnesses of the left and right gear pairs between
the sun gears, a, and the planet gears, m, respectively; and camiL and camiR represent the
mesh dampings.
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The motion differential equation for the sun gear, a, is as follows:

ma
..
xa +

N
∑

i=1
(FamiL + FamiR) cos βb sin ψami + Fbxa + Fxas = 0

ma
..
ya +

N
∑

i=1
(FamiL + FamiR) cos βb cos ψami + Fbya + Fyas = 0

ma
..
za −

N
∑

i=1
(FamiL − FamiR) sin βb + Fbza + Fzas = 0

Ja
..
θza +

N
∑

i=1
(FamiL + FamiR)rba cos βb + Mbθza + Mθzas = Tin

, (11)

3.3.2. Motion Differential Equation for the Planet Gear, mi

The support force of the bearing acting on the planet gear, mi, is as follows:
Fbxmi = kbxmxmi + cbxm

.
xmi

Fbymi = kbymymi + cbym
.
ymi

Fbzmi = kbzmzmi + cbzm
.
zmi

Mbθzmi = kbθzmθzmi + cbθzm
.
θzmi

, (12)

where kbxm, kbym, kbzm, and kbθzm represent the support stiffnesses of the bearing in the
respective directions, and cbxm, cbym, cbzm, and cbθzm represent the support dampings of
the bearing.

The meshing force acting on the planet gear, mi, as a result of its mesh with the ring
gear, d, is as follows: {

FdmiL = kdmiLδdmiL + cdmiL
.
δdmiL

FdmiR = kdmiRδdmiR + cdmiR
.
δdmiR

, (13)

where kdmiL and kdmiR represent the mesh stiffnesses of the gear pairs between the left and
right ring gears, d, and planet gears, m; and cdmiL and cdmiR represent the mesh dampings.

The motion differential equation for the planet gear, mi, is as follows:
mm

..
xmi − [(FamiL + FamiR) sin αami − (FdmiL + FdmiR) sin αdmi] cos βb + Fbxmi = 0

mm
..
ymi − [(FamiL + FamiR) cos αami + (FdmiL + FdmiR) cos αdmi] cos βb + Fbymi = 0

mm
..
zmi + (FamiL − FamiR − FdmiL + FdmiR) sin βb + Fbzmi = 0

Jm
..
θzmi + (FdmiL + FdmiR − FamiL − FamiR)rbm cos βb + Mbθzmi = 0

, (14)

3.3.3. Motion Differential Equation for the Ring Gear, d

The support force of the bearing acting on the left-side ring gear, dL, is as follows:
FbxdL = cbxdL

.
xdL + kbxdLxdL

FbydL = cbydL
.
ydL + kbydLydL

FbzdL = cbzdL
.
zdL + kbzdLzdL

MbθzdL = cbθzdL
.
θzdL + kbθzdLθzdL

, (15)

where kbxdL, kbydL, kbzdL, and kbθzdL represent the support stiffnesses of the bearing in the
respective directions, and cbxdL, cbydL, cbzdL, and cbθzdL represent the support dampings of
the bearing.

The support force of the shaft acting on the left internal gear, dL, is as follows:
FxdLdR = cxdLdR(

.
xdL −

.
xdR) + kxdLdR(xdL − xdR)

FydLdR = cydLdR(
.
ydL −

.
ydR) + kydLdR(ydL − ydR)

FzdLdR = czdLdR(
.
zdL −

.
zdR) + kzdLdR(zdL − zdR)

MθzdLdR = cθzdLdR(
.
θzdL −

.
θzdR) + kθzdLdR(θzdL − θzdR)

, (16)
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where kxdLdR, kydLdR, kzdLdR, and kθzdLdR represent the support stiffnesses of the shaft in the
respective directions, and cxdLdR, cydLdR, czdLdR, and cθzdLdR represent the support dampings.

The motion equation for the left-side ring gear, dL, is as follows:

md
..
xdL −

N
∑

i=1
FdmiL sin ψdmi cos βb + FbxdL + FxdLdR = 0

md
..
ydL +

N
∑

i=1
FdmiL cos ψdmi cos βb + FbydL + FydLdR = 0

md
..
zdL +

N
∑

i=1
FdmiL sin βb + FbzdL + FzdLdR = 0

Jd
..
θzdL −

N
∑

i=1
FdmiLrbd cos βb + MbθzdL + MθzdLdR = 0

, (17)

The support force of the shaft acting on the right-side ring gear, dR, is as follows:
FxdLdRrL = cxdLdR(

.
xdR − .

xdL) + kxdLdR(xdR − xdL) + cxdRrL(
.
xdR − .

xrL) + kxdRrL(xdR − xrL)
FydLdRrL = cydLdR(

.
ydR − .

ydL) + kydLdR(ydR − ydL) + cydRrL(
.
xdR − .

xrL) + kydRrL(ydR − yrL)
FzdLdRrL = czdLdR(

.
zdR − .

zdL) + kzdLdR(zdR − zdL) + czdRrL(
.
zdR − .

zrL) + kzdRrL(zdR − zrL)

MθzdLdRrL = cθzdLdR(
.
θzdR −

.
θzdL) + kθzdLdR(θzdR − θzdL) + cθzdRrL(

.
θzdR −

.
θzrL) + kθzdRrL(θzdR − θzrL)

, (18)

where kxdRrL, kydRrL, kzdRrL, and kθzdRrL represent the support stiffnesses of the shaft in the
respective directions, and cxdRrL, cydRrL, czdRrL, and cθzdRrL represent the support dampings.

The motion equation for the right-side ring gear, dR, is as follows:

md
..
xdR −

N
∑

i=1
FdmiR sin ψdmi cos βb + FxdLdRrL = 0

md
..
ydR +

N
∑

i=1
FdmiR cos ψdmi cos βb + FydLdRrL = 0

md
..
zdR −

N
∑

i=1
FdmiR sin βb + FzdLdRrL = 0

Jd
..
θzdR −

N
∑

i=1
FdmiRrbd cos βb + MθzdLdRrL = 0

, (19)

3.3.4. Motion Differential Equation for the Sun Gear s

The support force of the bearing acting on the sun gear, s, is as follows:
Fbxs = cbxs

( .
xs − ωhys

)
+ kbxsxs

Fbys = cbys
( .
ys + ωhxs

)
+ kbysys

Fbzs = cbzs
.
zs + kbzszs

Mbθzs = cbθzs
.
θzs + kbθzsθzs

, (20)

where kbxs, kbys, kbzs, and kbθzs represent the support stiffnesses of the bearing in the respec-
tive directions; cbxs, cbys, cbzs, and cbθzs represent the support dampings of the bearing; and
wh represents the angular velocity of the carrier h.

The support force of the shaft acting on the sun gear, s, is as follows:
Fxsa = cxas(

.
xs −

.
xa) + kxas(xs − xa)

Fysa = cyas(
.
ys −

.
ya) + kyas(ys − ya)

Fzsa = czas(
.
zs −

.
za) + kzas(zs − za)

Mθzsa = cθzas(
.
θzs −

.
θza) + kθzas(θzs − θza)

, (21)

The force acting on the sun gear, s, as a result of its mesh with the planet gear, pi, is
as follows: {

FspiL = kspiLδspiL + cspiL
.
δspiL

FspiR = kspiRδspiR + cspiR
.
δspiR

, (22)
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where kspiL and kspiR represent the mesh stiffnesses of the gear pairs between the left and
right sun gears, s, and planet gears, p; and cspiL and cspiR represent the mesh dampings.

The motion differential equation for the sun gear, s, is as follows:

ms
( ..

xs − 2ωh
.
ys − ω2

hxs
)
+

N
∑

i=1
(FspiL + FspiR) cos βb sin ψspi + Fbxs + Fxsa = 0

ms
( ..
ys + 2ωh

.
xs − ω2

hys
)
+

N
∑

i=1
(FspiL + FspiR) cos βb cos ψspi + Fbys + Fysa = 0

ms
..
zs −

N
∑

i=1
(FspiL − FspiR) sin βb + Fbzs + Fzsa = 0

Js
..
θzs +

N
∑

i=1
(FspiL + FspiR)rbs cos βb + Mbθzs + Mθzsa = 0

, (23)

3.3.5. Motion Differential Equation for the Planet Gear pi

The support force of bearing acting on the planet gear pi is as follows:
Fbxpi = kbxpδxpih + cbxp

.
δxpih

Fbypi = kbypδypih + cbyp
.
δypih

Fbzpi = kbzpδzpih + cbzp
.
δzpih

Mbθzpi = kbθzpθzpih + cbθzp
.
θzpih

, (24)

where kbxp, kbyp, kbzp and kbθzp represent the support stiffness of the bearing in the respective
directions, and cbxp, cbyp, cbzp and cbθzp represent the support damping of the bearing.

The force acting on the planet gear pi as a result of its mesh with the ring gear r is
as follows: {

FrpiL = krpiLδrpiL + crpiL
.
δrpiL

FrpiR = krpiRδrpiR + crpiR
.
δrpiR

, (25)

where krpiL and krpiR represent the mesh stiffnesses of the gear pairs between the left and
right ring gears r and planet gears p, and crpiL and crpiR represent the mesh dampings.

The motion differential equation for the planet gear pi is as follows:
mp(

..
xpi − 2ωh

.
ypi − ω2

hxpi)−
[
(FspiL + FspiR) sin αspi − (FrpiL + FrpiR) sin αrpi

]
cos βb + Fbxpi = 0

mp(
..
ypi + 2ωh

.
xpi − ω2

hypi)−
[
(FspiL + FspiR) cos αspi + (FrpiL + FrpiR) cos αrpi

]
cos βb + Fbypi = 0

mp
..
zpi + (FspiL − FspiR − FrpiL + FrpiR) sin βb + Fbzpi = 0

Jp
..
θzpi + (FrpiL + FrpiR − FspiL − FspiR)rbp cos βb + Mbθzpi = 0

, (26)

3.3.6. Motion Differential Equation for the Ring Gear r

The support force of bearing acting on the left-side ring gear rL is as follows:
FxdRrLrR = cxdRrL(

.
xrL −

.
xdR) + kxdRrL(xrL − xdR) + cxrLrR(

.
xrL −

.
xrR) + kxrLrR(xrL − xrR)

FydRrLrR = cydRrL(
.
yrL −

.
ydR) + kydRrL(yrL − ydR) + cyrLrR(

.
yrL −

.
yrR) + kyrLrR(yrL − yrR)

FzdRrLrR = czdRrL(
.
zrL −

.
zdR) + kzdRrL(zrL − zdR) + czrLrR(

.
zrL −

.
zrR) + kzrLrR(zrL − zrR)

MθzdRrLrR = cθzdRrL(
.
θzrL −

.
θzdR) + kθzdRrL(θzrL − θzdR) + cθzrLrR(

.
θzrL −

.
θzrR) + kθzrLrR(θzrL − θzrR)

, (27)

where kxrLrR, kyrLrR, kzrLrR and kθzrLrR represent the support stiffnesses of the bearing in the
respective directions, and cxrLrR, cyrLrR, czrLrR and cθzrLrR represent the support dampings of
the bearing.
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The motion equation for the left-side ring gear rL is as follows:

mr(
..
xrL − 2ωh

.
yrL − ω2

hxrL)−
N
∑

i=1
FrpiL sin ψrpi cos βb + FxdRrLrR = 0

mr(
..
yrL + 2ωh

.
xrL − ω2

hyrL) +
N
∑

i=1
FrpiL cos ψrpi cos βb + FydRrLrR = 0

mr
..
zrL +

N
∑

i=1
FrpiL sin βb + FzdRrLrR = 0

Jr
..
θzrL −

N
∑

i=1
FrpiLrbr cos βb + MθzdRrLrR = 0

, (28)

The support force of bearing acting on the right-side ring gear rR is as follows:
FbxrR = cbxrR

( .
xrR − ωhyrR

)
+ kbxrRxrR

FbyrR = cbyrR
( .
yrR + ωhxrR

)
+ kbyrRyrR

FbzrR = cbzrR
.
zrR + kbzrRzrR

MbθzrR = cbθzrR
.
θzrR + kbθzrRθzrR

, (29)

where kbxrR, kbyrR, kbzrR, and kbθzrR represent the support stiffnesses of the bearing in the
respective directions, and cbxrR, cbyrR, cbzrR, and cbθzrR represent the support dampings of
the bearing.

The support force of the shaft acting on the right-side ring gear, rR, is as follows:
FxrRrL = cxrRrL(

.
xrR − .

xrL) + kxrRrL(xrR − xrL)
FyrRrL = cyrRrL(

.
yrR − .

yrL) + kyrRrL(yrR − yrL)
FzrRrL = czrRrL(

.
zrR − .

zrL) + kzrRrL(zrR − zrL)

MθzrRrL = cθzrRrL(
.
θzrR −

.
θzrL) + kθzrRrL(θzrR − θzrL)

, (30)

The motion equation for the right-side ring gear, rR, is as follows:

mr(
..
xrR − 2ωh

.
yrR − ω2

hxrR)−
N
∑

i=1
FrpiR sin ψrpi cos βb + FbxrR + FxrRrL = 0

mr(
..
yrR + 2ωh

.
xrR − ω2

hyrR) +
N
∑

i=1
FrpiR cos ψrpi cos βb + FbyrR + FyrRrL = 0

mr
..
zrR −

N
∑

i=1
FrpiR sin βb + FbzrR + FzrRrL = 0

Jd
..
θzrR −

N
∑

i=1
FrpiRrbr cos βb + MbθzrR + MθzrRrL = Tout1

, (31)

3.3.7. Motion Differential Equation for the Carrier, h

The components of the reactive force acting on the carrier, h, from the planet gear, pi,
along the carrier coordinate axes is as follows:

Fbxhpi = kbxpδxhpi + cbxp
.
δxhpi

Fbyhpi = kbypδyhpi + cbyp
.
δyhpi

Fbzhpi = kbzpδzhpi + cbzp
.
δzhpi

Mbθzhpi = kbθzpθzhpi + cbθzhpi
.
θzhpi

, (32)

The support force of the bearing acting on the carrier, h, is as follows:
Fbxh = cbxh

( .
xh − ωhyh

)
+ kbxhxh

Fbyh = cbyh
( .
yh + ωhxh

)
+ kbyhyh

Fzyh = czyh
.
zh + kzyhzh

Mbθzh = cbθzh
.
θzh + kbθzhθzh

, (33)
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where kbxh, kbyh, kbzh, and kbθzh represent the support stiffnesses of the bearing in the
respective directions, and cbxh, cbyh, cbzh, and cbθzh represent the support dampings of
the bearing.

The motion equation for the carrier, h, is as follows:

mh
( ..

xh − 2ωh
.
yh − ω2

hxh
)
+

N
∑

i=1
Fbxhpi + Fbxh = 0

mh
( ..
yh + 2ωh

.
xh − ω2

hyh
)
+

N
∑

i=1
Fbyhpi + Fbyh = 0

mh
..
zh +

N
∑

i=1
Fbzhpi + Fbzh = 0

Jhθzh + rh
N
∑

i=1
(Fbyhpi cos ψpi − Fbxhpi sin ψpi) + Mbθzc = Tout2

, (34)

Taking the TMS, transmission errors, bearing stiffness, and damping into account, the
motion differential equations of each subsystem can be assembled to obtain the overall
dynamic motion differential equations of the entire system.

M
..
X + (Cb + Cm)

.
X +

(
Kb + Km − ω2

hKw + ωhKd

)
X = F + T, (35)

3.4. The Definition of LSC

The LSC in gear systems refers to a coefficient employed for the computation of the
forces acting on gears within a gear transmission. Owing to the influence of internal and
external excitations, the meshing forces undergo continuous variations. Hence, the intro-
duction of the LSC becomes essential to account for such fluctuations in gear transmissions.
The LSCs at a specific temporal instance are to be delineated by bamij, bdmij, bspij, and brpij
as follows:

bamij = 3Famij/
3
∑

i=1
Famij, bdmij = 3Fdmij/

3
∑

i=1
Fdmij

bspij = 3Fspij/
3
∑

i=1
Fspij, brpij = 3Frpij/

3
∑

i=1
Frpij

, (36)

where i = 1, 2, 3; j = L, R.
Take the maximum values of the LSCs of each planet gear at each time point as the

LSCs for the internal and external meshing of the planet gears at that moment; then, the
dynamic LSCs can be defined as bamj, bdmj, bspj, and brpj as follows:

bamj = max(bamij), bdmj = max(bdmij)
bspj = max(bspij), brpj = max(brpij)

, (37)

Take the maximum values of the dynamic LSCs within a period of time as the LSCs
as follows:

Bamj = max(bamj), Bdmj = max(bdmj)
Bspj = max(bspj), Brpj = max(brpj)

, (38)

4. Analysis of Dynamic Response Characteristics of the Transmission System

According to Reference [25], during the gear meshing process, the TMS and mesh
damping are calculated. Considering the gear errors with a precision level of 5, transmission
system dynamic response characteristics are analyzed using the Runge–Kutta algorithm.
The basic parameters are listed in Table 1. The input power of the transmission system was
250 kW, and the input speed was 10,000 rpm.
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Table 1. Parameters of the transmission system.

Item Number of
Teeth

Angle of Helix
(◦)

Normal Pressure
Angle (◦) Module Mass (kg) Moment of Inertia

(kg·mm2)

Sun gear, a 22 20 20 1.5 0.092 17.664
Planet gear, m 44 20 20 1.5 0.327 268.521
Ring gear, dL 110 20 20 1.5 0.163 1325.860
Ring gear, dR 110 20 20 1.5 0.163 1325.860

Sun gear, s 55 20 20 1.5 0.488 525.752
Planet gear, p 27 20 20 1.5 0.108 35.531
Ring gear, rL 110 20 20 1.5 0.163 1325.860
Ring gear, rR 110 20 20 1.5 0.163 1325.860

Planet carrier, h 1.648 4946.014

4.1. Dynamic Meshing Forces
4.1.1. Dynamic Meshing Forces under Rated Condition

Calculations were performed to determine the time-domain response curves of the
dynamic meshing forces for the fixed-axes PGT and the differential PGT on the left and
right sides of the pairings. The respective response curves are shown in Figures 7 and 8. As
an example, the frequency-domain curves of the dynamic meshing forces for the external
meshing pairs of on the left side are given, as shown in Figure 9.
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Figure 7. Time-domain response curves of dynamic meshing forces in the fixed-axes PGT under rated
condition: (a) left external meshing pairs; (b) left internal meshing pairs; (c) right external meshing
pairs; (d) right internal meshing pairs.
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Figure 8. Time-domain response curves of dynamic meshing forces in the differential PGT under
rated condition: (a) left external meshing pairs; (b) left internal meshing pairs; (c) right external
meshing pairs; (d) right internal meshing pairs.
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Figure 9. Frequency-domain curves of the dynamic meshing forces for the transmission system under
rated condition: (a) fixed-axes PGT; (b) differential PGT.

On the basis of Figures 7 and 8, it is evident that the dynamic meshing forces in the
fixed-axes PGT and the differential PGT exhibited significant similarity. They followed the
same temporal trend with only slight differences in magnitude. Therefore, the subsequent
analysis exemplifies by the left-side meshing pair of the system. In the fixed-axes PGT, the
average values of the meshing forces are approximately 425 N, while in the differential
PGT, the average values are approximately 850 N. The meshing forces of each meshing pair
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fluctuate around their respective average values, and there are differences among them
due to geometric relationships and meshing phases.

From Figure 9, it can be observed that due to the constant external load, the maximum
amplitude of the meshing forces occurs at the 0 Hz position. In the fixed-axes PGT, the main
frequency components are the rotation frequency, fa, of the sun gear, a, and the meshing
frequency, f 1, of the fixed-axes PGT and its second harmonic, 2f 2. In the differential PGT,
the main frequency components are the rotational frequency, f h

s , of the sun gear and the
meshing frequency, f 2, of the differential PGT and its second harmonic, 2f 2. This is caused
by the periodic fluctuations in mesh stiffness and transmission errors.

4.1.2. Effect of External Excitation on Dynamic Meshing Forces

In practical conditions, the transmission system is subjected to complex and varying
external loads rather than a single, steady torque. Studying the dynamic response charac-
teristics of the transmission system under varying conditions and load fluctuations helps
in comprehending its performance in practical applications when the system is subjected
to alternating external loads, as represented by the Fourier series as follows:

Tout = 596.875 + 50 cos
(

ft1t +
π

3

)
+ 25 cos

(
ft2t +

π

2

)
, (39)

where ft1 is w2/3 and ft2 is w2/5.
The time-domain response curves of the meshing forces for the fixed-axes PGT and

the differential PGT are shown in Figures 10 and 11, respectively. As an example, the
frequency-domain curves of the dynamic meshing forces for the external meshing pairs on
the left side are given, as shown in Figure 12.
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Figure 10. Time-domain response curves of the dynamic meshing forces in the fixed-axes PGT under
external excitation: (a) left external meshing pairs; (b) left internal meshing pairs.
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Figure 11. Time-domain response curves of the dynamic meshing forces in the differential PGT under
external excitation: (a) left external meshing pairs; (b) left internal meshing pairs.
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Figure 12. Frequency-domain curves of the dynamic meshing forces for the transmission system
under external excitation: (a) fixed-axes PGT; (b) differential PGT.

In Figures 10 and 11, from the time-domain responses perspective, the overall trends
of the dynamic meshing forces considering external loads are consistent with those under
rated condition. This similarity is attributed to the variations in TMS and transmission
errors. However, there are noticeable differences due to the alternating nature of the
external loads. The fluctuation of the meshing forces becomes more prominent, resulting
in sharper peaks compared to the meshing forces under the rated condition. The frequent
variations in external loads may accelerate fatigue damage on the tooth surfaces. From
the frequency-domain responses shown in Figure 12, compared to the frequency-domain
response under the rated condition, there are additional frequency components in the
spectrum due to the external loads, ft1 and ft2.

4.2. Analysis of Planet Gear Vibration Displacements

The vibration of the planet gears has the potential to change both the internal and
external forces involved in the meshing process. Hence, it is imperative to study the
vibrational characteristics of the planet gears.

4.2.1. Vibration Displacements of the Planet Gears under Rated Condition

The translational displacements and the torsional displacements of the planet gears
are shown in Figures 13 and 14.

According to Figure 2, in the fixed-axes PGT, the carrier, c, bears a torque of Tc = −1,
while in the differential PGT, the carrier, h, bears a torque of Tout2 = − t2

1+t . Thus, in
Figures 13 and 14, the radial displacements of the planet gears, m, are less than those
of planet gears, p. In the x-direction, internal and external meshing forces cancel one
another out, whereas in the y-direction, they superimpose. Additionally, in the differential
PGT, there is a driving action on the planet gears, p, along the tangential direction of the
carrier, resulting in larger displacements in the y-direction. Along the axial direction, the
influence of transmission errors on the meshing forces is relatively small, as the errors
primarily affect the radial direction. The primary cause of the axial vibrations is the TMS,
with a frequency equal to the meshing frequency. In terms of the torsional direction, the
planet gears oscillate around their equilibrium positions with an amplitude on the order of
10−4 rad. The frequency of the torsional vibration is a combination of transmission errors
and time-varying meshing stiffness. Because of the geometric relationships and meshing
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phases differences, the amplitude and variation tendencies of the individual planet gears
exhibit discrepancies.
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Figure 13. Time-domain responses of the planet gear displacements in the fixed-axes PGT under the
rated condition: (a) x-direction; (b) y-direction; (c) z-direction; (d) torsional direction around z-axis.
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Figure 14. Time-domain responses of the planet gear displacements in the differential PGT under the
rated condition: (a) x-direction; (b) y-direction; (c) z-direction; (d) torsional direction around z-axis.
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4.2.2. Vibration Displacements of Planet gears under Different Input Torques

The vibration displacements of the planet gears are subject to variation when there
are changes in the input torque. To investigate the vibration displacements of the planet
gears in response to varying input torques, five operating conditions were set, as shown in
Table 2. For each of the five operating conditions, 80 meshing cycles were selected, and the
displacements of the planet gears were analyzed. The time-domain responses are shown in
Figures 15 and 16. The peak-to-peak values and variances of the vibration displacements
are shown in Figures 17 and 18, respectively.

Table 2. Five different operating conditions.

Torque (Nm) Speed (rpm)

Case 1 200 11,938
Case 2 300 7958
Case 3 400 5968
Case 4 500 4775
Case 5 600 3979
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Figure 15. Time-domain responses of the planet gear displacements in the fixed-axes PGT under the
different input torques: (a) x-direction; (b) y-direction; (c) z-direction; (d) torsional direction around
z-axis.
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Figure 16. Time-domain responses of the planet gear displacements in the differential PGT under the
different input torques: (a) x-direction; (b) y-direction; (c) z-direction; (d) torsional direction around
z-axis.
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Figure 17. Peak-to-peak displacements of the planet gears under the different input torques:
(a) x-direction; (b) y-direction; (c) z-direction; (d) torsional direction around z-axis.
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Figure 18. Variances of the planet gear displacements under the different input torques: (a) x-direction;
(b) y-direction; (c) z-direction; (d) torsional direction around z-axis.

From Figures 15 and 16, it is observable that as the torque increases, except in the
x-direction, the average displacements of the planet gears in various directions basically
tended to increase. The displacements of the planet gears, m, in the x-direction are char-
acterized by their distinctiveness due to their exceptionally small magnitude. Under the
five operating conditions, the maximum magnitude remained at around 10−16 m. There-
fore, even slight variations in parameters can lead to noticeable changes in its displace-
ment. However, because of its small amplitude, this vibration can be practically negligible.
Figures 17 and 18 demonstrate that the peak-to-peak displacements and variances in the
planet gears exhibited no discernible patterns in the x-direction. The peak-to-peak dis-
placements and variances in the planet gear, m, in the y-direction exhibited a decrease as
the torque increased, suggesting a reduction in the vibration amplitude. Conversely, the
trend was opposite for the planet gear, p. In the axial and torsional directions, both the
peak-to-peak displacements and variances in the planet gears, m and p, increased with
increasing torque, indicating that the vibration became more pronounced in these directions
as the torque increased.

4.3. Load-Sharing Coefficients

Using the previously described method in Section 3.4, the dynamic meshing forces of
the transmission system were utilized to calculate the LSCs based on the analysis of the
dynamic response.

4.3.1. LSCs under Rated Condition

Taking the dynamic LSCs on the left side as an example, the variation curves of the
LSCs in the fixed-axes PGT and the differential PGT under the rated condition are shown
in Figures 19 and 20, respectively.
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Figure 19. Variations in the dynamic LSCs in the fixed-axes PGT under the rated condition: (a) left
external meshing pairs; (b) left internal meshing pairs.
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Figure 20. Variations in the dynamic LSCs in the differential PGT under the rated condition: (a) left
external meshing pairs; (b) left internal meshing pairs.

From Figures 19 and 20, it can be observed that the variations in the LSCs and the
meshing forces were generally consistent, fluctuating at around 1. The fluctuation range for
the fixed-axes PGT was between 0.4 and 1.6, while for the differential PGT it is between 0.75
and 1.25. Because of the influence of the geometric relationships and mesh phases, there
are differences in the LSCs among the meshing pairs. Since the fixed-axes PGT transmits
lower torque compared to the differential PGT, the smaller meshing forces were more
susceptible to fluctuations caused by errors. As a result, the fixed-axes PGT exhibited larger
fluctuations in the LSCs compared to the differential PGT.

4.3.2. Dynamic LSCs under External Excitation

When subjected to external excitation, taking the dynamic LSCs on the left side as
an example, the variations in the LSCs in the fixed-axes PGT and the differential PGT are
shown in Figures 21 and 22, respectively. The comparative analysis of the dynamic LSCs
considering the impact of external excitation versus the absence of external excitation is
shown in Figure 23.

From Figures 21 and 22, it can be observed that under the influence of internal excita-
tions, the overall trend of the LSCs was similar to that under the rated condition. However,
the LSCs become sharper due to the alternating external loads. Figure 23 indicates that
considering the external excitation results in higher LSCs compared to the case without
external excitation, indicating an uneven load distribution caused by the external excitation.
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Figure 21. Variations in dynamic LSCs in the fixed-axes PGT under external excitation. (a) Left
external meshing pairs; (b) Left internal meshing pairs.
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Figure 22. Variations in the dynamic LSCs in the differential PGT under external excitation: (a) left
external meshing pairs; (b) left internal meshing pairs.
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Figure 23. Comparison of the dynamic LSCs of the transmission system with and without external
excitation.

4.3.3. Dynamic LSCs under Different Input Torques

Using the dynamic LSCs on the left side as an example, the variations in the LSCs in
the fixed-axes PGT and the differential PGT under the different input torques are shown in
Figures 24 and 25, respectively. The comparison of the dynamic LSCs under different input
torques are shown in Figure 26.
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Figure 24. Variations in the dynamic LSCs in the fixed-axes PGT under the different input torques:
(a) left external meshing pairs; (b) left internal meshing pairs.
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Figure 25. Variations in the dynamic LSCs in the differential PGT under the different input torques:
(a) left external meshing pairs; (b) left internal meshing pairs.
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Figure 26. Comparison of the dynamic LSCs of the transmission system under the different input torques.

From Figures 24 and 25, it can be observed that the LSCs exhibited a sinusoidal-
like variation pattern, fluctuating approximately every 18 meshing cycles. As the torque
increased, the average values and magnitudes of the fluctuations of the LSCs exhibited a
decrease. This is consistent with earlier observation that the smaller meshing forces were
more susceptible to error-induced fluctuations. Figure 26 shows that with an increasing
torque, the mean value of the LSC decreased from around 1.74 to around 1.23 for the
fixed-axes PGT and from around 1.26 to around 1.08 for the differential PGT.

5. Model Validation

After analyzing the operating principles of the transmission system and the motion
relationships among its components, all parts were treated as rigid bodies in the ADAMS
dynamic simulation. All rotating components were constrained as revolute joints, and
contact pairs were added between meshing gears.
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To validate the results of this study, a comparison was made between the meshing
forces obtained from the ADAMS dynamic simulation and those obtained from the dynamic
model. After analyzing the operating principles of the transmission system and the motion
relationships among its components, all components were treated as rigid bodies in the
ADAMS dynamic simulation. All rotating components were constrained as revolute joints,
and contact pairs were added between meshing gears. A driving torque was applied to the
sun gear, aL, while a load torque was applied to the ring gear, rR, and the carrier, h. The
operating conditions were consistent with those in Section 4.1, and the constraints of the
transmission system are illustrated in Figure 27.
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Figure 27. Constraints of the transmission system in the ADAMS dynamic simulation.

The simulation duration was set to 0.0218 s. Taking the meshing forces between the
sun gear and planet gears on the left side of both the fixed-axes PGT and the differential
PGT as examples, the meshing force curves were obtained, which are shown in Figure 28.
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Figure 28. Meshing force curves obtained from the ADAMS dynamic simulation: (a) left external
meshing forces of the fixed axes PGT; (b) left external meshing forces of the differential PGT.

By comparing Figure 28a with Figure 7a and Figure 28b with Figure 8a, it can be
observed that the meshing force curves obtained from the ADAMS dynamic simulation are
generally consistent with those calculated by the model in terms of the numerical values
and trend variations. Within the allowable range of error, this validates the reliability of the
theoretical calculations.

6. Conclusions

A comprehensive dynamic model of the coaxial counter-rotating planetary trans-
mission system is constructed. The model incorporated TMS, transmission errors, and
external excitations. The primary objective of the investigation was to conduct an analysis
of the meshing forces, displacements of the planet gears, and the performance of the load
distribution in the transmission system.
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Firstly, considering the translational and torsional vibrations of each component, a
dynamic model of the coaxial counter-rotating planetary transmission system was estab-
lished using the concentrated mass method. The dynamic equations of each component
were derived based on the relative displacements between gear teeth.

Secondly, the dynamic meshing forces, planet gear displacements, and load-sharing
characteristics of the coaxial counter-rotating planetary transmission system were inves-
tigated. The meshing forces acting on both sides exhibited significant similarities. When
considering the external excitations, the variations in the meshing force curves became
more pronounced. The radial displacements of the planet gears in the differential PGT
were greater than that in the fixed-axes PGT. With an increasing input torque, the average
displacements of planet gears in all directions tended to increase. The differential PGT,
transmitting higher power, demonstrated a better load-sharing performance compared to
the fixed-axes PGT.

In summary, this study explored the dynamic responses of the coaxial counter-rotating
planetary transmission system under different operating conditions. It is noted that while
the quantitative results presented are specific to the system studied, the qualitative findings
are generally applicable to coaxial counter-rotating planetary transmission systems. Al-
though the model established by the concentrated mass method may lack the accuracy of a
finite element analysis, its computational efficiency is high, and the results are also close to
reality. When performing strength, fatigue, reliability analysis, or parameter optimization
for coaxial counter-rotating planetary transmission systems, this method can be utilized
to quickly obtain data, such as meshing forces, vibration displacements, and load-sharing
coefficients, serving as the basis for further work. Mechanical system designers can also use
the main findings of this study as general guidelines for designing coaxial counter-rotating
planetary transmission systems.

Additionally, we recognize the importance of analytical methods in system analysis
and optimization. In the future, we plan to combine numerical methods with analytical
methods, based on simplified assumptions, to simplify and extend the model developed in
this study and to obtain exact solutions and optimization results under certain conditions.
This approach not only reduces computational complexity but also provides a theoretical
foundation for further optimization. We will continue to explore these directions in future
research to enhance and refine the study of the dynamic characteristics of transmission
systems.
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