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Abstract: This study focuses on a marine two-stage tandem hybrid planetary system. Natural
frequencies and vibration modes are determined using a translational–torsional coupled dynamic
model. Based on the motion characteristics of the transmission system, free vibration is categorized
into three typical modes. The parameter sensitivity of natural frequencies is computed, and the effects
of structural parameters such as unequally spaced planet, mesh stiffness, planet mass and rotational
inertia on the natural frequencies are analyzed. Utilizing the coupling factor, the mode transition
criterion for the natural frequencies response to parameters is formulated. The results demonstrate
that the vibration modes of the two-stage tandem hybrid planetary system can be classified as the
fixed-axis train vibration mode, the differential train vibration mode, and the coupled vibration mode.
Unequally spaced planet primarily disrupts vibration modes without significantly affecting natural
frequencies. In contrast, the effects of mesh stiffness, planet mass and rotational inertia on the modes
are opposite to those of unequally spaced planets. The validity of the parameter sensitivity and mode
transition criterion is substantiated through illustrative examples.

Keywords: compound gear system; natural frequency; vibration mode; unequally spaced planet;
mode transition

1. Introduction

The development of marine trade puts more and more demands on the transmission of
ships. The two-stage tandem hybrid planetary system studied in this paper is an important
part of the ship’s after-transmission. The whole system is a combination of herringbone-
tooth fixed-axis train and differential train, which is the main source of vibration in ship
machinery and equipment and has a great influence on the reliability of ship operation.
Reducing the noise and vibration of the transmission system is of great significance in
prolonging the service life of the ship and improving economic efficiency.

The study of natural characteristics is an important part of dynamic research, which
has an important influence on the dynamic response of the system, the generation and
transfer of dynamic loads, the form of system vibration, etc. In recent years, many scholars
have carried out much meaningful research on the natural characteristics of gear systems.
Ambarisha et al. [1,2] mainly studied the natural characteristics of helical planetary systems,
which opened the prelude to the study of the natural characteristics of gear systems. Zhao
et al. [3] carried out a sensitivity analysis based on the torsional dynamics of a wind turbine
and found that the natural frequencies are very sensitive to the torsional stiffness of the
shaft and the gear mesh stiffness. Zhang et al. [4] investigated the effects of the number of
planet gears and coupling stiffness on the natural characteristics of closed planetary gear
systems to analyze the dynamic response and avoid resonance. Wu et al. [5] investigated
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the mode characteristics of equally spaced planets by using the perturbation method and
the candidate modal method. Sondkar et al. [6] proposed a linear constant model for a
double-helix planetary gear set by solving the corresponding eigenvalues. The natural
characteristics were calculated by solving the corresponding eigenvalue problem. Hao
et al. [7] developed a dynamic model of dual-power split gear transmission, solved the
time-varying mesh stiffness of the model and obtained the natural characteristics by using
the loaded tooth contact analysis (LTCA) technique. Cui et al. [8] developed a bending–
torsion coupled dynamic model of a composite planetary gear transmission system for
a vehicle, from which the system’s natural frequency and vibration mode characteristics
of the system were extracted, and the effects of rotational inertia and mesh stiffness on
the natural characteristics were investigated. Shuai et al. [9] developed a dynamic model
of a herringbone planetary gear train based on the concentrated parameter theory and
Lagrange’s method and investigated the effects of the flexible support and the floating of the
sun gear on the natural frequencies. Mbarek et al. [10] analyzed the natural characteristics
of a planetary gear train under different load conditions and mesh stiffness fluctuations and
performed hammering tests to verify the correctness of the centralized parameter model.
Cooley et al. [11] investigated the vibration modes and natural frequencies of high-speed
planet gears with gyroscopic effects at very high speeds for the phenomena of dispersion
and chattering instability. Qiu W et al. [12] established a dynamic model for a typical
interlinked planetary gear system, considering translational vibration, torsional vibration
and gyroscopic effects to investigate its free vibration characteristics. Liu H et al. [13]
studied the modal characteristics of a two-stage planetary gear system (TSPG) with a short,
intermediate shaft and applied modal energy analysis to quantify the importance of the
intermediate shaft throughout the entire TSPG system. Hu Z et al. [14] proposed a dynamic
model for a bifurcated torque split gear transmission system, obtaining the system’s natural
characteristics, including natural frequencies and critical speeds. Huang C et al. [15]
established a finite element modal analysis model for planetary reducers with small tooth
number differences in ABAQUS, obtaining the natural frequencies and corresponding
vibration modes of the reducer. Additionally, modal parameters were validated through
modal hammer experiments conducted in the LMS Test.Lab. Hu C et al. [16] developed a
translational–torsional dynamic model for a multistage planetary gear transmission system;
subsequently, they investigated the influence of natural frequencies, mesh stiffness and
component mass on the natural frequencies. Tatar A et al. [17] considered the gyroscopic
effect and established a six-degree-of-freedom dynamic model of the planetary gear system
with equally spaced planets, analyzing its modes.

Planet gears used in planetary gearboxes are usually equally spaced. However, un-
equal planet spacing can sometimes lead to positioning errors between the planet gears [18].
There are some studies related to this phenomenon. Tatar et al. [18] proposed a parametric
study to determine the effect of design parameters, such as an unequally spaced planet, on
the global modal behavior of a planetary gear rotor system. Guo et al. [19] investigated
the sensitivity of the natural characteristics of a general planetary gear train to mass and
stiffness parameters in response to tuning and unequal phenomena. Parker et al. [20]
proved the highly structured modal characteristics of planet gears with unequally spaced
planets and elastic ring gear and discussed the rules of how the modes of planet gears
with equal spacing evolve with unequally spaced planets. Cooley et al. [21] defined an
eigenvalue steering parameter and used it to analyze steering in high-speed planet gears,
which is prominent in unequally spaced planetary gears.

Although there have been some studies on the natural characteristics of planetary gear
systems, the two-stage tandem hybrid planetary system consisting of a fixed-axis train
and a differential train has been studied to a lesser extent. In particular, the sensitivity of
the natural frequencies to the gear parameters and the mode transition phenomena due
to parameter variations in this system have not been explored in depth. For this purpose,
this paper summarizes three typical vibration modes based on the centralized parametric
model of a two-stage tandem hybrid planetary system and investigates the sensitivity of the
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natural frequencies to unequally spaced planets, mesh stiffness, planet mass and rotational
inertia, and the mode transition phenomenon under the influence of different parameters.

2. Dynamic Model of the Transmission System

A schematic diagram of the marine two-stage tandem hybrid planetary system is given
in Figure 1. The entire system is composed of the central components (sun gears a and s, left
ring gears dL, right ring gears dR, left ring gears rL, right ring gears rR, carriers c and h, and
planet gears mi, pi), as well as the input shaft and output shaft. This transmission design
incorporates a combination of fixed-axis and differential trains. The input power is divided
into two segments within the system. A specific portion is designated for the fixed-axis
train, flowing from the sun gear a to the ring gear d. Concurrently, the remaining section is
allocated for the differential train, starting from the sun gear s and further distributed to
the carrier h and ring gear r.
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Figure 1. Schematic diagram of marine two-stage tandem hybrid planetary system.

The centralized parameter method is used, and the coupling between the fixed-axis
train and the differential train is considered to establish the dynamic model of the two-stage
tandem hybrid planetary system. The schematic diagram of the differential train model is
shown in Figure 2, with detailed parameters shown in the reference [9].
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In this model, the sun gear, planet gear, ring gear and planet carrier are assumed to
be rigid, and the meshing of the gears is represented by linear springs acting on the tooth
surfaces. The time-varying component of the mesh stiffness due to the variation in the
meshing tooth pairs is neglected, and the average mesh stiffness is used to calculate the
contact between the tooth surfaces.

Using the Lagrange’s equations, the motion equations for a two-stage tandem hybrid
planetary system can be written as:

M
..
q(t) + C

.
q(t) + [Kb + Km(t)]q(t) = Ft, (1)

where q is the generalized coordinate vector including transverse, axial and torsional
motions; M is the mass matrix; C is the damping matrix; Kb is the bearing support stiffness
matrix; Km is the mesh stiffness matrix; and Ft is the vector of internal and external
excitation forces due to the combined drive and load moments and mesh errors.

..
q = [xj, yj, zj, θzj] (j = a, dL, dR, m1, . . . , m3, s, h, rL, rR, p1, . . . , p3) (2)

M = diag[Mj, Mj, Mj, Jj] (j = a, dL, dR, m1, . . . , m3, s, h, rL, rR, p1, . . . , p3) (3)

where xj, yj, zj, and θzj represent the displacements of component j in the transverse
direction, axial direction and torsional direction, respectively. Mj is the mass matrix of
component j.

C =
[
Ca CdL CdR Cm Cs Ch CrL CrR Cp

]
, (4)

K = Kb + Km =
[
Ka KdL KdR Km Ks Kh KrL KrR Kp

]
, (5)

3. Mode Analysis

According to the dynamic model of the system, the undamped free vibration equation
is obtained as follows:

M
..
q(t) + [Kb + Km(t)]q(t) = 0, (6)

The dynamic equation corresponds to the characteristic equation:

[(Kb + Km)− w2
i M]φi = 0, (7)

where wi is the i-th order natural frequency and φi is the i-th order mode.
To quantify the mode sensitivity, the frequency shift between the two extreme cases is

calculated as follows [17]:

f requency shi f t(%) =

∣∣∣wi − w f

∣∣∣
wi

× 100, (8)

where wi and wf represent the initial and final natural frequencies.
All planets have the same model parameters in the fixed-axis train and the differential

train. Table 1 lists the main system parameters. Using numerical methods, the natural
frequencies and vibration modes can be calculated (the tables are in Appendices). The
vibration modes of the system can be categorized into three types: (1) fixed-axis train
vibration mode; (2) differential train vibration mode; (3) coupled vibration mode.
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Table 1. Parameters of the marine two-stage tandem hybrid planetary system.

Item Number of
Teeth

Angle of Helix
(◦)

Normal Pressure
Angle (◦) Module Mass (kg) Rotational Inertia

(kg·mm2)

Sun gear a 22 20 20 1.5 0.092 17.664
Planet gear m 44 20 20 1.5 0.327 268.521
Ring gear dL 110 20 20 1.5 0.163 1325.860
Ring gear dR 110 20 20 1.5 0.163 1325.860

Sun gear s 55 20 20 1.5 0.488 525.752
Planet gear p 27 20 20 1.5 0.108 35.531
Ring gear rL 110 20 20 1.5 0.163 1325.860
Ring gear rR 110 20 20 1.5 0.163 1325.860

Planet carrier h / / / / 1.648 4946.014

3.1. Fixed-Axis Train Vibration Mode

The fixed-axis vibration mode satisfies the following characteristics:
(1) The vibration displacements of the sun gear, ring gear, planet gears and planet

carrier in the differential train are zero.
(2) The corresponding multiple roots of the natural frequency are 2, with a total of

7 pairs.
(3) The fixed-axis train has no axial and torsional motion, and the vibration modes of

the central component corresponding to the frequencies φi and φi are:

pj = [xj, yj, 0, 0], pj = [−yj, xj, 0, 0], j = (a, dL, dR), (9)

The corresponding planet gear vibration modes have the following relationships:[
pmn
pmn

]
=

[
cos ψnI − sin ψnI
sin ψnI cos ψnI

][
pm1
pm1

]
, (10)

The vibration modes can be expressed in the following form:

φi = [pa , pdL, pdR, cos ψ1pm1 − sin ψ1pm1, . . . , cos ψnpm1 − sin ψnpm1 ]
T

φi = [pa , pdL, pdR, sin ψ1pm1 + cos ψ1pm1, . . . , sin ψnpm1 + cos ψnpm1]
T , (11)

A schematic diagram of the fixed-axis train vibration mode is given in Figure 3.
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3.2. Differential Train Vibration Mode

Similar to the fixed-axis train, the differential train vibration mode satisfies the follow-
ing characteristics:

(1) The vibration displacements of the sun gear, ring gear and planet gears in the
fixed-axis train are zero.

(2) The corresponding multiple roots of the natural frequency are 2, with a total of
8 pairs.

(3) The differential train has no axial and torsional motion, and the vibration modes of
the central components corresponding to the frequencies φi and φi are:

pj = [xj, yj, 0, 0], pj = [−yj, xj, 0, 0], j = (s, rL, rR, h), (12)

The corresponding planet gear vibration modes have the following relationships:[
ppn
ppn

]
=

[
cos ψnI − sin ψnI
sin ψnI cos ψnI

][
pp1
pp1

]
, (13)

where I is the 3rd-order unit matrix.
The vibration modes can be expressed in the following form:

φi = [ps , prL, prR, ph, cos ψ1pp1 − sin ψ1pp1, . . . , cos ψnpp1 − sin ψnpp1 ]
T

φi = [ps , prL, prR, ph, sin ψ1pp1 + cos ψ1pp1, . . . , sin ψnpp1 + cos ψnpp1]
T , (14)

A schematic diagram of the differential train vibration mode is given in Figure 4.
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3.3. Coupled Vibration Mode

The coupled vibration mode satisfies the following characteristics:
(1) The corresponding natural frequencies are single roots, with a total of 22.
(2) There are no transverse motions of the central components in the fixed-axis train

and the differential train, and the vibration modes of the respective planet gears in the two
systems are the same.

(3) The coupled vibration modes include a planet carrier axial vibration mode and
ring gears torsional vibration mode, corresponding to the number of natural frequencies of
1 and 2, respectively, which also satisfy the characteristics of the coupled vibration modes
and can be regarded as a special coupled vibration mode.

The vibration modes of the central components are as follows:

pj = [0, 0, zj, θzj]j = (a, dL, dR, s, rL, rR, h), (15)
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The planet gear vibration modes have the following relationship:

pmn = pm1 = [xm1, ym1, zm1, θzm1], ppn = pp1 = [xp1, yp1, zp1, θzp1], (16)

The vibration modes can be expressed in the following form:

φi = [pa , pdL, pdR, pm1, . . . , pmn, ps , prL, prR, ph, pp1, . . . , ppn]
T, (17)

A schematic diagram of the coupled vibration mode is given in Figure 5.
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3.4. Verification of the Mathematical Model Using the Finite Element Method

Reference [22] utilized the finite element method to calculate the natural frequencies
of the 2K-H planetary gear system and compared the results with a mathematical model.
To validate the mathematical model of the paper, a finite element model was employed.
Based on the parameters in Table 1, the transmission system was accurately modeled
using the three-dimensional modeling software Solidworks(2018). Subsequently, ANSYS
Workbench(2020) was utilized for mesh generation, dividing the transmission system into a
total of 131,027 nodes and 56,674 elements. Appropriate boundary and loading conditions
were set, as shown in Figure 6. The first six vibration modes were extracted, and the
obtained vibration modes and frequencies are presented in Table 2.
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Table 2. Comparison of vibration modes obtained from two models.

Mode
Mathematical

Model
Nat. Freq. (Hz)

Finite Element Model
Nat. Freq. (Hz) Difference (%) Mod Type

1 0 0 0 /
2 249.96 255.71 2.3 couple
3 538.75 564.61 4.8 couple
4 680.52 656.02 −3.6 differential train
5 680.52 656.02 −3.6 differential train
6 1005.47 1031.6 2.6 fixed-axis train

Table 2 reveals that, among the first six natural frequencies, the maximum difference
between the finite element model and the mathematical model is 4.8%. The obtained
vibration types are also consistent. Therefore, the finite element analysis results are in good
agreement with the mathematical model, validating the effectiveness of the mathemati-
cal model.

4. Sensitivity Analysis of Natural Frequency

The study of the sensitivity of the natural frequencies to the system parameters can
provide an important basis for the reduction in the system response and the optimization
of the structural design. The sensitivity analysis of natural frequencies focuses on the effect
of gear parameters on natural frequencies and vibration modes. The parameters include
unequally spaced planet, mesh stiffness, planet mass and rotational inertia.

The characteristic sensitivity of the free vibration of the system shown in Equation (7)
can be obtained by the following expressions:

(1) When the eigenvalue is a single root, the eigenvalue sensitivity is given by

λ′i = φT
i (K

′ − λi M′)φi, (18)

(2) When the eigenvalue is a repeated root, the eigenvalue sensitivity can be obtained
by solving for the eigenvalue of the following equation:

Dai = λ′iai, D = ΓT(K′ − λiM′)Γ, (19)

where Γ represents a set of m-dimensional vectors, m is the number of repeated roots, and
the following relationship holds:

ΓTMΓ = Im×m, (20)

φi= Γai (21)

4.1. Unequally Spaced Planets

For the convenience of the study, the deviation angle of the first planet gear from its
original position in the fixed-axis train and differential train was set to range from 0◦ to 15◦,
respectively. The frequency shifts of the first 25 modes were calculated, as shown in Table 3.
The sensitivity of the first 25 natural frequencies to the inequality is shown in Figure 7. The
frequency shifts for deviation angle = 0◦ and deviation angle = 15◦ are shown in Figure 8.
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Table 3. Vibration modes for planet gears are unequally spaced.

Mode
Dev. Ang. = 0◦

Nat. Freq. (Hz)

Dev. Ang. = 0◦

Mod Type

Fixed-Axis Train Differential Train

Dev. Ang. = 15◦

Nat. Freq. (Hz)

Dev. Ang. = 15◦

Mod Type
Freq. Shift(%)

Dev. Ang. = 15◦

Nat. Freq. (Hz)

Dev. Ang. = 15◦

Mod Type
Freq. Shift (%)

1 0 couple 0 global 0 0 couple–global 0

2 249.96 couple 249.96 global 0 248.81 couple–global 0.46

3 538.75 couple 538.12 global 0.12 538.74 couple–global 0

4 680.52 differential train 673.84 global 0.98 634.64 couple–global 6.74

5 680.52 differential train 688.91 global 1.23 718.85 couple–global 5.63

6 1005.47 fixed-axis train 1000.53 global 0.49 1005.47 fixed-axis train 0

7 1005.47 fixed-axis train 1005.87 global 0.04 1005.47 fixed-axis train 0

8 1138.42 planet carrier 1138.42 planet carrier 0 1138.42 planet carrier 0

9 1385.93 couple 1385.6 global 0.02 1385.85 couple–global 0.01

10 1497.41 couple 1495.52 global 0.13 1497.12 couple–global 0.02

11 2030.67 couple 2029.86 global 0.04 2030.03 couple–global 0.03

12 2054.77 couple 2044 global 0.52 2053.98 couple–global 0.04

13 2292.34 differential train 2266.85 global 1.11 2285.13 couple–global 0.31

14 2292.34 differential train 2306.73 global 0.63 2294.74 couple–global 0.1

15 2504.67 differential train 2458.41 global 1.85 2477.16 couple–global 1.1

16 2504.67 differential train 2552.05 global 1.89 2528.65 couple–global 0.96

17 2809.75 fixed-axis train 2749.92 global 2.13 2809.75 fixed-axis train 0

18 2809.75 fixed-axis train 2837.37 global 0.98 2809.75 fixed-axis train 0

19 2938.39 couple 2938.39 global 0 2934.2 couple–global 0.14

20 3169.47 differential train 3169.39 global 0 3113.13 couple–global 1.78

21 3169.47 differential train 3169.55 global 0 3225.96 couple–global 1.78

22 4288.77 differential train 4243.9 global 1.05 4134.17 couple–global 3.6

23 4288.77 differential train 4331.34 global 0.99 4420.11 couple–global 3.06

24 4507.93 couple 4508.32 global 0.01 4508.21 couple–global 0.01

25 5388.32 couple 5307.26 global 1.5 5388.33 couple–global 0
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Figure 8. Frequency shifts for deviation angle = 0◦ and deviation angle = 15◦: (a) unequally spaced
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From Table 3 and Figures 6 and 7, it can be seen that when the planet gears of the fixed-
axis train and the differential train are unequally spaced, the first 25 natural frequencies are
not very sensitive to the deviation angles. The maximum frequency shift is not more than 7%
in both unequally spaced planets. However, it can be observed from Table 3 that the change
in vibration modes is large. When the planet gear of the fixed-axis train is unequally spaced,
except for the 8th-order planet carrier axial vibration mode, which remains unchanged,
the vibration modes are transformed into global vibration modes. (In this vibration mode,
vibration may exist in all directions with no obvious pattern.) When the planet gear of the
differential train is unequally spaced, except for the 8th-order planet carrier axial vibration
mode, the 6th-, 7th- and 17th- and 18th-order fixed-axis train vibration modes remain
unchanged, and the rest of the vibration modes are transformed into the coupled–global
vibration modes. (In this vibration mode, the fixed-axis train maintains the characteristics
of the original coupling vibration mode, and the vibration of the gears of the differential
train may be found in all directions without any obvious pattern.)

Since the unequally spaced planets break the cyclic symmetry of the two-stage tandem
hybrid planetary system, the vibration modes are no longer easy to summarize, and new
global vibration modes and coupled–global vibration modes appear. The unequally spaced
planet in a fixed-axis gear train is more serious in damaging the vibration modes than
that in a differential gear train. Because the latter still retains part of the original vibration
pattern, the former is in addition to the planet carrier axial vibration mode; the vibration
modes of the rest orders are changed to irregular global vibration modes.

In conclusion, the change in the natural frequencies caused by unequally spaced
planets is very small, but the breakup of the vibration modes is more serious, and new
global vibration modes and coupled–global vibration modes appear.

4.2. Mesh Stiffness

This section focuses on the influence of the mesh stiffness of sun gear–planet gear on
the modes in the two-stage tandem hybrid planetary system. It is mainly divided into mesh
stiffness sensitivity analysis and mode transition.

4.2.1. Mesh Stiffness Sensitivity Analysis

Taking the meshing stiffness of the sun gear–planet gear in the fixed-axis train kam as
an example, the sensitivity of the natural frequencies to the meshing stiffness was studied.
It is categorized into the following cases:

(1) Fixed-axis train vibration mode.
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In the fixed-axis gear train vibration mode, the eigenvalues are multiple roots. Let
the two eigenvalues be λ1, λ2 and λ = w2, which are the eigenvalues of the matrix D. D is
given by the following formula:

D = ΓTK′Γ =
N

∑
n=1

[
[(δamn)1]

2 (δamn)1(δamn)2
(δamn)1(δamn)2 [(δamn)2]

2

]
, (22)

where δamn is the relative displacement between the n-th planet gear m and the sun gear a.
(2) Differential train vibration mode.
In the differential train vibration mode, δamn = 0, so the sensitivity of the natural

frequencies is zero.
(3) Coupled vibration mode.
In the coupled vibration mode, the eigenvalues are single roots, and the deformations

of each planet gear are the same:

λ′i = N[(δam1)i]
2, (23)

Similarly, the sensitivity of the natural frequencies to the mesh stiffness of sun gear–
planet gear in the differential train ksp can be obtained, which is similar to the above
derivation and is not repeated here.

Briefly, with the change in kam, the natural frequencies of the fixed-axis train vibration
mode and the coupled vibration mode change, while the frequencies of the differential
train vibration mode remain unchanged. With the change in ksp, the frequencies of the
differential train vibration mode and coupled vibration mode change, while the frequencies
of the fixed-axis train vibration mode remain unchanged.

4.2.2. Mode Transition Criterion

When the system parameters are changed, the natural frequency curves approach
gradually and then separate rapidly with a large curvature at a very close distance, a
phenomenon known as mode transition [14]. Take kam as an example to study the mode
transition of natural frequency to mesh stiffness. It is categorized into the following cases:

(1) The corresponding modes of λr and λs are both fixed-axis train vibration modes.
In this case, both λr and λs are double roots, λr = λp and λs = λq, and the coupling

factors are calculated as follows:

χr = χp = −χs = −χq = 2N2

λr−λs
[((δam1)r(δam1)s)

2 + ((δam1)r(δam1)q)
2

+((δam1)p(δam1)s)
2 + ((δam1)p(δam1)q)

2]
, (24)

When the coupling factor is 0, the natural frequencies undergo a mode transition;
otherwise, they intersect. Bringing in the characteristics of the fixed-axis train vibration
mode, it can be seen that the coupling factor can not be 0. Therefore, the natural frequencies,
in this case, transition.

(2) The corresponding modes of λr and λs are both differential train modes.
In the differential train vibration mode, the fixed-axis train does not vibrate, the

natural frequencies have zero sensitivity to kam, and the trajectories of natural frequencies
are straight lines. Therefore, the natural frequencies will not transition and intersect when
kam changes.

(3) The corresponding modes of λr and λs are coupled vibration modes.
In this case, both λr and λs are single roots, and the coupling factors are calculated

as follows:

χr =
2(N(δam1)r(δam1)s)

2

λr − λs
= −χs, (25)

Bringing in the characteristics of the coupled vibration mode, it can be seen that the
coupling factors cannot be 0. Therefore, the natural frequencies, in this case, transition.
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(4) λr belongs to the differential train vibration mode.
In this case, there is δamn = 0. Therefore, the natural frequencies under the differential

train vibration mode intersect with those under other vibration modes.
(5) λr belongs to the coupled vibration mode, and λs belongs to the fixed-axis train

vibration mode.
In this case, λs are double roots, λs = λq, and the coupling factors are calculated

as follows: 
χs =

2
λs−λr

(
N
∑

n=1
(δamn) s(δamn) r)2

χq = 2
λs−λr

(
N
∑

n=1
(δamn) q(δamn) r)2

χr = −(χs + χq)

, (26)

Bringing in the characteristics of the two vibration modes shows that χr = χs = χq = 0
holds true, and therefore, the natural frequencies intersect.

Similarly, the mode transition criterion of the natural frequencies to ksp can be obtained.
The obtained mode transition criterion is summarized as shown in Table 4.

Table 4. Mode transition criterion of natural frequency to mesh stiffness.

Vibration Mode
Meshing Stiffness kam

Mode Transition Criterion
Meshing Stiffness ksp

Mode Transition Criterion

Case1 All vibration modes are fixed-axis train vibration modes transition unchange
Case2 All vibration modes are differential train vibration modes unchange transition
Case3 All vibration modes are coupled vibration modes transition transition

Case4
Vibration modes are coupled vibration mode and fixed-axis

train vibration mode
intersect intersect

Case5
Vibration modes are coupled vibration mode and

differential train vibration mode
intersect intersect

Case6
Vibration modes are fixed-axis train vibration mode and

differential train vibration mode
intersect intersect

4.2.3. Sensitivity and Modal Transition Verification

The kam and ksp were set to be from 107 N/m to 108 N/m, respectively. The frequency
shifts of the first 25 modes were calculated, as shown in Table 5. The sensitivity of the first
25 natural frequencies to the mesh stiffness is shown in Figure 9, and the frequency shifts
for mesh stiffness of 107 N/m and 108 N/m are shown in Figure 10.
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Table 5. Vibration modes under variation in mesh stiffness.

Mode

Fixed-Axis Train Differential Train

kam = 107 N/m

Nat. Freq. (Hz)

kam =108 N/m

Nat. Freq. (Hz)
Mod Type Freq. Shift (%)

ksp =107 N/m

Nat. Freq. (Hz)

ksp =108 N/m

Nat. Freq. (Hz)
Mod Type Freq. Shift (%)

1 0 0 couple 0 0 0 couple 0

2 249.74 249.97 couple 0.09 142.13 281.43 couple 98.01

3 280.62 629.29 couple 124.25 375.67 787.68 differential train 109.67

4 479.39 1304.38 fixed-axis train 172.09 375.67 787.68 differential train 109.67

5 479.39 1304.38 fixed-axis train 172.09 537.79 538.86 couple 0.2

6 680.52 680.52 differential train 0 1005.47 1005.47 differential train 0

7 680.52 680.52 differential train 0 1005.47 1005.47 differential train 0

8 845.65 1394.85 couple 64.94 1138.42 1138.42 planet carrier 0

9 1138.42 1138.42 planet carrier 0 1311.12 1395.07 couple 6.4

10 1403.53 1611.29 couple 14.8 1405.05 1508.04 couple 7.33

11 1768.45 2031.44 couple 14.87 1916.28 2040.61 couple 6.49

12 2031.58 2259.49 couple 11.22 1972.24 2071.08 couple 5.01

13 2292.34 2292.34 differential train 0 2049.22 2420.15 differential train 18.1

14 2292.34 2292.34 differential train 0 2049.22 2420.15 differential train 18.1

15 2399.26 2973.19 fixed-axis train 23.92 2129.58 2648.16 differential train 24.35

16 2399.26 2973.19 fixed-axis train 23.92 2129.58 2648.16 differential train 24.35

17 2504.67 2504.67 differential train 0 2322.19 3495.13 couple 50.51

18 2504.67 2504.67 differential train 0 2809.75 2809.75 differential train 0

19 2938.38 2938.39 couple 0 2809.75 2809.75 differential train 0

20 3169.47 3169.47 differential train 0 3057.45 3341.41 differential train 9.29

21 3169.47 3169.47 differential train 0 3057.45 3341.41 differential train 9.29

22 4265.82 4581.29 couple 7.4 3392.91 4509.21 couple 32.9

23 4288.77 4288.77 differential train 0 3756.92 4503.96 differential train 19.88

24 4288.77 4288.77 differential train 0 3756.92 4503.96 differential train 19.88

25 4593.9 5557.98 couple 20.99 4514.16 5388.37 couple 19.37
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From Table 5 and Figures 8 and 9, it can be seen that the influence of the mesh stiffness
of the sun gear–planet gear on the natural frequencies is very large, and the frequency
shift even reaches 172.09%. When kam changes, the vibration modes corresponding to the
changed natural frequencies are fixed-axis train vibration mode and coupled vibration
mode; when ksp changes, the vibration modes corresponding to the changed natural
frequencies are differential train vibration mode and coupled vibration mode. This also
verifies the sensitivity of the natural frequencies to the mesh stiffness in Section 4.2.1. Since
there are more differential train vibration modes than fixed-axis train vibration modes in
the first 25 modes, although the peak frequency shift generated by kam is greater than that
by ksp, its influence affects fewer orders than ksp.
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The mode transition phenomenon can be observed in Figure 9, and the mode transition
in Figure 9a is verified by comparing the mode transition criterion in Table 4. There is
no case1 in Figure 9a; frequencies (13, 14) are a double root, belonging to the differential
train vibration mode, which are straight lines, verifying case2; frequencies (11, 12) are
two single roots, belonging to the coupled vibration mode, and the transitions occur at
5 × 107 N/m, verifying case3; frequencies (15, 16) are a double root, belonging to the
fixed-axis train vibration mode; frequency (19) is a single root, belonging to the coupled
vibration mode, and intersections occur at 9 × 107 N/m, verifying case4; there is no case5
in Figure 9a; frequencies (4, 5) are a double root, belonging to the fixed-axis train vibration
mode, frequencies (6, 7) are a double root, belonging to the differential train vibration
mode, and intersections occur at 2.5 × 107 N/m, verifying case6. The mode transitions and
intersections occurring at other positions in Figure 9a also conform to the mode transition
criterion in Table 4, and similarly, the mode transitions and intersections in Figure 9b can
be verified to conform to the mode transition criterion, which is not repeated here.

In conclusion, the mesh stiffness of the sun gear–planet gear mainly affects the natural
frequencies of the system and does not change the original vibration modes. The mode
transitions and intersections that occur are also consistent with the formulated mode
transition criterion.

4.3. Planet Mass

The study of the sensitivity of the natural frequencies to the planet mass/rotational
inertia is similar to the methodology of Sections 4.2.1 and 4.2.2, which is not repeated here
due to space implications. The mode transition criterion for the natural frequencies to the
planet gear mass/rotational inertia is consistent with Table 4. The variation rule of the
sensitivity of natural frequencies to planet mass/rotational inertia was obtained as follows:

As the planet gear mass Mm/rotational inertia Jm in the fixed-axis train changes,
the natural frequencies of the fixed-axis train vibration mode and the coupled vibration
mode change, while the natural frequencies of the differential train vibration mode remain
unchanged. As the planet gear mass Mp/rotational inertia Jp in the differential train
changes, the natural frequencies of the differential train vibration mode and the coupled
vibration mode change, while the natural frequencies of the fixed-axis train vibration mode
remain unchanged.

Setting Mm and Mp from 0.1 kg to 1 kg, respectively, the frequency shifts of the first
25 modes were calculated, as shown in Table 6. The sensitivity of the first 25 natural
frequencies to the planet mass is shown in Figure 11, and the frequency shifts for planet
mass of 0.1 kg and 1 kg are shown in Figure 12.
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Table 6. Vibration modes under variation in planet mass.

Mode

Fixed-Axis Train Differential Train

Mm = 0.1 kg

Nat. Freq. (Hz)

Mm = 1 kg

Nat. Freq. (Hz)
Mod Type Freq. Shift (%)

Mp = 0.1 kg

Nat. Freq. (Hz)

Mp = 1 kg

Nat. Freq. (Hz)
Mod Type Freq. Shift (%)

1 0 0 couple 0 0 0 couple 0

2 249.96 249.96 couple 0 250.2 225.68 couple 9.8

3 635.37 385.58 couple 39.31 538.98 483.77 couple 10.24

4 680.52 680.52 differential train 0 682.74 483.77 differential train 29.14

5 680.52 680.52 differential train 0 682.74 483.77 differential train 29.14

6 1138.42 1138.42 planet carrier 0 1005.47 1005.47 fixed-axis train 0

7 1395.16 1257.79 couple 9.85 1005.47 1005.47 fixed-axis train 0

8 1556.41 599.63 fixed-axis train 61.47 1138.42 1138.42 planet carrier 0

9 1556.41 599.63 fixed-axis train 61.47 1389.59 842.26 couple 39.39

10 1698.55 1406.46 couple 17.2 1500.94 1225.51 couple 18.35

11 2031.74 1936.78 couple 4.67 2047.01 1536.29 couple 24.95

12 2292.34 2292.34 differential train 0 2058.29 1962.92 couple 4.63

13 2292.34 2292.34 differential train 0 2324.64 1168.2 differential train 49.75

14 2504.67 2504.67 differential train 0 2324.64 1168.2 differential train 49.75

15 2504.67 2504.67 differential train 0 2529.83 1691.2 differential train 33.15

16 2678.12 2031.99 couple 24.13 2529.83 1691.2 differential train 33.15

17 2938.39 2938.39 couple 0 2809.75 2809.75 fixed-axis train 0

18 3169.47 3169.47 differential train 0 2809.75 2809.75 fixed-axis train 0

19 3169.47 3169.47 differential train 0 3017.75 2348.77 couple 22.17

20 3224.87 2705.55 fixed-axis train 16.1 3221.6 2875.26 differential train 10.75

21 3224.87 2705.55 fixed-axis train 16.1 3221.6 2875.26 differential train 10.75

22 4288.77 4288.77 differential train 0 4291.78 4154.75 differential train 3.19

23 4288.77 4288.77 differential train 0 4291.78 4154.75 differential train 3.19

24 4567.2 4492.48 couple 1.64 4507.93 4507.88 couple 0

25 5472.18 5368.31 couple 1.9 5388.33 5137.52 couple 4.65
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From Table 6 and Figures 11 and 12, it can be seen that the effects of the planet mass on
the natural frequencies are also very large, and the maximum value of the frequency shift
reaches 61.47%. When Mm changes, the vibration modes corresponding to the changed
natural frequencies are the fixed-axis train vibration mode and the coupled vibration mode;
when Mp changes, the vibration modes corresponding to the changed natural frequencies
are the differential train vibration mode and the coupled vibration mode. This also verifies
the sensitivity of natural frequencies to the planet gear mass, as mentioned above. Similarly,
the peak frequency shift generated by Mm is larger than that of Mp, but its influence affects
fewer orders than Mp.
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The mode transition phenomenon can be observed in Figure 11, and the mode transi-
tion in Figure 11a is verified by comparing the mode transition criterion in Table 4. There is
no case1 in Figure 11a; frequencies (12, 13) are a double root, belonging to the differential
train vibration mode, which are straight lines, verifying case2; frequencies (7, 10) are two
single roots, belonging to the coupled vibration mode, and the transitions occur at 0.5 kg,
verifying case3; frequencies (8, 9) are a double root, belonging to the fixed-axis train vibra-
tion mode, and frequency (6) is a single root, belonging to the coupled vibration mode, and
intersections occur at 0.15 kg, verifying case4; frequency (16) is a single root, belonging
to the coupled vibration mode, and it intersects with frequencies (12, 13) between 0.15
and 0.2 kg, which belong to the of the differential train vibration mode, verifying case 5;
frequencies (4, 5) are a double root, belonging to the differential train vibration mode, and
intersect with frequencies (8, 9) between 0.75 and 0.8 kg, which belong to the fixed-axis
train vibration mode, verifying case6. The mode transitions and intersections occurring at
other positions in Figure 11a also conform to the mode transition criterion in Table 4, and
similarly, the mode transitions and intersections in Figure 11b can be verified to conform to
the mode transition criterion in Table 4, which is not repeated here.

4.4. Planet Rotational Inertia

Setting Jm from 10−4 kg·m2 to 10−3 kg·m2 and Jp from 10−5 kg·m2 to 10−4 kg·m2, the
frequency shifts of the first 25 modes were calculated, as shown in Table 7. The sensitivity
of the first 25 natural frequencies to the planet rotational inertia is shown in Figure 13, and
the frequency shifts for extreme values of the rotational inertia are shown in Figure 14.

Table 7. Vibration modes under variation in planet rotational inertia.

Mode

Fixed-Axis Train Differential Train

Jm = 0.1 kg

Nat. Freq. (Hz)

Jm = 1 kg

Nat. Freq. (Hz)
Mod Type Freq. Shift (%)

Jp = 0.1 kg

Nat. Freq. (Hz)

Jp = 1 kg

Nat. Freq. (Hz)
Mod Type Freq. Shift (%)

1 0 0 couple 0 0 0 couple 0

2 249.97 249.94 couple 0.01 250.18 249.59 couple 0.24

3 538.76 538.73 couple 0.01 539.47 537.49 couple 0.37

4 680.52 680.52 differential train 0 682.46 675.56 differential train 1.01

5 680.52 680.52 differential train 0 682.46 675.56 differential train 1.01

6 1014.34 959.12 fixed-axis train 5.44 1005.47 1005.47 fixed-axis train 0

7 1014.34 959.12 fixed-axis train 5.44 1005.47 1005.47 fixed-axis train 0

8 1138.42 1138.42 planet carrier 0 1138.42 1138.42 couple 0

9 1389.05 1358.09 couple 2.23 1388.53 1380.97 couple 0.54

10 1516.17 1438.54 couple 5.12 1499.92 1493.13 couple 0.45

11 2031.35 1872.99 couple 7.8 2030.7 2030.61 couple 0

12 2135.99 2031.66 couple 4.88 2054.82 2054.66 couple 0.01

13 2292.34 2292.34 differential train 0 2295.32 2276.9 differential train 0.8

14 2292.34 2292.34 differential train 0 2295.32 2276.9 differential train 0.8

15 2504.67 2504.67 differential train 0 2534.01 2424.1 differential train 4.34

16 2504.67 2504.67 differential train 0 2534.01 2424.1 differential train 4.34

17 2938.39 2938.39 couple 0 2809.75 2809.75 fixed-axis train 0

18 3169.47 3169.47 differential train 0 2809.75 2809.75 fixed-axis train 0

19 3169.47 3169.47 differential train 0 2938.39 2938.39 couple 0

20 3227.44 1868.08 fixed-axis train 42.12 3176.61 3148.44 differential train 0.89

21 3227.44 1868.08 fixed-axis train 42.12 3176.61 3148.44 differential train 0.89

22 4288.77 4288.77 differential train 0 4334.67 4111.9 differential train 5.14

23 4288.77 4288.77 differential train 0 4334.67 4111.9 differential train 5.14

24 4630.25 3855.18 couple 16.74 4520.8 4459.12 couple 1.36

25 5388.48 4613.61 couple 14.38 5388.38 5246.58 couple 2.63
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From Table 7 and Figures 12 and 13, it can be observed that due to Jm being an order
of magnitude larger than Jp, the selected range for Jm also varies significantly. Within the
chosen range of rotational inertia, the maximum frequency shift caused by Jm reaches
42.12%, while the maximum frequency shift caused by Jp is only 5.14%. As the rotational
inertia changes, the sensitivity of the natural frequencies to the planet rotational inertia
follows the expected rules as discussed earlier. Similarly, the order of occurrence frequency
shift affected by Jm is less than that of Jp.

The mode transition phenomenon can be observed in Figure 13, and the mode transi-
tion in Figure 13a is verified by comparing the mode transition criterion in Table 4. There
is no case1 in Figure 13a; frequencies (4, 5) are a double root, belonging to the differential
train vibration mode, which are straight lines, verifying case2; frequencies (11, 12) are
two single roots, belonging to the coupled vibration mode, and the transition occurs at
3.5 × 10−4 kg·m2, verifying case3; frequencies (20, 21) are a double root, belonging to the
fixed-axis train vibration mode, frequency (12) is a single root, belonging to the coupled
vibration mode, and intersections occur between 7.5 × 10−4 and 8 × 10−4 kg·m2, verifying
case4; frequency (24) is a single root, belonging to the coupled vibration mode, frequencies
(22, 23) are a double root, belonging to the vibration mode of the differential train, and
intersections occur between 4.5× 10−4 and 5× 10−4 kg·m2, verifying case5; frequencies (13,
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14) are a double root, belonging to the differential train vibration mode, and intersect with
frequencies (20, 21) between 5.5 × 10−4 and 6 × 10−4 kg·m2, which belonging to the fixed-
axis train vibration mode, verifying case6. The mode transitions and intersections occurring
at the other positions in Figure 13a also conform to the mode transition criterion in Table 4.
Within the selected mass range, the range of natural frequency variations in Figure 13b is
small and does not reach the point where mode transitions and intersections occur.

5. Conclusions

Based on the centralized parameter model of the two-stage tandem hybrid planetary
system, the natural characteristics were analyzed; three typical vibration modes were
summarized; and the sensitivity of natural frequencies to unequally spaced planet, mesh
stiffness, planet mass and rotational inertia, as well as the mode transition and inter-
section phenomena of natural frequencies under the influence of different parameters,
were investigated.

(1) The vibration modes of the two-stage tandem hybrid planetary system include
fixed-axis train vibration mode, differential train vibration mode and coupled vibra-
tion mode.

(2) The sensitivity of the natural frequencies to the parameters was investigated. With
the change in the parameters in the fixed-axis train, the natural frequencies of the fixed-axis
train vibration mode and the coupled vibration mode change, while the natural frequencies
of the differential train vibration mode remain unchanged. With the change in parameters
in the differential train, the natural frequencies of the differential train vibration mode
and coupled vibration mode change, while the natural frequencies of the fixed-axis train
vibration mode remain unchanged. Combined with the numerical examples, the correctness
of the parameter sensitivity was verified, and the frequency shifts under the influence of
different parameters were calculated.

(3) The mode transition phenomenon was investigated, and the criterion for the
occurrence of mode transition of the two-stage tandem hybrid planetary system was
determined, and the accuracy of the proposed mode transition criterion was verified
by calculations.

Through the model established in this study, natural characteristics of the marine two-
stage tandem hybrid planetary system can be swiftly obtained, aiding design engineers
in better comprehending the dynamic behavior of the gear system. This understanding
facilitates design optimization to mitigate resonance and enhance system performance,
reliability and longevity. Despite the close resemblance between the mathematical model
presented in this paper and finite element results, disparities from reality persist. Therefore,
future research endeavors could involve further refining the model, such as the coupling
between the sun gear and the planet gears at their respective ends, which could be explored
in detail, treating the entire assembly as flexible components, among other aspects. It
is anticipated that such refinements will yield results closer to reality, representing our
forthcoming focus and dedication.
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