
Heat radiation and transfer for nanoparticles in the presence of a cylinder

Kiryl Asheichyk1, ∗ and Matthias Krüger2, †
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We study heat radiation and radiative heat transfer for nanoparticles in the presence of an in-
finitely long cylinder in different geometrical configurations, based on its electromagnetic Green’s
tensor. The heat radiation of a single particle can be enhanced by placing it close to a nanowire,
and this enhancement can be much larger as compared to placing it close to a plate of the same
material. The heat transfer along a cylinder decays much slower than through empty vacuum, being
especially long-ranged in the case of a perfectly conducting nanowire, and showing nonmonotonic
behavior in the case of a SiC cylinder. Exploring the dependence on the relative azimuthal angle of
the nanoparticles, we find that the results are insensitive to small angles, but they can be drastically
different when the angle is large, depending on the material. Finally, we demonstrate that a cylinder
can either enhance or block the heat flux when placed perpendicular to the interparticle distance
line, where the blocking in particular is strongly enhanced compared to the geometry of a sphere of
same radius.

PACS numbers: 12.20.-m, 44.40.+a, 05.70.Ln

I. INTRODUCTION

Fundamental understanding of radiative heat exchange
in complex micro- and nanosystems is of high practi-
cal importance for a variety of applications [1–3]. Over
the past decade, this understanding has become possible
thanks to the development of the corresponding theoreti-
cal frameworks [1, 2, 4], where expressions for many-body
heat radiation (HR) and radiative heat transfer (HT) are
derived based on fluctuational electrodynamics [5, 6].

With these frameworks, numerous paradigmatic con-
figurations were investigated, mainly concerning HT for
a collection of small particles [7–22], HT in many-body
planar structures [23–31], and HT between two small par-
ticles in the presence of an arbitrarily sized object [32–
43]. While the numerical feasibility of the first two cases
becomes worse upon increasing the number of particles
or planar structures, in the latter case, it depends on
how complicated the considered object is. Therefore,
the performed computations are mainly restricted to ob-
jects with an analytical scattering matrix, such that their
Green’s function (GF) is expressed as a sum and (or) in-
tegral of known functions. These are a plate [32–39] or a
two-plates cavity [32, 35, 43], a sphere [40] or a spherical
cavity [35, 40], and a cylinder [41, 42] or a cylindrical
cavity [43].

Cylindrical objects in the context of HR and HT are
well explored: HR of a cylinder alone [44–51] as well as
HT between a cylinder and another object [46, 47, 52–
54] were investigated both theoretically [44–47, 52–54]
and experimentally [48–51] by several research groups.
However, HT between two particles in the presence of
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a cylinder was studied only very recently [41, 42]. In
Ref. [41], we showed that a well-conducting cylinder acts
as an excellent waveguide, transferring energy to large
distances much more efficiently than planar or spherical
objects.
In this work, we discover further effects that a cylin-

der has on HT and HR of nanoparticles, extending the
studies of Ref. [41] to a larger set of geometrical config-
urations and materials. In particular, we show that the
energy flux along a dielectric cylinder is several orders of
magnitude larger than the vacuum flux, even greatly sur-
passing the transfer along a well-conducting cylinder for
a certain range of parameters. Rotation of one particle
around a cylinder relative to the other (by keeping the
interparticle distance roughly unchanged) has a large or
small effect depending on the material. When the par-
ticles are placed perpendicular to the cylinder axis, the
flux can be either enhanced or blocked. In addition, we
demonstrate that a particle placed close to a cylinder ra-
diates (or, in other words, cools down) much stronger
than when it is in isolation, and also much stronger com-
pared to placing it close a plate.
The paper is organized as follows. In Sec. II, we study

the HR of a particle in the presence of a cylinder. Sec-
tion III investigates the HT between two particles placed
parallel to the cylinder axis, whereas Sec. IV is devoted
to the perpendicular configuration. We close the main
part with a summary and discussion in Sec. V. In the
Appendix, we study the GF of a cylinder in detail, giv-
ing its expressions for various cases.

II. HEAT RADIATION

Consider particle 1 at temperature T1 placed close to a
cylinder of radius R at distance h from its surface, as de-
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FIG. 1. Heat radiation of particle 1 at temperature T1 in
the presence of an infinitely long cylinder of radius R. When
the distance h is small (i.e., near-field regime), the cylinder
strongly affects the particle’s radiation (see Fig. 2).

picted in Fig. 1. The cylinder is assumed to be infinitely
long, such that its scattering matrix is known analyti-
cally (see the Appendix). We aim to compute HR of the
particle in this system, i.e., the rate of heat emitted by
the particle, taking into account possible reabsorption.
To simplify computations, we use the dipolar point par-
ticle (PP) limit, such that particle 1 is small compared
to the thermal wavelength, the particle’s skin depth, and
the distance h [40]. In addition, the limit implies that
magnetic response of the particle can be neglected (i.e.,
its magnetic permeability µ = 1). With these conditions,
the multiple scatterings from the particle are neglected,
and it can be modeled as an electrical dipole [40]. HR
then reads [40]

H
(1)
1 =

8ℏ
c2

∫ ∞

0

dω
ω3

e
ℏω

kBT1 − 1
Im(α1) Tr ImG(r1, r1).

(1)
Here, Tr ImG(r1, r1) is the trace of the imaginary part of
the dyadic Green’s function (GF) of the cylinder, evalu-
ated at the particle’s position r1, which can be found in
the Appendix [Eqs. (A.35) and (A.36)]. This trace en-
codes the geometry of the system, and thus determines
how the cylinder affects the HR. Note that G is also a
function of ω. c is the speed of light in vacuum, and ℏ
and kB are Planck’s and Boltzmann’s constants, respec-
tively. α1 is the particle’s polarizability, characterizing
its natural radiation (or absorption) strength,

α1(ω) =
ε1(ω)− 1

ε1(ω) + 2
R3

1, (2)

with R1 and ε1(ω) being the radius and the frequency-
dependent dielectric permittivity of the particle, respec-

tively. Given Eq. (2), H
(1)
1 is proportional to the parti-

cle’s volume V1.
For demonstration of the HR, we choose a SiC (alpha

silicon carbide) particle at temperature T1 = 300 K, with
the following permittivity [55]:

ε1(ω) = εSiC(ω) = ε∞
ω2 − ω2

LO + iωγ

ω2 − ω2
TO + iωγ

, (3)

with ε∞ = 6.7, ωLO = 1.82 × 1014 rad s−1, ωTO =
1.49 × 1014 rad s−1, γ = 8.93 × 1011 rad s−1. The

corresponding thermal wavelength (which sets the short-
wavelength cutoff in the radiation spectrum, and around
which the dominantly contributing wavelengths are con-
centrated) is λT1

= ℏc
kBT1

= 7.63 × 10−6 m; the corre-

sponding dominant frequency ω0 = 1.75 × 1014 rad s−1,
giving the maximum of the radiation spectrum, is the
resonance frequency of αSiC. For the cylinder, we con-
sider three different materials – SiC, gold, and a perfect
conductor – neglecting the magnetic response, i.e., µ = 1
(note that the GF given in the Appendix can be used for
arbitrary µ). The dielectric response of a SiC cylinder is
modeled by εSiC(ω) in Eq. (3), while for a gold cylinder,
the Drude model is used [56],

εAu(ω) = 1− ω2
p

ω(ω + iωτ )
, (4)

with ωp = 1.37 × 1016 rad s−1 and ωτ = 4.06 ×
1013 rad s−1. The perfect conductor is modeled using
the corresponding scattering matrices in Eqs. (A.13a)–
(A.13c) (formally, it is the |ε| → ∞ limit).

The HR in the presence of a cylinder, normalized by

the HR of an isolated particle, H
(1)
1,vac (see Eq. (22) in

Ref. [40]), is given in Fig. 2 as a function of R for differ-
ent materials of the cylinder and near-field distances h.
Overall, we can see that a cylinder largely amplifies the
HR, with the effect becoming stronger as h decreases. For

all considered materials, the ratio H
(1)
1 /H

(1)
1,vac is a non-

monotonic function of R, such that there is an optimal
radius giving the maximal amplification (the maximum
for h = 100 nm in Fig. 2(b) is not evident, as it appears
at the smallest considered R = 1 nm). This radius shifts
to smaller values with a decrease of h.

The strongest enhancement of the HR is observed for a
SiC cylinder [shown in Fig. 2(a)], which can be attributed
to similar resonances of the spectra for α1 and Tr ImG
(see Fig. 3). When R is small, there is a little effect,
as the cylinder becomes transparent. With growth of R,
the HR strongly increases, reaching its maximum when
R becomes larger than h. For h = 800 nm, the maximal
amplification is around 7, while it exceeds 1300 for h =
100 nm. When R becomes comparable to λT1

, the result
converges to the HR in the presence of a plate. The
maximal ratio between the HR for cylinder and plate
geometries grows with a decrease of h, but it does not
exceed 2 for the considered h ≥ 100 nm.

In contrast to SiC, the spectrum of the gold cylin-
der GF has overall a smaller amplitude and no peaks

(see Fig. 3), such that H
(1)
1 /H

(1)
1,vac is also smaller [see

Fig. 2(b)], with its maximum varying between 1.5 (for
h = 800 nm) and 264 (for h = 100 nm). Compared to
SiC, this maximum is reached at a much smaller R (e.g.,
Rmax ≈ 1 nm for h = 100 nm), which we attribute to
a much smaller skin depth (δAu = 2.2 × 10−8 m versus
δSiC = 1.2 × 10−6 m). The plate limit for gold is be-
low the vacuum HR, such that a thin gold cylinder can
outperform a gold plate by several orders of magnitude.
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FIG. 2. Heat radiation of a SiC particle at temperature T1 = 300 K in the presence of a cylinder, as a function of the cylinder
radius R, normalized by the heat radiation in isolation. The results are given for different materials of the cylinder [(a) SiC,
(b) gold, (c) perfect conductor] and for different distances h from the particle to the cylinder surface (see Fig. 1). Dashed lines
show the heat radiation in the presence of a plate of the corresponding material for the corresponding h. λT1 = 7.63× 10−6 m
is the thermal wavelength, while δSiC = 1.2× 10−6 m and δAu = 2.2× 10−8 m are the skin depths of SiC and gold, respectively.
Solid line at a value of 1 is included as a guide to the eye.

A perfectly conducting cylinder shows a smaller am-
plification compared to SiC and gold, with its maximum
being 22 for h = 100 nm [see Fig. 2(c)]. Notably, the
convergence to the vacuum HR is very slow, such that

H
(1)
1 /H

(1)
1,vac for a thin cylinder is significantly above 1

even for the largest considered h = 800 nm; in other
words, when SiC and gold cylinders become transpar-
ent, a perfectly conducting one still affects the particle’s
emission. As in the case of gold, the plate limit is be-
low the vacuum one, leading to a large cylinder-plate
amplification factor. Importantly, for a perfectly con-
ducting plate, one can apply the method of images, and
only one image dipole is required. Tr ImG is known an-
alytically, leading to an amplification factor between 2/3
and 2 compared to the case of a free particle [40, 57],
indicating that the amplification may be limited by the
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FIG. 3. Tr ImG(r1, r1) as a function of frequency as appear-
ing in the radiation spectrum of a particle in Eq. (1). Here,
we consider a cylinder (R = h = 100 nm), plate (same h),
or no object (vacuum). The vertical line shows the resonance
frequency ω0 of the SiC particle polarizability, which is the
dominant frequency in heat radiation [see Eqs. (1)–(3)].

number of image dipoles. For a cylinder, the method
of images is more complicated, involving multiple image
dipoles. This larger number of image dipoles might be
the reason why a cylinder allows a larger amplification
as seen in Fig. 2(c). It is worth noticing that a perfectly
conducting cylinder requires many fewer multipoles [in-
dexed by n in Eq. (A.36)] for the convergence of Tr ImG
compared to SiC and gold [for which Eq. (A.35) is used]:
For example, nmax ≈ 5 is enough for a perfect conductor
when h = 100 nm and R = 1 µm, whereas nmax ≈ 50 is
required for the same h and R in the case of SiC or gold.

The result for the perfect conductor is remarkable: In
this case, the cylinder strictly absorbs no energy, and the
energy emitted in the HR of the particle must travel to
infinity (in contrast to gold and SiC, where the energy
can be absorbed by the cylinder). In this regard, the dif-
ference to the perfectly conducting plate is worth noting:
The nanoparticle seems to excite waves traveling along
the cylinder, but it seems not to be able to excite (notice-
able) waves traveling along the plate. Interestingly, the
relative factor becomes even larger for smaller frequen-
cies (or larger wavelengths): As shown in Fig. 3, with a
decrease of ω, Tr ImG grows for a perfectly conducting
cylinder, but it decays for a plate. This means that the
effect of a cylinder should be most pronounced for small
temperature T1 (large λT1

).

III. HEAT TRANSFER: PARALLEL
CONFIGURATION

Let us now turn to the HT from particle 1 at temper-
ature T1 to particle 2 in the presence of a cylinder. As
in Sec. II, we use the PP limit (here, for both particles),
which requires that the radius of each particle is much
smaller than the distance between them (in addition to
the conditions discussed in Sec. II). In this limit, the HT
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FIG. 4. Radiative heat transfer from particle 1 at tempera-
ture T1 to particle 2, placed close to an infinitely long cylinder
parallel (∆φ = 0) to the cylinder axis. The near-field energy
radiated by the first particle is captured by the cylinder and
guided in the needed direction to the second particle. Such a
directional configuration leads to a highly efficient heat trans-
fer even for far-separated particles (see Fig. 5). Variation of
relative azimuthal angle ∆φ (provided that d ≈ ∆z) can lead
to a mild or strong change of the heat transfer, depending on
the material of the cylinder (see insets of Fig. 5).

reads [7, 40]

H
(2)
1 =

32πℏ
c4

∫ ∞

0

dω
ω5

e
ℏω

kBT1 − 1
Im(α1) Im(α2)

× Tr
[
G(r1, r2)G†(r1, r2)

]
, (5)

where Tr
[
G(r1, r2)G†(r1, r2)

]
is the trace of the matrix

product of the GF of the cylinder (evaluated at the par-
ticles’ positions r1 and r2) and its conjugate transpose.
The polarizabilities α1 and α2 are given by Eq. (2) (with
the corresponding particle index), such that the HT is
proportional to volumes of the particles V1 and V2. We
thus do not give the particles’ radii explicitly but instead
normalize the HT by V1V2.

For demonstration of the HT, we choose SiC particles,
with permittivities given by Eq. (3); the temperature of
particle 1 is T1 = 300 K. As in Sec. II, we consider
three materials of a cylinder: SiC, gold, and a perfect
conductor.

In this section, we consider the configuration depicted
in Fig. 4, where the interparticle distance line is either
parallel (for azimuthal angle ∆φ = 0) or almost parallel
(∆φ ̸= 0, but ∆z ≫ 2r, such that d ≈ ∆z) to the cylinder
axis. Both particles are placed at a distance h from the
cylinder surface; we set h = 10−7 m, i.e., h ≪ λT1 , in
order to have a strong coupling between the particles
and cylinder. The GF is given by Eqs. (A.26) and (A.27)
for ∆φ = 0, and by Eqs. (A.18) and (A.19) for finite ∆φ.
For ∆φ = 0, this configuration was studied in Ref. [41].
It was found that, for a perfectly conducting cylinder, the
HT decays logarithmically with the interparticle distance
d (for large d), thus being many orders of magnitude
larger than for isolated particles. This highly efficient
energy transport is attributed to the system geometry:
The cylinder acts as a waveguide, transferring the near-
field energy in the preferred direction. Here, we study

this configuration in more detail, including SiC and gold
cylinders, as well as effects of finite angle ∆φ.

The HT is given in Fig. 5 as a function of d for different
radii and materials of the cylinder. Overall, the cylin-
der greatly enhances the HT. When R is small [R ≪ h
in Figs. 5(a) and 5(b)], a SiC cylinder has little ef-
fect, whereas a gold cylinder yields a large enhancement,
which appears at larger values of d and vanishes at larger
values of d, the larger R is. The vanishing occurs via an
exponential decay to the vacuum result. Compared to
gold, the HT with a perfectly conducting cylinder devi-
ates from the vacuum HT at a larger near-field distance,
meaning that gold wins in terms of efficiency in the near
field. However, an exponential decay does not appear for
a perfect conductor, thanks to the absence of material
losses. Instead, the HT decays logarithmically for any
large d [41], surpassing gold, SiC, or vacuum cases by
more than 10 orders of magnitude in the far field (for the
range of d shown).

When R = h = 10−7 m [Fig. 5(c)], a SiC cylinder
strongly affects the HT, being a few orders of magnitude
better than gold and a perfect conductor for near-field
d ≳ h. For intermediate distances, the SiC curve goes
below the gold and perfect conductor curves, but it is still
above the vacuum result. When d is large compared to
the thermal wavelength, the HT scales similar to the vac-
uum one, i.e., ∝ d−2, but it is about seven times larger;
the ultimate behavior for d → ∞ remains unknown. The
HT in the presence of a gold cylinder features a plateau
starting at d ≈ 1 µm and ending by an exponential decay
in the far field. This plateau is longer in d but smaller in
the HT amplitude compared to that observed for smaller
R [see Figs. 5(a) and 5(b)]. Until the exponential drop, it
almost repeats the logarithmically decaying perfect con-
ductor curve (gold has a slightly larger HT). The latter is
also smaller in amplitude compared to the HT for smaller
R (a detailed R dependence can be found in Ref. [41]).

We analyze the case of R = h = 10−7 m and d =
10−4 m in more detail, plotting the spectrum of Tr

(
GG†)

in Fig. 6. The amplification for SiC observed in Fig. 5(c)
can be explained by the resonance of Tr

(
GG†) close to

ω0 (the resonance of αSiC). The small mismatch of the
respective resonance frequencies of particle and cylin-
der implies that the HT can be increased even further
when using (for either particles or a cylinder) a material
with slightly different optical properties. Similar argu-
ments can be applied for the HR in the presence of a
SiC cylinder (see the peak in Fig. 3). Interestingly, the
spectrum also features a “pulse” at ω ≈ 149 Trad s−1

(where the real part of εSiC changes sign), followed by
a “wave packet.” For gold and a perfect conductor, the
spectrum is a smooth function of ω, with a much larger
amplitude compared to vacuum or SiC, which explains
the large amplification in Fig. 5. This smooth behavior
is different compared to the case of the particles inside
a cylindrical gold cavity, where the spectrum features
geometry-induced resonances [43].

For R = 10−6 m in Fig. 5(d), i.e., when the radius
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FIG. 5. Heat transfer (normalized by particles’ volumes) from SiC particle 1 at temperature T1 = 300 K (the corresponding
thermal wavelength λT1 = 7.63× 10−6 m) to SiC particle 2 in the presence of a cylinder, as a function of interparticle distance
d. The particles are placed parallel to the cylinder axis at distance h = 10−7 m from the cylinder surface (see Fig. 4). The
results are given for different radii R and materials of the cylinder, and they are compared to the case of the particles in
vacuum. Inset graphs show the angular dependence of the HT, where one particle is rotated by an angle ∆φ relative to the
other, whereas radial and z components remain unchanged (see Fig. 4); the result is normalized by the case shown in the main
graph (∆φ = 0) and given for a specific distance along the z axis, ∆z, indicated in the main figures as vertical dashed lines;
the point and color codes are the same as in the main figures, the horizontal dashed lines correspond to 1.

becomes comparable to the skin depth of SiC, the HT
in the presence of a SiC cylinder shows an oscillatory
behavior for intermediate d, being much larger than the
HT in vacuum or with a gold or perfectly conducting
cylinder present. The oscillations, whose origin remains
partly elusive, fade away with an increase of d, and when
d ≫ λT1

the HT decays monotonically, approaching the
vacuum result (we cannot exclude that it goes below the
vacuum curve for d ≫ 1 cm, as was observed for a SiC
plate [34]). Similar to Fig. 5(c), gold and a perfect con-
ductor show almost identical results until the exponential
drop for gold. Compared to smaller R, the logarithmic
plateau spans a wider range of d but has a smaller am-
plitude. With a further increase of R, the HT for all
materials is expected to converge to the HT in the pres-
ence of a plate (the tendency can already be observed in
Fig. 5 if one compares to the plate results [33–35]).

How does the HT change if the symmetry of the con-
figuration is violated, i.e., for finite azimuthal angle ∆φ?

For finite ∆φ, the interparticle distance d is given by
d =

√
2r2(1− cos∆φ) + (∆z)2, where r = R + h is the

radial coordinate of each particle, and ∆z is the separa-
tion along the cylinder axis, so that d = ∆z for ∆φ = 0
(see Fig. 4). To reveal the pure effects of rotation, and to
minimize the effect of the distance change, we consider
∆z ≫ 2r, such that d ≈ ∆z, i.e., d changes insignificantly
with ∆φ.

The angular dependent HT, normalized by the HT at

∆φ = 0, H
(2)
1∆φ=0, is given in the inset plots of Fig. 5

as a function of ∆φ. The corresponding ∆z is indicated
via vertical dashed lines in the main plots, which also
displays the reference value of the HT. We note that the
results are symmetric with respect to ∆φ = 180◦, as
expected.

In the inset of Fig. 5(a), R = 10−9 m and ∆z =
2× 10−6 m. The angular dependence for SiC is the same
as the vacuum dependence (i.e., rotating the particle with
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which is a part of the interparticle heat transfer spectrum re-
lated to the influence of a cylinder [see Eq. (5)]. Here, we
consider a parallel configuration (see Fig. 4) with R = h =
100 nm and d = 0.1 mm, corresponding to the vertical dashed
line in Fig. 5(c). The vertical line shows the resonance fre-
quency ω0 of the SiC particle polarizability, selecting a ma-
jor contribution to the total heat transfer [see Eqs. (2), (3),
and (5)]. The inset shows a zoomed version of the main plot
for ω ∈ [140, 170] Trad s−1.

no cylinder present, such that the HT decreases only due
to increase of d), meaning that such a thin SiC cylinder is
transparent. Rotating the particle around a gold or per-
fectly conducting cylinder leads to a significant, yet no
more than 1.09-fold, change of the HT. Interestingly, the
rotation around a gold cylinder enhances the HT (with
a maximum reached at ∆φ = 180◦), whereas the HT
is decreased when the particle is rotated around a per-
fectly conducting cylinder (where ∆φ = 180◦ gives the
minimum).

For R = 10−8 m at ∆z = 10−5 m [see the inset of
Fig. 5(b)], all the curves are below 1, i.e., the rotation
decreases the HT for all considered materials. A SiC
cylinder gives a minimum at ∆φ = 90◦ (and hence also
symmetrically at ∆φ = 270◦) and a local maximum at
∆φ = 180◦ coinciding with the minimum of the vacuum
result. Minima at ∆φ = 180◦ appear for gold and a
perfect conductor; for gold, the minimum is more pro-
nounced.

For R = 10−7 m, we choose ∆z = 10−4 m. Here, the
rotation around a SiC cylinder leads to a large change of
the HT [see the right inset of Fig. 5(c)]. The ratio at the

minimum is H
(2)
1 (∆φ = 90◦)/H

(2)
1∆φ=0 = 0.0674, i.e., ro-

tating the particle by 90◦ suppresses the HT by 15 times.
In contrast, with gold or a perfect conductor, there is only
a little effect [see the left inset of Fig. 5(c)]: A maximum

with H
(2)
1 (∆φ = 180◦)/H

(2)
1∆φ=0 = 1.0072 appears for

gold, and a minimum with H
(2)
1 (∆φ = 180◦)/H

(2)
1∆φ=0 =

0.9988 is observed for a perfect conductor.
When R = 10−6 m and ∆z = 2 × 10−5, the angular

dependence for SiC is even more nontrivial, as can be

seen in the inset plot of Fig. 5(d). A minimum with the
approximate value of 0.335 is reached at ∆φ ≈ 85◦. It
is followed by a maximum at ∆φ = 180◦ with the value
of 1.1805. Compared to the previously considered R and
∆z, gold and a perfect conductor have now stronger min-

ima at ∆φ = 180◦: H
(2)
1 (∆φ = 180◦)/H

(2)
1∆φ=0 = 0.7309

for gold and H
(2)
1 (∆φ = 180◦)/H

(2)
1∆φ=0 = 0.6918 for the

perfect conductor.

Overall, we can conclude that H
(2)
1 /H

(2)
1∆φ=0 ≤ 1 for

a perfectly conducting cylinder, with a minimum at
∆φ = 180◦, whereas gold shows either a minimum or
maximum at this angle, such that the ratio is either
smaller or larger than 1, respectively. For the param-
eters studied, no more than an 8% and a 31% change of
the HT is observed for a metallic nano- and microwire,
respectively. This indicates that a well-conducting cylin-
der transports the energy mainly via surface modes with
little angular dependence, i.e., the mode n = 0. For a
SiC cylinder, the angular dependence is stronger and,
the larger R is, the modes with larger n contribute.

IV. HEAT TRANSFER: PERPENDICULAR
CONFIGURATION

Another important configuration is depicted in Fig. 7:
the interparticle distance line is perpendicular to the
cylinder axis (corresponding to ∆z = 0 and ∆φ = 180◦

in Fig. 4). Both particles are placed at a distance h from
the cylinder surface, such that d = 2(R + h). The GF
for this configuration is given by Eqs. (A.30) and (A.31).
Keeping small h = 10−7 m fixed, we aim to investigate
how the HT depends on d when R is increased, as was
done for the HT between the particles in the presence of
a sphere in Ref. [40] (see Fig. 5 there).
Figure 8 shows the HT as a function of d (lower hori-

zontal axis) for different materials of the cylinder, com-
pared to the HT in the presence of a sphere (with the
same R) and the HT for isolated particles; see the sketch.
In the upper horizontal axis, we show the corresponding
R.
The HT in the presence of a SiC cylinder is largely

T1
h

2R

h

d

FIG. 7. Radiative heat transfer from particle 1 at temperature
T1 to particle 2, placed close to an infinitely long cylinder per-
pendicular to the cylinder axis. The cylinder either enhances
or blocks the transfer, depending on its material (see Fig. 8).



7

1022

1024

1026

1028

1030

1032

1034

10−6 10−5

10−9 10−7 10−6

δAu h δSiC λT1

λT1

∝ d −6

∝ d−2

∝ d−4

∝ d−4

H
(2
)

1
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m

−
6
]
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R [m]

SiC cylinder
SiC sphere

Gold cylinder
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Perf. cond. cylinder
Perf. cond. sphere
Vacuum

h

h
d2R2R

h

h

d

d

FIG. 8. Heat transfer (normalized by particles’ volumes) from SiC particle 1 at temperature T1 = 300 K to SiC particle 2
placed perpendicular to a cylinder or on opposite sides of a sphere, or with no objects present (see the sketch), as a function
of interparticle distance d. The results are given for different materials of the cylinder and sphere. The distance from each
particle to the cylinder (sphere) surface is h = 10−7 m; the upper axis gives the corresponding radius of the object. On the
lower axis, we show the thermal wavelength, while the upper axis also contains h and the skin depths of SiC and gold. The
results for the sphere are taken from Ref. [40].

(by two to three orders of magnitude) above the vacuum
HT for any considered R comparable to or larger than
h. The curve has a local maximum at R ≈ 0.7h, and it
approaches the vacuum result when R ≪ h. A SiC sphere
has a similar effect, but with a larger amplification, a
local maximum at R ≈ h, and pronounced oscillations
for R > δSiC [40].

On the contrary, a gold or perfectly conducting cylin-
der blocks the HT. Strongest suppression of the transfer
appears at R ≈ h (about 30 times) and for d > λT1

(here
the HT scales approximately as ∼ d−4 within the studied
range of d), whereas the effect is minimized at interme-
diate R ≈ 1 µm. Interestingly, even a very thin (R ≪ h)
metallic cylinder strongly affects the HT. Here, the dif-
ference between gold and a perfect conductor becomes
pronounced: when R ≪ δAu, a gold cylinder becomes
transparent, while a perfectly conducting cylinder sup-
presses the HT by more than twice even when R = 1 nm.
Putting a metallic sphere between the particles leads to a
totally different behavior, from the HT being unaffected
for small R to a large enhancement for R ∈ [h, λT1

] (when
R ≫ λT1

, the HT goes below the vacuum result) [40].
The strong blocking by a cylinder may be understood

from energy considerations. The cylinder is able to trans-
port energy away to infinity, like a lightning rod. Such
transport is impossible for the sphere, which thus is much

worse in terms of blocking.

It is worth noticing that the convergence of the HT
with respect to the number of multipoles can be strongly
nonmonotonic (for both parallel and perpendicular con-
figurations), as was also observed for the HT in the pres-
ence of a sphere (see Fig. 6 in Ref. [40]).

V. CONCLUSION

In this paper, we studied heat radiation of a small par-
ticle and radiative heat transfer between small particles
in the presence of a cylinder. Assumptions of small parti-
cle size and infinite extension of a cylinder along its axis
allows us to reduce the problem to the study of the semi-
analytical Green’s function of a cylinder. Analyzing this
Green’s function in detail (as presented in the Appendix),
we investigated several geometrical configurations, both
symmetric (paradigmatic) and nonsymmetric, consider-
ing different materials for a cylinder.

A SiC particle placed close to a nanowire radiates much
stronger than when being isolated, with the effect being
strongest for a SiC nanowire. Notably, even a perfectly
conducting cylinder, which absorbs no energy, strongly
enhances HR of a closeby nanoparticle, which we at-
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tribute to excitation of waves traveling to infinity. The
energy transfer between two particles along a metallic
cylinder outperforms the transfer in vacuum by several
orders of magnitude by virtue of slowly decaying surface
waves. A SiC cylinder can be preferable for interme-
diate (micron-range) interparticle distances, showing a
nonmonotonic dependence on the distance. These phe-
nomena are stable in the sense that they vary little when
the configuration is imperfect (particles are located at
slightly different distances from the cylinder surface or
one of them is slightly rotated around a cylinder), which
is relevant for experiments, as it is difficult to achieve
a perfect alignment in practice. Yet a large relative az-
imuthal angle can change the heat transfer dramatically
in the case of SiC, but still mildly in the case of gold
or a perfect conductor. This demonstrates that different
wave modes are responsible for transfer for these mate-
rials. Placing a metallic cylinder between the particles
blocks the heat transfer like a lightning rod, whereas a
SiC cylinder acts as an amplifier.

The Green’s function analyzed in the Appendix can
be used to study other geometries and materials, includ-
ing magnetic response of a cylinder. Future work may
also consider electromagnetic conductivity of a cylinder,
using a recent theory of electromagnetic heat transport
in dissipative media [58], and consider the heat transfer
between the particle and the cylinder.
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Appendix: Green’s function of an infinitely long
cylinder

We work in a cylindrical coordinate system (r, φ, z) and
consider an infinitely long cylinder of radius R, whose
symmetry axis coincides with the z axis (see Figs. 1, 4,
and 7). We aim to find the GF G(r, r′) of the cylinder
(more precisely, the electric GF, a part of the electromag-
netic set of the GFs [10, 34, 57, 59]), where both radius
vectors r and r′ lie outside the cylinder.

1. Free Green’s function in cylindrical coordinates

The GF of a cylinder contains the GF of free space G0

[see Eq. (A.14)]. In a Cartesian coordinate system, this

GF is well known in closed form [10, 34, 40, 57, 60–63]
(G0 and G̃0 denote the free GF in a cylindrical and a
Cartesian coordinate system, respectively):

G̃0(r, r
′) =− 1

3k2
Iδ(3)(r− r′)

+
eikd

4πk2d5

[
d2(−1 + ikd+ k2d2)I

+ (3− 3ikd− k2d2)(r− r′)⊗ (r− r′)
]
,

(A.1)

where d = |r−r′| is the distance between the points, k =
ω
c is the wave number (the amplitude of the wave vector),
I is the 3× 3 identity matrix, and the symbol ⊗ denotes

the dyadic product. Note the following properties for G̃0:

G̃0(r, r
′) = G̃T

0 (r
′, r), (A.2a)

G̃0(r, r
′) = G̃0(r− r′), (A.2b)

G̃0(r, r
′) = G̃T

0 (r, r
′), (A.2c)

G̃0(r, r
′) = G̃0(r

′, r). (A.2d)

Property (A.2a) is the reciprocity condition, which takes
place for any GF [57, 59, 60]. The delta function term
in Eq. (A.1), which contributes to the field at the source
region [40, 57, 60–64], is neglected in other expressions of
this work, because it does not contribute to the quantities
of interest.

To obtain the free GF in cylindrical coordinates, G0,
one can apply the corresponding transformation to the
GF in Eq. (A.1) [65]:

G0(r, r
′) = G0(r, φ, z, r

′, φ′, z′) = U(φ)G̃0U−1(φ′),
(A.3)

where the transformation of the coordinates (x = r cosφ,
y = r sinφ, z = z, x′ = r′ cosφ′, y′ = r′ sinφ′, z′ = z′)

in G̃0 is made;

U(φ) =




cosφ sinφ 0
− sinφ cosφ 0

0 0 1


 (A.4)

is the transformation matrix satisfying U−1 = UT [65].
We get (∆φ ≡ φ′ − φ and ∆z ≡ z′ − z)



9

G0(r, r
′) =

eikd

4πk2d5

{
d2(−1 + ikd+ k2d2)



cos∆φ − sin∆φ 0
sin∆φ cos∆φ 0

0 0 1




+ (3− 3ikd− k2d2)



(r′ cos∆φ− r) (r′ − r cos∆φ) (r′ cos∆φ− r) r sin∆φ (r′ cos∆φ− r)∆z

(r′ − r cos∆φ) r′ sin∆φ rr′ sin2 ∆φ r′ sin∆φ∆z
(r′ − r cos∆φ)∆z r sin∆φ∆z (∆z)2




}
, (A.5)

satisfying

G0(r, r
′) = GT

0 (r
′, r), (A.6a)

G0(r, r
′) = G0(r, r

′, φ− φ′, z − z′). (A.6b)

The (11) term in the second matrix in Eq. (A.5)
can also be written as (r′ cos∆φ− r) (r′ − r cos∆φ) =(
d2 − (∆z)2

)
cos∆φ − rr′ sin2 ∆φ. The distance d in

terms of cylindrical coordinates is expressed as d =√
r2 + r′2 − 2rr′ cos∆φ+ (∆z)2.
Note that G0 can also be written as an expansion in

cylindrical waves [45, 57, 60, 66, 67] [similar to GT in
Eq. (A.15)]. However, this representation has restrictions
on the positions (r ̸= r′ or z ̸= z′), which do not allow
to study important configurations (as those considered
in Secs. III and IV). In contrast, Eq. (A.5) is valid for
arbitrary positions.

Transformation (A.3) can be written for any GF,
and its structure implies that our quantities of interest,
Tr ImG(r, r) and Tr

(
G(r, r′)G†(r, r′)

)
, do not depend on

coordinate system (given that U−1 = UT ). This in turn
means that HR and HT [see Eqs. (1) and (5)] do not
depend on coordinate system, which can be also stated
a priori from physical grounds. For G0, the traces read
as [40]

Tr ImG0(r, r) =
k

2π
, (A.7)

Tr
(
G0G†

0

)
=

1

8π2d2

[
1 +

1

k2d2
+

3

k4d4

]
, (A.8)

where d is kept finite in Eq. (A.8).

2. Outgoing cylindrical waves

As shown in Eq. (A.15), the scattering part of the GF
can be written in terms of the outgoing cylindrical waves
and the scattering matrix of a cylinder. The waves read
as [45, 60]

Mout
n,kz

(r) =

[
in

qr
Hn(qr)er −H ′

n(qr)eφ

]
eikzz+inφ,

(A.9a)

Nout
n,kz

(r) =
1

k

[
ikzH

′
n(qr)er −

nkz
qr

Hn(qr)eφ

+ qHn(qr)ez

]
eikzz+inφ, (A.9b)

where Mout
n,kz

and Nout
n,kz

correspond to magnetic and elec-
tric waves of multipole order n ∈ Z, respectively. er, eφ,
and ez are the unit vectors. kz ∈ R is the z component
of the wave vector, while q =

√
k2 − k2z . When |kz| ≤ k,

q is real and non-negative, whereas when |kz| > k, q is
complex with a zero real part and a positive imaginary
part. Hn is the Hankel function of the first kind of order

n, and H ′
n(qr) ≡ dHn(qr)

d(qr) is the corresponding derivative.

3. Scattering matrix

In our case, we need the scattering matrix which relates
the incident and scattered fields outside a cylinder. The
outside scattering matrix of an infinitely long cylinder
is known analytically. For a cylinder made of a homo-
geneous isotropic material with dielectric permittivity ε
and magnetic permeability µ, the elements of the scat-
tering matrix read [45, 68, 69]

TMM
n,kz

= − Jn(qR)

Hn(qR)

∆1∆4 −K2

∆1∆2 −K2
, (A.10a)

TNN
n,kz

= − Jn(qR)

Hn(qR)

∆2∆3 −K2

∆1∆2 −K2
, (A.10b)

TMN
n,kz

= TNM
n,kz

=
2i

π
√
εµ [qRHn(qR)]

2

K

∆1∆2 −K2
.

(A.10c)

Here, Jn is the Bessel function of order n,

∆1 =
J ′
n(qεR)

qεRJn(qεR)
− 1

ε

H ′
n(qR)

qRHn(qR)
, (A.11a)

∆2 =
J ′
n(qεR)

qεRJn(qεR)
− 1

µ

H ′
n(qR)

qRHn(qR)
, (A.11b)

∆3 =
J ′
n(qεR)

qεRJn(qεR)
− 1

ε

J ′
n(qR)

qRJn(qR)
, (A.11c)

∆4 =
J ′
n(qεR)

qεRJn(qεR)
− 1

µ

J ′
n(qR)

qRJn(qR)
, (A.11d)

and

K =
nkz√
εµkR2

(
1

q2ε
− 1

q2

)
, (A.12)

where qε =
√

εµk2 − k2z .
In the limit of perfect conductivity (or reflectivity), the

scattering matrix simplifies to [41, 66]

lim
|ε|→∞

TMM
n,kz

= − J ′
n(qR)

H ′
n(qR)

, (A.13a)
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lim
|ε|→∞

TNN
n,kz

= − Jn(qR)

Hn(qR)
, (A.13b)

lim
|ε|→∞

TMN
n,kz

= TNM
n,kz

= 0. (A.13c)

The scattering matrix can be generalized to the case
of an anisotropic material [45].

4. Cylindrical waves expansion

The GF can be written as a sum of the free GF G0

and the scattering part GT:

G = G0 +GT = G0 +G0TG0, (A.14)

where T is the scattering operator of the cylin-
der [45], and the operator multiplication is understood
in G0TG0 [4, 40, 66, 67, 70]. Detailed information about

electromagnetic operators can be found in Refs. [4, 40,
66, 67, 70].

Substituting the expansion of the free GF in cylindrical
waves [45, 57, 60, 66, 67] into Eq. (A.14), and using the
relation between the scattering operator and the scatter-
ing matrix [45, 66, 67], one obtains [45]

GT =
i

8π

∑

P,P ′

∞∑

n=−∞
(−1)n

×
∫ ∞

−∞
dkzP

out
n,kz

(r)⊗P
′out
−n,−kz

(r′)TPP ′

n,kz
, (A.15)

where P, P ′ = {M,N}, the waves Pout
n,kz

are given by

Eqs. (A.9a) and (A.9b), and the matrix elements TPP ′

n,kz

can be found in Eqs. (A.10a)–(A.10c). Like G0, GT is a
function of r, r′, φ− φ′, z − z′.

5. Green’s function

a. Arbitrary positions

The free GF is given in Eq. (A.5). Performing the tensor product in Eq. (A.15) and using H−n(qr) = (−1)nHn(qr),
H ′

−n(qr) = (−1)nH ′
n(qr), TMM

−n,kz
= TMM

n,kz
, TNN

−n,kz
= TNN

n,kz
, TMN

−n,kz
= −TMN

n,kz
, TMM

n,−kz
= TMM

n,kz
, TNN

n,−kz
= TNN

n,kz
,

TMN
n,−kz

= −TMN
n,kz

, together with the symmetry of the summation and integration, the scattering part can be obtained:

GT =



GT11 GT12 GT13
GT21 GT22 GT23
GT31 GT32 GT33


 , (A.16)

with

GT11 =
i

4π

∫ ∞

0

dkz
k2z
k2

H1(qr)H1(qr
′)TNN

0,kz
cos(kz∆z)

+
i

2π

∞∑

n=1

∫ ∞

0

dkz

{
n2

(qr)(qr′)
Hn(qr)Hn(qr

′)TMM
n,kz

+
nkz
k

[
1

qr
Hn(qr)H

′
n(qr

′) +
1

qr′
H ′

n(qr)Hn(qr
′)

]
TMN
n,kz

+
k2z
k2

H ′
n(qr)H

′
n(qr

′)TNN
n,kz

}
cos(n∆φ) cos(kz∆z), (A.17a)

GT12 = − i

2π

∞∑

n=1

∫ ∞

0

dkz

{
n

qr
Hn(qr)H

′
n(qr

′)TMM
n,kz

+
kz
k

[
n2

(qr)(qr′)
Hn(qr)Hn(qr

′) +H ′
n(qr)H

′
n(qr

′)

]
TMN
n,kz

+
nk2z
k2qr′

H ′
n(qr)Hn(qr

′)TNN
n,kz

}
sin(n∆φ) cos(kz∆z), (A.17b)

GT13 = − i

4π

∫ ∞

0

dkz
qkz
k2

H1(qr)H0(qr
′)TNN

0,kz
sin(kz∆z)

+
i

2π

∞∑

n=1

∫ ∞

0

dkz

{
n

kr
Hn(qr)Hn(qr

′)TMN
n,kz

+
qkz
k2

H ′
n(qr)Hn(qr

′)TNN
n,kz

}
cos(n∆φ) sin(kz∆z), (A.17c)

GT21 =
i

2π

∞∑

n=1

∫ ∞

0

dkz

{
n

qr′
H ′

n(qr)Hn(qr
′)TMM

n,kz
+

kz
k

[
n2

(qr)(qr′)
Hn(qr)Hn(qr

′) +H ′
n(qr)H

′
n(qr

′)

]
TMN
n,kz

+
nk2z
k2qr

Hn(qr)H
′
n(qr

′)TNN
n,kz

}
sin(n∆φ) cos(kz∆z), (A.17d)
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GT22 =
i

4π

∫ ∞

0

dkzH1(qr)H1(qr
′)TMM

0,kz
cos(kz∆z)

+
i

2π

∞∑

n=1

∫ ∞

0

dkz

{
H ′

n(qr)H
′
n(qr

′)TMM
n,kz

+
nkz
k

[
1

qr
Hn(qr)H

′
n(qr

′) +
1

qr′
H ′

n(qr)Hn(qr
′)

]
TMN
n,kz

+
n2k2z

k2(qr)(qr′)
Hn(qr)Hn(qr

′)TNN
n,kz

}
cos(n∆φ) cos(kz∆z), (A.17e)

GT23 =
i

2π

∞∑

n=1

∫ ∞

0

dkz

{
q

k
H ′

n(qr)Hn(qr
′)TMN

n,kz
+

nkz
k2r

Hn(qr)Hn(qr
′)TNN

n,kz

}
sin(n∆φ) sin(kz∆z), (A.17f)

GT31 =
i

4π

∫ ∞

0

dkz
qkz
k2

H0(qr)H1(qr
′)TNN

0,kz
sin(kz∆z)

− i

2π

∞∑

n=1

∫ ∞

0

dkz

{
n

kr′
Hn(qr)Hn(qr

′)TMN
n,kz

+
qkz
k2

Hn(qr)H
′
n(qr

′)TNN
n,kz

}
cos(n∆φ) sin(kz∆z), (A.17g)

GT32 =
i

2π

∞∑

n=1

∫ ∞

0

dkz

{
q

k
Hn(qr)H

′
n(qr

′)TMN
n,kz

+
nkz
k2r′

Hn(qr)Hn(qr
′)TNN

n,kz

}
sin(n∆φ) sin(kz∆z), (A.17h)

GT33 =
i

4π

∫ ∞

0

dkz
q2

k2
H0(qr)H0(qr

′)TNN
0,kz

cos(kz∆z) +
i

2π

∞∑

n=1

∫ ∞

0

dkz
q2

k2
Hn(qr)Hn(qr

′)TNN
n,kz

cos(n∆φ) cos(kz∆z),

(A.17i)

satisfying, as G0, properties (A.6a) and (A.6b), such that the full GF, G = G0 +GT, also satisfies those properties.

b. Equal radial coordinates

In the case of equal radial coordinates (r = r′ = R + h), the GF contains six independent elements. For G0 in
Eq. (A.5), we get

G0 =
eikd

4πk2d5

{
d2(−1 + ikd+ k2d2)



cos∆φ − sin∆φ 0
sin∆φ cos∆φ 0

0 0 1




+ (3− 3ikd− k2d2)




−r2 (1− cos∆φ)
2 −r2 (1− cos∆φ) sin∆φ −r (1− cos∆φ)∆z

r2 (1− cos∆φ) sin∆φ r2 sin2 ∆φ r sin∆φ∆z
r (1− cos∆φ)∆z r sin∆φ∆z (∆z)2




}
, (A.18)

where d =
√

2r2(1− cos∆φ) + (∆z)2.
The scattering part is obtained by setting r′ = r in Eqs. (A.17a)–(A.17i):

GT =




GT11 GT12 GT13
−GT12 GT22 GT23
−GT13 GT23 GT33


 , (A.19)

with

GT11 =
i

4π

∫ ∞

0

dkz
k2z
k2

H2
1 (qr)T

NN
0,kz

cos(kz∆z)

+
i

2π

∞∑

n=1

∫ ∞

0

dkz

{
n2

(qr)2
H2

n(qr)T
MM
n,kz

+ 2
nkz
kqr

Hn(qr)H
′
n(qr)T

MN
n,kz

+
k2z
k2

[H ′
n(qr)]

2
TNN
n,kz

}
cos(n∆φ) cos(kz∆z),

(A.20a)

GT22 =
i

4π

∫ ∞

0

dkzH
2
1 (qr)T

MM
0,kz

cos(kz∆z)

+
i

2π

∞∑

n=1

∫ ∞

0

dkz

{
[H ′

n(qr)]
2TMM

n,kz
+ 2

nkz
kqr

Hn(qr)H
′
n(qr)T

MN
n,kz

+
n2k2z

k2(qr)2
H2

n(qr)T
NN
n,kz

}
cos(n∆φ) cos(kz∆z),

(A.20b)
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GT33 =
i

4π

∫ ∞

0

dkz
q2

k2
H2

0 (qr)T
NN
0,kz

cos(kz∆z) +
i

2π

∞∑

n=1

∫ ∞

0

dkz
q2

k2
H2

n(qr)T
NN
n,kz

cos(n∆φ) cos(kz∆z), (A.20c)

GT12 = − i

2π

∞∑

n=1

∫ ∞

0

dkz

{
n

qr
Hn(qr)H

′
n(qr)T

MM
n,kz

+
kz
k

[
n2

(qr)2
H2

n(qr) + [H ′
n(qr)]

2
]
TMN
n,kz

+
nk2z
k2qr

Hn(qr)H
′
n(qr)T

NN
n,kz

}
sin(n∆φ) cos(kz∆z), (A.20d)

GT13 = − i

4π

∫ ∞

0

dkz
qkz
k2

H0(qr)H1(qr)T
NN
0,kz

sin(kz∆z)

+
i

2π

∞∑

n=1

∫ ∞

0

dkz

{
n

kr
H2

n(qr)T
MN
n,kz

+
qkz
k2

Hn(qr)H
′
n(qr)T

NN
n,kz

}
cos(n∆φ) sin(kz∆z), (A.20e)

GT23 =
i

2π

∞∑

n=1

∫ ∞

0

dkz

{
q

k
Hn(qr)H

′
n(qr)T

MN
n,kz

+
nkz
k2r

H2
n(qr)T

NN
n,kz

}
sin(n∆φ) sin(kz∆z). (A.20f)

For a perfectly conducting cylinder, the elements of GT take a simpler form thanks to compact expressions for the
scattering matrix in Eqs. (A.13a)–(A.13c):

lim
|ε|→∞

GT11 = − i

4π

∫ ∞

0

dkz
k2z
k2

H2
1 (qr)J0(qR)

H0(qR)
cos(kz∆z)

− i

2π

∞∑

n=1

∫ ∞

0

dkz

{
n2

(qr)2
H2

n(qr)J
′
n(qR)

H ′
n(qR)

+
k2z
k2

[H ′
n(qr)]

2
Jn(qR)

Hn(qR)

}
cos(n∆φ) cos(kz∆z), (A.21a)

lim
|ε|→∞

GT22 = − i

4π

∫ ∞

0

dkz
H2

1 (qr)J1(qR)

H1(qR)
cos(kz∆z)

− i

2π

∞∑

n=1

∫ ∞

0

dkz

{
[H ′

n(qr)]
2J ′

n(qR)

H ′
n(qR)

+
n2k2z

k2(qr)2
H2

n(qr)Jn(qR)

Hn(qR)

}
cos(n∆φ) cos(kz∆z), (A.21b)

lim
|ε|→∞

GT33 = − i

4π

∫ ∞

0

dkz
q2

k2
H2

0 (qr)J0(qR)

H0(qR)
cos(kz∆z)− i

2π

∞∑

n=1

∫ ∞

0

dkz
q2

k2
H2

n(qr)Jn(qR)

Hn(qR)
cos(n∆φ) cos(kz∆z),

(A.21c)

lim
|ε|→∞

GT12 =
i

2π

∞∑

n=1

∫ ∞

0

dkz

{
n

qr

Hn(qr)H
′
n(qr)J

′
n(qR)

H ′
n(qR)

+
nk2z
k2qr

Hn(qr)H
′
n(qr)Jn(qR)

Hn(qR)

}
sin(n∆φ) cos(kz∆z),

(A.21d)

lim
|ε|→∞

GT13 =
i

4π

∫ ∞

0

dkz
qkz
k2

H0(qr)H1(qr)J0(qR)

H0(qR)
sin(kz∆z)

− i

2π

∞∑

n=1

∫ ∞

0

dkz
qkz
k2

Hn(qr)H
′
n(qr)Jn(qR)

Hn(qR)
cos(n∆φ) sin(kz∆z), (A.21e)

lim
|ε|→∞

GT23 = − i

2π

∞∑

n=1

∫ ∞

0

dkz
nkz
k2r

H2
n(qr)Jn(qR)

Hn(qR)
sin(n∆φ) sin(kz∆z). (A.21f)

c. Equal angular coordinates

In the case of equal angular coordinates (φ = φ′), the GF contains five independent elements. For G0 in Eq. (A.5),
we get

G0(r, r
′) =

eikd

4πk2d5

{
d2(−1 + ikd+ k2d2)



1 0 0
0 1 0
0 0 1


+ (3− 3ikd− k2d2)




(r′ − r)
2

0 (r′ − r)∆z
0 0 0

(r′ − r)∆z 0 (∆z)2




}
, (A.22)

where d =

√
(r′ − r)

2
+ (∆z)2.
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The scattering part is obtained by setting φ′ = φ in Eqs. (A.17a)–(A.17i):

GT =



GT11 0 GT13
0 GT22 0

GT31 0 GT33


 , (A.23)

with

GT11 =
i

4π

∫ ∞

0

dkz
k2z
k2

H1(qr)H1(qr
′)TNN

0,kz
cos(kz∆z)

+
i

2π

∞∑

n=1

∫ ∞

0

dkz

{
n2

(qr)(qr′)
Hn(qr)Hn(qr

′)TMM
n,kz

+
nkz
k

[
1

qr
Hn(qr)H

′
n(qr

′) +
1

qr′
H ′

n(qr)Hn(qr
′)

]
TMN
n,kz

+
k2z
k2

H ′
n(qr)H

′
n(qr

′)TNN
n,kz

}
cos(kz∆z), (A.24a)

GT22 =
i

4π

∫ ∞

0

dkzH1(qr)H1(qr
′)TMM

0,kz
cos(kz∆z)

+
i

2π

∞∑

n=1

∫ ∞

0

dkz

{
H ′

n(qr)H
′
n(qr

′)TMM
n,kz

+
nkz
k

[
1

qr
Hn(qr)H

′
n(qr

′) +
1

qr′
H ′

n(qr)Hn(qr
′)

]
TMN
n,kz

+
n2k2z

k2(qr)(qr′)
Hn(qr)Hn(qr

′)TNN
n,kz

}
cos(kz∆z), (A.24b)

GT33 =
i

4π

∫ ∞

0

dkz
q2

k2
H0(qr)H0(qr

′)TNN
0,kz

cos(kz∆z) +
i

2π

∞∑

n=1

∫ ∞

0

dkz
q2

k2
Hn(qr)Hn(qr

′)TNN
n,kz

cos(kz∆z), (A.24c)

GT13 = − i

4π

∫ ∞

0

dkz
qkz
k2

H1(qr)H0(qr
′)TNN

0,kz
sin(kz∆z)

+
i

2π

∞∑

n=1

∫ ∞

0

dkz

{
n

kr
Hn(qr)Hn(qr

′)TMN
n,kz

+
qkz
k2

H ′
n(qr)Hn(qr

′)TNN
n,kz

}
sin(kz∆z), (A.24d)

GT31 =
i

4π

∫ ∞

0

dkz
qkz
k2

H0(qr)H1(qr
′)TNN

0,kz
sin(kz∆z)

− i

2π

∞∑

n=1

∫ ∞

0

dkz

{
n

kr′
Hn(qr)Hn(qr

′)TMN
n,kz

+
qkz
k2

Hn(qr)H
′
n(qr

′)TNN
n,kz

}
sin(kz∆z). (A.24e)

For a perfectly conducting cylinder, we get

GT11 = − i

4π

∫ ∞

0

dkz
k2z
k2

H1(qr)H1(qr
′)J0(qR)

H0(qR)
cos(kz∆z)

− i

2π

∞∑

n=1

∫ ∞

0

dkz

{
n2

(qr)(qr′)

Hn(qr)Hn(qr
′)J ′

n(qR)

H ′
n(qR)

+
k2z
k2

H ′
n(qr)H

′
n(qr

′)Jn(qR)

Hn(qR)

}
cos(kz∆z), (A.25a)

GT22 = − i

4π

∫ ∞

0

dkz
H1(qr)H1(qr

′)J1(qR)

H1(qR)
cos(kz∆z)

− i

2π

∞∑

n=1

∫ ∞

0

dkz

{
H ′

n(qr)H
′
n(qr

′)J ′
n(qR)

H ′
n(qR)

+
n2k2z

k2(qr)(qr′)

Hn(qr)Hn(qr
′)Jn(qR)

Hn(qR)

}
cos(kz∆z), (A.25b)

GT33 = − i

4π

∫ ∞

0

dkz
q2

k2
H0(qr)H0(qr

′)J0(qR)

H0(qR)
cos(kz∆z)− i

2π

∞∑

n=1

∫ ∞

0

dkz
q2

k2
Hn(qr)Hn(qr

′)Jn(qR)

Hn(qR)
cos(kz∆z),

(A.25c)

GT13 =
i

4π

∫ ∞

0

dkz
qkz
k2

H1(qr)H0(qr
′)J0(qR)

H0(qR)
sin(kz∆z)− i

2π

∞∑

n=1

∫ ∞

0

dkz
qkz
k2

H ′
n(qr)Hn(qr

′)Jn(qR)

Hn(qR)
sin(kz∆z),

(A.25d)
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GT31 = − i

4π

∫ ∞

0

dkz
qkz
k2

H0(qr)H1(qr
′)J0(qR)

H0(qR)
sin(kz∆z) +

i

2π

∞∑

n=1

∫ ∞

0

dkz
qkz
k2

Hn(qr)H
′
n(qr

′)Jn(qR)

Hn(qR)
sin(kz∆z).

(A.25e)

6. Green’s function for parallel configuration

For configurations of interest, G0 and GT can be simplified. For a parallel configuration (see Fig. 4), r = r′ = R+h,
φ = φ′ (i.e., ∆φ = 0), and d = |z − z′| = |∆z|. Giving this, G0 in Eq. (A.18) becomes diagonal (with G011 = G022)
and depends only on d:

G0 =
eikd

4πk2d3



−1 + ikd+ k2d2 0 0

0 −1 + ikd+ k2d2 0
0 0 2− 2ikd


 . (A.26)

Without loss of generality, we consider z′ > z, such that ∆z ≡ z′−z = d. Using Eqs. (A.20a)–(A.20f), the scattering
part for a parallel configuration can be obtained [41]:

GT =




GT11 0 GT13
0 GT22 0

−GT13 0 GT33


 , (A.27)

with

GT11 =
i

4π

∫ ∞

0

dkz
k2z
k2

H2
1 (qr)T

NN
0,kz

cos(kzd)

+
i

2π

∞∑

n=1

∫ ∞

0

dkz

{
n2

(qr)2
H2

n(qr)T
MM
n,kz

+ 2
nkz
kqr

Hn(qr)H
′
n(qr)T

MN
n,kz

+
k2z
k2

[H ′
n(qr)]

2
TNN
n,kz

}
cos(kzd), (A.28a)

GT22 =
i

4π

∫ ∞

0

dkzH
2
1 (qr)T

MM
0,kz

cos(kzd)

+
i

2π

∞∑

n=1

∫ ∞

0

dkz

{
[H ′

n(qr)]
2TMM

n,kz
+ 2

nkz
kqr

Hn(qr)H
′
n(qr)T

MN
n,kz

+
n2k2z

k2(qr)2
H2

n(qr)T
NN
n,kz

}
cos(kzd), (A.28b)

GT33 =
i

4π

∫ ∞

0

dkz
q2

k2
H2

0 (qr)T
NN
0,kz

cos(kzd) +
i

2π

∞∑

n=1

∫ ∞

0

dkz
q2

k2
H2

n(qr)T
NN
n,kz

cos(kzd), (A.28c)

GT13 = − i

4π

∫ ∞

0

dkz
qkz
k2

H0(qr)H1(qr)T
NN
0,kz

sin(kzd)

+
i

2π

∞∑

n=1

∫ ∞

0

dkz

{
n

kr
H2

n(qr)T
MN
n,kz

+
qkz
k2

Hn(qr)H
′
n(qr)T

NN
n,kz

}
sin(kzd). (A.28d)

Note that interchanging the points r and r′ is equivalent to replacing d with −d in Eqs. (A.28a)–(A.28d), which in
turn is equivalent to making the transposition of G, in agreement with the reciprocity principle.
For a perfectly conducting cylinder, we get [41]

lim
|ε|→∞

GT11 = − i

4π

∫ ∞

0

dkz
k2z
k2

H2
1 (qr)J0(qR)

H0(qR)
cos(kzd)

− i

2π

∞∑

n=1

∫ ∞

0

dkz

{
n2

(qr)2
H2

n(qr)J
′
n(qR)

H ′
n(qR)

+
k2z
k2

[H ′
n(qr)]

2
Jn(qR)

Hn(qR)

}
cos(kzd), (A.29a)

lim
|ε|→∞

GT22 = − i

4π

∫ ∞

0

dkz
H2

1 (qr)J1(qR)

H1(qR)
cos(kzd)

− i

2π

∞∑

n=1

∫ ∞

0

dkz

{
[H ′

n(qr)]
2J ′

n(qR)

H ′
n(qR)

+
n2k2z

k2(qr)2
H2

n(qr)Jn(qR)

Hn(qR)

}
cos(kzd), (A.29b)
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lim
|ε|→∞

GT33 = − i

4π

∫ ∞

0

dkz
q2

k2
H2

0 (qr)J0(qR)

H0(qR)
cos(kzd)−

i

2π

∞∑

n=1

∫ ∞

0

dkz
q2

k2
H2

n(qr)Jn(qR)

Hn(qR)
cos(kzd), (A.29c)

lim
|ε|→∞

GT13 =
i

4π

∫ ∞

0

dkz
qkz
k2

H0(qr)H1(qr)J0(qR)

H0(qR)
sin(kzd)−

i

2π

∞∑

n=1

∫ ∞

0

dkz
qkz
k2

Hn(qr)H
′
n(qr)Jn(qR)

Hn(qR)
sin(kzd).

(A.29d)

7. Green’s function for perpendicular configuration

For a perpendicular configuration (see Fig. 7), r = r′ = R + h, |φ − φ′| = π, and z = z′, with d = 2r = 2(R + h).
Giving this, G0 in Eq. (A.18) becomes diagonal (with G022 = −G033) and depends only on d:

G0 =
eikd

4πk2d3



−2 + 2ikd 0 0

0 1− ikd− k2d2 0
0 0 −1 + ikd+ k2d2


 . (A.30)

The scattering part is also diagonal,

GT =



GT11 0 0
0 GT22 0
0 0 GT33


 , (A.31)

with

GT11 =
i

4π

∫ ∞

0

dkz
k2z
k2

H2
1 (qr)T

NN
0,kz

+
i

2π

∞∑

n=1

∫ ∞

0

dkz

{
n2

(qr)2
H2

n(qr)T
MM
n,kz

+ 2
nkz
kqr

Hn(qr)H
′
n(qr)T

MN
n,kz

+
k2z
k2

[H ′
n(qr)]

2
TNN
n,kz

}
(−1)n, (A.32a)

GT22 =
i

4π

∫ ∞

0

dkzH
2
1 (qr)T

MM
0,kz

+
i

2π

∞∑

n=1

∫ ∞

0

dkz

{
[H ′

n(qr)]
2TMM

n,kz
+ 2

nkz
kqr

Hn(qr)H
′
n(qr)T

MN
n,kz

+
n2k2z

k2(qr)2
H2

n(qr)T
NN
n,kz

}
(−1)n, (A.32b)

GT33 =
i

4π

∫ ∞

0

dkz
q2

k2
H2

0 (qr)T
NN
0,kz

+
i

2π

∞∑

n=1

∫ ∞

0

dkz
q2

k2
H2

n(qr)T
NN
n,kz

(−1)n, (A.32c)

which differ from Eqs. (A.28a)–(A.28c) by containing (−1)n instead of cos(kzd). Interchanging the points r and r′

does not affect G, and the transposition also has no effect due to diagonality of G, in agreement with the reciprocity
principle.

For a perfectly conducting cylinder, we get

lim
|ε|→∞

GT11 = − i

4π

∫ ∞

0

dkz
k2z
k2

H2
1 (qr)J0(qR)

H0(qR)

− i

2π

∞∑

n=1

∫ ∞

0

dkz

{
n2

(qr)2
H2

n(qr)J
′
n(qR)

H ′
n(qR)

+
k2z
k2

[H ′
n(qr)]

2
Jn(qR)

Hn(qR)

}
(−1)n, (A.33a)

lim
|ε|→∞

GT22 = − i

4π

∫ ∞

0

dkz
H2

1 (qr)J1(qR)

H1(qR)

− i

2π

∞∑

n=1

∫ ∞

0

dkz

{
[H ′

n(qr)]
2J ′

n(qR)

H ′
n(qR)

+
n2k2z

k2(qr)2
H2

n(qr)Jn(qR)

Hn(qR)

}
(−1)n, (A.33b)

lim
|ε|→∞

GT33 = − i

4π

∫ ∞

0

dkz
q2

k2
H2

0 (qr)J0(qR)

H0(qR)
− i

2π

∞∑

n=1

∫ ∞

0

dkz
q2

k2
H2

n(qr)Jn(qR)

Hn(qR)
(−1)n. (A.33c)
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8. The trace of the imaginary part of the Green’s function evaluated at equal points

To compute HR in Eq. (1), one has to know Tr ImG(r, r) (for a particle located at r1, r = r1), which can be identified
with the electric part of the local electromagnetic density of states at point r [71, 72]. Note that Tr ImG(r, r) =
Tr ImG0(r, r) + Tr ImGT(r, r), where Tr ImG0(r, r) is given by Eq. (A.7). We hence need to concentrate only on
Tr ImGT(r, r). Since Tr ImGT(r, r) = ImTrGT(r, r), one can first evaluate TrGT(r, r). It can be found by inserting
waves (A.9a) and (A.9b) into the trace of Eq. (A.15),

TrGT(r, r) =
i

8π

∑

P,P ′

∞∑

n=−∞
(−1)n

∫ ∞

−∞
dkzP

out
n,kz

(r) ·P′out
−n,−kz

(r)TPP ′

n,kz
, (A.34)

or from Eqs. (A.27) and (A.28a)–(A.28c) by letting d → 0:

TrGT(r, r) =
i

4π

∫ ∞

0

dkz

{
H2

1 (qr)T
MM
0,kz

+

[
k2z
k2

H2
1 (qr) +

q2

k2
H2

0 (qr)

]
TNN
0,kz

}

+
i

2π

∞∑

n=1

∫ ∞

0

dkz

{[
n2

(qr)2
H2

n(qr) + [H ′
n(qr)]

2
]
TMM
n,kz

+ 4
nkz
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. (A.35)

Then one takes the imaginary part of Eq. (A.35). As expected from physical grounds, the trace in Eq. (A.35) does
not depend on φ and z.
For a perfectly conducting cylinder, Eq. (A.35) simplifies to

lim
|ε|→∞

TrGT(r, r) = − i

4π

∫ ∞

0

dkz

{
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]
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}
.

(A.36)

It can be shown that, for the imaginary part of the trace in Eq. (A.36), the integration can be restricted to kz ≤ k:

Im lim
|ε|→∞

TrGT(r, r) = − 1

4π

∫ k

0

dkz Re
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.

(A.37)
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