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ARTICLE INFO ABSTRACT
Keywords: This work investigates the electromechanical response and pull-in instability of an electrostati
CNT nanotweezer cally-actuated CNT tweezer taking into consideration a TPNL constitutive behavior of the CNTs
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as well as the intermolecular forces, both of which provide a significant contribution at the
nanoscale. The nonlocal response of the material introduces two additional parameters in
the formulation, which are effective in capturing the size effects observed at the nanoscale.
The problem is governed by a nonlinear integrodifferential equation, which can be reduced
to a sixth-order nonlinear ODE with two additional boundary conditions accounting for the
nonlocal effects near to the CNT edges. A simplified model of the device is proposed based on
the assumption of a linear or parabolic distribution of the loading acting on the CNTs. This
assumption allows us to formulate the problem in terms of a linear ODE subject to two-point
boundary conditions, which can be solved analytically. The results are interesting for MEMS
and NEMS design. They show that strong coupling occurs between the intermolecular forces
and the characteristic material lengths as smaller structure sizes are considered. Considering
the influence of the nonlocal constitutive behavior and intermolecular forces in CNT tweezers
will equip these devices with reliability and functional sensitivity, as required for modern
engineering applications.

1. Introduction

A nanotweezer refers to a tiny, nanoscale device used to trap, manipulate, and position nanoscale objects such as nanoparticles,
nanowires, or biological entities with nanometer-scale accuracy (Kim & Lieber, 1999). When subjected to external forces, such
as electrostatic and van der Waals forces, the behavior and deformation of the nanotweezer and the trapped object are influenced.
Accurate modeling of the behavior of a nanotweezer under electrostatic force and van der Waals (vdW) force, considering the effects
of nonlocal theory of elasticity, is extremely important for simulating and understanding the manipulation of nanoscale objects using
external forces and for assuring high precision and control over the nanotweezer’s movements. Due to their excellent mechanical
and electrical properties, CNTs are often used as main components for nanotweezers.

Abbreviations: CNT, Carbon NanoTube; LDL, Linear Distributed Load; MEMS, Micro-Electro-Mechanical System; NEMS, Nano-Electro-Mechanical System;
ODE, Ordinary Differential Equation; PNL, Purely NonLocal; QDL, Quadratic Distributed Load; TPNL, Two-Phase NonLocal; vdW, van der Waals
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Electrostatic forces arise due to the presence of electrical charges on the nanotweezer arms and the trapped object. These
forces can be attractive or repulsive depending on the charges involved. The magnitude of the electrostatic force depends on the
distance between the charges, their magnitudes, and the dielectric properties of the surrounding medium. At the pull-in voltage, the
nanotweezer arms become unstable and collide with each other. The occurrence of pull-in instability thus restricts the operating
range of CNT nanotweezers and limits the size of the smallest objects that can be manipulated. Ensuring mechanical stability is thus
essential to prevent undesired vibrations or fluctuations that could affect the manipulation process.

Van der Waals forces, on the other hand, are attractive forces that arise due to temporary fluctuations in the electron distribution
of molecules. These forces are influenced by the geometry, surface properties, and intermolecular distances between the nanotweezer
arms and the trapped object (Farrokhabadi et al., 2015, 2013). They may become comparable to the electrostatic forces at an
interaction range of nanometers. Due to these forces, freestanding nanotweezers display an initial deflection even without any
external voltage applied. Furthermore, if the van der Waals forces become stronger than the actuation forces applied to the
nanotweezers, they can lead to the collapse or failure of the tweezer structure. This is particularly relevant when the separation
distance between the tweezer tips becomes very small. The occurrence of adhesion can result in stiction if the tweezer tips stick
to each other and have difficulty releasing them. Understanding and controlling van der Waals forces is crucial in the design and
operation of nanotweezers to ensure their reliable and efficient performance.

Numerical simulations, such as finite element analysis or differential quadrature method, have been utilized to further explore
the behavior of nanotweezers under electrostatic loadings (Farrokhabadi et al., 2014; Menning et al., 2022; Ramezani, 2011; Zare
& Shateri, 2017). These simulations have allowed for a more detailed investigation of the stress distribution, deformation profiles,
and critical conditions for pull-in or buckling. They have also provided a means to compare and validate the analytical models.

The problem of electrostatic pull-in of nanobeams and nanotweezers has been extensively studied in the field of nanomechanics
and microelectromechanical systems (NEMS-MEMS). Several papers have contributed to understanding the phenomenon and have
provided valuable insights into the behavior and limitations of these systems (see the review paper by Zhang et al. (2014) and
references quoted therein). They have explored various aspects such as the static and dynamic behavior, the critical voltage for
pull-in, the nonlinear response, and the influence of different geometric and constitutive parameters.

Many studies have employed analytical, numerical, and experimental approaches to investigate the electrostatic pull-in phe-
nomenon. Analytical models, such as the Euler-Bernoulli beam theory or the Timoshenko beam theory, have been used to derive
governing equations and expressions for the pull-in voltage and displacement (e.g., see Ramezani et al., 2007; Yang et al., 2008).
These models provide simplified yet insightful representations of the system behavior.

Experimental studies have also played a crucial role in validating the theoretical and numerical findings and in understanding
the real-world implications (Kim & Lieber, 1999; Lee & Kim, 2005). These studies have involved the fabrication of nanobeams and
nanotweezers, precise measurements of pull-in voltages and displacements, and the characterization of their mechanical response
under electrostatic forces. Experimental observations have provided important insights into the accuracy of the theoretical models
and the practical limitations, such as the effects of fabrication imperfections, surface roughness, and material properties.

The experimental investigations have also shown that the classical theory of elasticity becomes inappropriate for an accurate
simulation of the material behavior at the nanoscale, since it is not able to predict the size effect usually observed at this scale
length (Khodabakhshi & Reddy, 2015; Li et al.,, 2015; Rahaeifard & Ahmadian, 2015; Zeighampour & Tadi Beni, 2014). An
enhancement to the classical theory is provided by the nonlocal theory of elasticity, which takes into account the nonlocal response
of materials, namely the deformation at a given point depends on the deformation at neighboring points. The use of nonlocal theory
of elasticity in modeling nanobeam behavior under electrostatic loadings has been a topic of interest in the field of nanomechanics.
It has proved to be effective in the simulation of the size effects (Demir & Civalek, 2017; Malikan et al., 2023; Miandoab et al.,
2015; Tavakolian et al., 2019; Yang et al., 2008). By incorporating nonlocal effects into the models, these studies have shown that
the behavior of nanobeams under electrostatic loadings differs from that predicted by classical local elasticity theories. They have
aimed to capture the size-dependent behavior and accurately predict the mechanical response of nanobeams subjected to electrostatic
forces and provided valuable insights into the importance of considering nonlocal effects at the nanoscale. Analytical models, such
as Eringen’s nonlocal elasticity theory or modified versions of classical beam theories, have been used to derive governing equations
and expressions for the response of nanobeams. These models have provided insights into the influence of the nonlocal parameter,
beam dimensions, and electrostatic loading on the nanobeam behavior.

In the present study, the two-phase nonlocal (TPNL) model of elasticity (Eringen, 1984, 2002), previously used by the authors
for the analysis of the pull-in instability of cantilever nanobeams (Mikhasev et al., 2022), is employed to capture the size-dependent
behavior of a nanotweezer device and to provide a more accurate description of its electromechanical response. This constitutive
model for the Bernoulli-Euler type beam combines the purely nonlocal (PNL) theory of elasticity with classical elasticity, taking
into account the nonlocal effects in the axial direction of a nanobeam, and does not suffer from the inconsistencies of the PNL
model (Pisano et al., 2021; Romano et al., 2017; Vaccaro et al., 2021) applied for nanobeams based on the kinematic hypotheses.
Therefore, the present analysis of nanotweezer systems can account for the influence of electrostatic and van der Waals forces while
considering the size-dependent behavior and deformation characteristics. This allows for a more comprehensive understanding of
the forces and deformations involved in nanomanipulation and the design of nanodevices like nanotweezers.

The paper is organized as follows. First, in Section 2 we introduce the physical model of the nanotweezer involving the
electrostatic and van der Waals forces. In Section 3, the Bernoulli-Euler type equation is used as the initial one, and then the
nonlinear integrodifferential equation governing the problem is derived according to the PNL theory of elasticity presented in Eringen
(1984, 2002), which involves both local and non-local constitutive parameters. By assuming the attenuation kernel of the Helmholtz
type, in Section 4 the problem is then reduced to an “equivalent” differential equation of the sixth order with two additional
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Fig. 1. CNT tweezers under electrostatic actuation.

boundary conditions accounting for nonlocal effects near the edges. As a simplifying assumption, in Section 5 the van der Waals
and electrostatic forces acting on the nanotweezer arms are approximated by assuming a linear or quadratic load distribution, as
in Mikhasev et al. (2022). We choose to adopt this approximation on loading instead of assuming a specific deflection shape in terms
of some unknown parameters that can be determined by using the Rayleigh-Ritz method, because the governing equation involves
up to the sixth-order derivatives of the deflection, while the loading function appears in it explicitly. Note also that solving the
singular perturbed boundary value problem for the governing equation with a small parameter at the highest derivative, we do not
perform its asymptotic splitting into the external and internal problems with layers, as was usually done when studying vibrations
of nanobeams (Mikhasev, 2021; Mikhasev & Nobili, 2020) and waves in half-space (Chebakov et al., 2017; Kaplunov et al., 2023)
within the framework of nonlocal elasticity theory. In Section 6, ignoring the internal nonlocal effects, we give the comparative
analysis of outcomes obtained on the base of our and alternative approaches. Calculations of the free-standing tweezer length and
pull-in voltage as functions of the local constitutive parameter for both load approximations are given in Section 7 and Section 8,
respectively, where we also validate the assumptions on the load distribution based on the results. Finally, in Section 9, we draw
some conclusions about the size effect on the pull-in voltage of nanotweezers.

Overall, the present paper on the problem of electrostatic pull-in of nanotweezers provides a significant contribution to the
understanding of the underlying physics, the design considerations, and the potential applications of these systems. The development
of a new and accurate analytical model allows us to achieve a deeper understanding of the electrostatic pull-in phenomenon at the
nanoscale and will pave the way for further advancements in this field.

2. Physical model of CNT-based nanotweezers

We consider the typical architecture of CNT-based nanotweezers, consisting of two CNT cantilever electrodes of length L, external
radius r, and wall thickness ¢, which are separated by an initial gap g. Menning et al. (2022) observed that the CNT atomic
arrangement (armchair or zigzag) is not relevant for defining the electromechanical response of nanotweezers, which depends only
on the radius and length. Let x denote the axial coordinate of each CNT ranging between 0 and L (Fig. 1).

2.1. Electrostatic forces

By applying a voltage difference V' between the two electrodes, a symmetric deflection U(x) of both CNTs is induced by the
electrostatic attractive force per unit length, whose initial value is given by Bianchi et al. (2022) and Farrokhabadi et al. (2013)

ey V2
3
Vg2+2gr[ln(l +§+§ I+ %)]

where ¢ is the permittivity of the vacuum.

F, = )

2.2. Van der Waals attraction

Besides the electrostatic attractive force, at the nanoscale the system is also affected by the attractive van der Waals intermolec-
ular force, occurring for gaps smaller than 20 nm, namely (Bianchi et al., 2022; Farrokhabadi et al., 2013)

@
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where A is the Hamaker constant.
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3. Mathematical model

Here we assume that CNTs being utilized as arms of the nanotweezer have the same geometry and material properties. Then the
applied voltage results in the same deflection U(x) = U,(x) = U,(x) on both CNTs so that the deformed electromechanical system
can be considered symmetric with respect to the Ox-axis. Given this circumstance, we consider the deformation of only one arm
which will be modeled by the cantilever nanobeam.

The vertical equilibrium of the cantilever implies the following differential equation:

d*M

dx?
where x is the axial coordinate that is the same for both arms, M is the bending moment, and ¢(U) = F,(U) + F,,, (U) is the
resultant lateral force per unit length, which depends on the arm deflection U(x) nonlinearly. As the attraction forces start acting,
the gap between the CNTs decreases correspondingly. Taking into account the symmetric deformation of the system, we replace the
initial gap g by the effective distance g — 2U, like it was done in Bianchi et al. (2022) and Farrokhabadi et al. (2013). Then the
electrostatic force (1) can be rewritten as:

=—q(U), 3
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For r < g, the van der Waals force (2) becomes

3A42
F, U= ————7—5- 6
.erw( ) 256!‘”2({.{—2”}5;2 ( )
The boundary conditions for the cantilever beam read
U=U"(0)=0, M(L)=M\(L)=0, 7

where prime means the derivative with respect to x.

To capture nonlocal effects in the deformed nanobeam, we use Eringen’s theory of nonlocal elasticity (Eringen, 1984, 2002). In
the framework of the TPNL model of elasticity, the bending moment is defined as in Mikhasev and Nobili (2020) and Mikhasev
(2021)

2 L 2
M:—EJ(&1¥+§2/ K (Ix - %1, 5) ”di). ®)
dx= 0

d
di?

where K (|x — %|,x) is a positive, symmetric kernel rapidly decaying away from x and satisfying the condition
/K(|x—3t|,x)d5r=l, 9
R

The nonlocal parameter x = eya depends on the scale coefficient e, and the internal length scale a, £, and &, are the volume fractions

representing, respectively, the local and the nonlocal phase ratios, such that &, + & = 1 and &,& > 0. When &, = 1, the constitutive

Eq. (8) degenerates into the classical local elasticity, and the case &, = () corresponds to the purely nonlocal Eringen’s model.
Remark. As was mentioned in the Introduction, the constitutive equation (8) takes into account the nonlocal effects only in the

axial direction. Capturing these effects in the transverse direction could be probably reached by applying TPNL model to 2D or 3D

equations of elasticity, as was done in contributions (Chebakov et al., 2017; Kaplunov et al., 2023) considering waves in a half-space.
The substitution of (8) into Eq. (3) results in the following integro-differential equation

EI

d? 42U /*- d2U )
— + K(|x—%|.x) —=dx | = g(U). (10)
12 (é 2 & A (I | 2 q(l)

4. Equivalent model in the differential form

Here we use the Helmholtz kernel

K(|x—x|,x)=chp(—u), (11)
2K K
which is widely used for studying mechanical behavior of 1D nanosized objects (Benvenuti & Simone, 2013; Challamel & Wang,
2008; Mikhasev, 2021). The Helmholtz kernel possesses properties that allow, on the one hand, to reduce the integro-differential
equation to an “equivalent” differential form, and, on the other hand, to correctly predict the bending behavior near the free edge

of a nanocantilever taking into account the nonlocal effects (Mikhasev & Nobili, 2020).
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First, we introduce the dimensionless variables and parameters,

(12)

s w==—, k==, a=

z r T 128EIR2g2 U T Erg?

5=

x 2U g 3420 _ 2e9xV?1*
: =

Then, assuming that w € 10, 1], we perform the mathematical manipulations with Eq. (10) as done in Mikhasev and Nobili (2020).
As a result, we arrive at the following differential equation:

2. d%  dtw L d*f(w)

¢ = - f(w), (13)
“ dst ds* “ ds? /(
where & = &, u = x /I is a small dimensionless parameter, and
W) = =55 + £ .
(1-wph? \.-"(I—w}(l—w+2fk}xlln(I+k(|—w}+k \,"{]—w)(l—w+2jk})|2 am

is the dimensionless sum of the van der Waals and electrostatic forces.
The boundary conditions (7) at x = 0 for the clamped end of the cantilever nanobeam become:

w(0) = w'(0) = 0. (15)

Note that the boundary conditions (7) at x = L for the free edge have the integro-differential form. However, taking into account
properties of kernel (11), they can also be rewritten in the differential form, as done in Mikhasev et al. (2022):

prew" (1) = w"(1) - W2 f(wy) = 0,
p2ew!” (1) + péw”' () = (1 = Hu" (1) = 1 f(wy) = 0,
where wy = w(1) is the dimensionless deflection of the cantilever tip.
To rule out spurious solutions owing to double differentiation of the initial integro-differential equation (10), we have to

introduce a pair of additional conditions called the constitutive boundary conditions (Fernandez-Saez & Zaera, 2017). Here these
conditions admit the following form (Mikhasev et al., 2022):

WY (0) — 2w (0) = (1 = &) [uw(0) = w" ()] = =2 £(0) + 4 £1(0),

(16)

K 2 " " K r ]?
e’ (1) + prewV (1) = (1= &) [p (1) + " ()| = =i f(we) + 1 [l (wy). az
where f! = % = %w’.

We arrived at the boundary-value problem (13), (15)—(17) that depends on the dimensionless parameter §, proportional to the
voltage V, the local model fraction £ and the internal length scale parameter y as well. Another parameter of the problem is the tip
deflection wy-, which varies from 0 to 1. Due to the non-linearity of the problem, there exist such critical (minimum) values of the
gap, g*, and the voltage parameter, f*, at which the arm tips deflect on the critical value w}. and then suddenly touch each other.
These parameters corresponding to pull-in instability can be determined from one of the following equations:

da _, b

—_—— =10 18
diwy dwy (18)

The first equation from (18) gives the critical value of the gap, g*, if the electrostatic forces are absent, while the second one allows
finding the critical voltage V* with intermolecular attraction taken into account.

5. Solution method

To solve the boundary value problem set above, we apply the well-recommended approach (Mikhasev et al., 2022; Yang et al.,
2008) based on the approximation of the resultant lateral force acting on the cantilever by a linear or quadratic function of the
coordinate s :

Su($) = fo+ Ur = Sfols", (19
where n = | or n = 2 depending on the assumed geometrical parameters and the local model fraction & (Mikhasev et al., 2022), and
Jo =1,  fr=fQwy). (20)

5.1. Linear distribution of resultant forces

First, consider the linear distributed load (LDL) model, when » = 1 in (19). In this case, the general solution of Eq. (13) for
S(w) = f(w) is readily written out (Mikhasev et al., 2022):
5 B e
w= 2{_](5!( +u4ei‘\'r‘; + ase wVE | (21)
k=0
where

¢y = uWE (.Hzﬁfu —ay) — ay, e = p*é |.“2§(f'r — fo)—as]| —ay. o= % (Mziffu —a;).

15 1 1 (22)
GB=% [ = fo) — a3, cq = Efu‘ c5 = %U’T = fo)-
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Fig. 2. The critical value of the vdW parameter a* versus the tip deflection w} obtained on the base of the LDL and QDL models (blue and green lines denoted
as 1 and 2, respectively) and from the shooting method (red line denoted by 3) (Bianchi et al, 2022) for classical elastic behavior of the nanocantilever.

5.2. Quadratic distribution of resultant forces

For the quadratic distributed load model with » = 2 in (19), the general solution of Eq. (13) for f(w) = fiy(w) is the
function (Mikhasev et al., 2022)

]

w= 2 {'ksk + ﬂ4E"_\'€ + aje_ﬂ_\/‘f (23)
k=0
with
2 l
=HEE-DUr—fo)—wlm—a. o =—wln-a,  o=wE-DUr—fo)- 50 (24)
5 24
1 I 1

€=~ gds g = E(C = DU = fo)s cs =0, cq = %(f‘r - fo)-

Both for n = 1 and n = 2, let w(s; a;. f7) be the general solution of Eq. (13). The six constants g;, for i = 0, 1, ... 5, are readily found

from the boundary conditions (15)-(17). Let w*(s, ;) be the solution of problem (13)-(17), then the deflection of the cantilever tip
will be

wy = w*(1; fp), (25)

Substituting (20) into (25) gives the relation w*(l, f4-(wy:a, f)) = wy. It can be considered as the equation for seeking the
required parameter a, if the electrostatic force is absent, or § under applied voltage. Then the critical parameters a*, f*, as well as
the corresponding deflection w/. of the tip, can be determined from conditions (18).

6. Comparative analysis of different approaches

Although the approach based on the LDL and QDL models has proven itself well in studying the pull-instability of nanoswitches
(Mikhasev et al., 2022), we will carry out a comparative analysis of calculations for tweezers performed using both the proposed and
alternative methods (Bianchi et al., 2022). Here, we ignore the internal nonlocal effects setting £ = 1 and u = 0, which corresponds
to the problem statement in Bianchi et al. (2022). In Fig. 2, the critical vdW parameter «* is depicted as the function of the critical
tip deflection wj. for classical elastic behavior of the nanocantilever. Calculations were performed on the base of the LDL and QLD
models and from the shooting methods (Bianchi et al., 2022) and presented by curves 1, 2, and 3, respectively. It can be observed
that the QDL model approaches the numerical results of the shooting method better than the LDL model.

Fig. 3 displays the critical pull-in voltage parameter §* versus the tip deflection w}. for various values of the vdW parameter «
and for the fixed geometrical characteristic k = 100 at £ = 1, g = 0. The four groups of lines marked by 1, 2, 3, and 4 correspond to
values a = 0.0,0.3,0.6, 1.0, respectively. The blue and red lines are plotted within the LDL and QDL models, respectively, while the
green dotted lines are obtained by using the shooting method (Bianchi et al., 2022).

It is seen from Figs. 2 and 3 that all approaches give very close outcomes when the critical deflection w}. of the arm tip is small.
However, the divergence of results grows together with the deflection w7, for all that the curves constructed within the framework of
the QDL model turn to be closer to results of the shooting method, the LDL model yielding lower values for both the vdW parameter
a* and the pull-in voltage f*.
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Fig. 3. The critical pull-in voltage parameter §* versus the Lip deflection w}. obtained on the base of the LDL and QDL models (blue and green lines, respectively)
and from the shooting method (red dotted lines) (Bianchi et al., 2022) for classical elastic behavior of the nanocantilever and for four values of the vdW parameter
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Fig. 4. Tip deflection wj of the arm for a fr ding nanot versus the local model fraction £ evaluated within the LDL model for different dimensionless
internal length scale parameter pu.

Having known the critical value of the vdW parameter from Fig. 2, one can estimate the critical geometrical parameters for the

freestanding tweezers when the voltage is absent. From Eq. (12), we obtain the inequality
4 T 32 ®
1 < 128E173/ % (26)
gTIZ 3 A2

which guarantees the stable position of the nanotweezer arms without sticking effect.
7. Freestanding tweezers taking into account nonlocal effects

We consider the freestanding nanotweezer (ff = () accounting for the nonlocal effects. The critical tip deflections w}. versus the
local model fraction & calculated within LDL and QDL models for various internal length scale parameters u are shown in Figs. 4
and 5. It is seen that introducing the nonlocal phase in the constitutive law (8) leads to increasing the tip deflection. The smaller
the local model fraction ¢, the greater the tip deflection wj}. found on the base of both LDL and QDL approaches. Comparing Figs. 4
and 5 shows that for any fixed &, the QLD model gives a higher tip deflection than the LDL model.

Fig. 6 depicts the variation of the local model fraction & with the critical vdW parameter «* obtained on the base of the LDL
and QDL approaches (solid and dashed lines, respectively) for various values of the internal length scale parameter u. As in the
framework of the classical theory of elasticity considered in the previous item, the QDL model yields a higher critical value of the

vdW parameter than the LDL model. When & — 0, the critical value of «* decreases and in the limit reaches a value corresponding to
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Fig. 5. Tip deflection wy. of the arm for a freestanding nanotweezer versus the local model fraction £ evaluated within the QDL model for different dimensionless
internal length scale parameter pu.
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Fig. 6. Critical value of the vdW parameter a* for a freestanding nanotweezer versus the local model fraction £ evaluated within the LDL and QDL models
(solid and dashed lines, respectively), for various dimensionless internal length scale parameter pu.

the purely nonlocal theory of elasticity for both the LDL and QDL models. If the internal length scale parameter x4 becomes negligibly
small, all curves corresponding to both models degenerate into the two straight lines (solid and dashed black lines) related to the
classical theory of elasticity. Let us point out here the similarity of the reduction effects for the critical parameter «* and the natural
frequencies (Mikhasev & Nobili, 2020) for a cantilever nanobeam, induced by the nonlocal model fraction & = 1 — &.

Within the nonlocal theory of elasticity, the restriction for geometrical parameters of the freestanding tweezers, which ensures
the pre-buckling stable position of the arms, is again given by inequality (26).

8. Pull-in voltage taking into account nonlocal effects

Let us now consider the nanotweezer under the action of the attractive electrostatic forces (f > 0). The critical value f* of the
voltage parameter as well as the associated critical tip deflection w). are determined from Eq. (18). Figs. 7 and 8 show the critical
tip deflection and voltage parameter, respectively, versus the local model fraction ¢ calculated within both LDL and QDL models for
various values of the vdW parameter « and for the fixed geometrical ratio k = 10 and the dimensionless internal scale parameter
u = 0.05. For voltage and deflection lower than their critical pull-in values, the behavior of the nanotweezer is stable. These limits
define the tweezing range and thus the size of objects that can be manipulated by the nanotweezers. As above, the QDL model
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Fig. 7. Tip deflection wj. of the nanotweezer arm versus the local model fraction £ evaluated within the LDL and QDL models (solid and dashed lines, respectively),
for various values of the vdW parameter a and for the fixed geometric coefficient k = 10 and dimensionless internal length scale parameter u = 0.05.
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Fig. 8. Critical pull-in voltage parameter f* versus the local model fraction £ evaluated within the LDL and QDL models (solid and dashed lines, respectively),
for various values of the vdW parameter a and for the fixed geometric coefficient k = 10 and dimensionless internal length scale parameter u = 0.05.

results in higher values of both the critical voltage and tip deflection for any value of the parameter £. It is interesting to note that
varying the local model fraction ¢ slightly affects the critical tip deflection for large values of the vdW parameter «, its increase
leading to a barely noticeable decrease in the deflection only at very small values of the parameter a.

On the contrary, the critical voltage parameter §* clearly grows up together with the parameter ¢, for any value of the vdW
parameter «, thus showing that the nonlocal response of the material at the nanoscale has a significant influence on the pull-in
voltage. The higher values of the pull-in voltage on both figures correspond to the limiting case when the effect of vdW forces
becomes negligibly small. As the effects of the vdW forces come into play, the pull-in voltage is reduced consequently. Therefore,
both nonlocal behavior and surface attractions may cause significant variations of the pull-in voltage, which must be taken into
consideration to avoid device malfunctions.

The effects of the internal length scale parameter y on the variations of the critical pull-in voltage parameter §* with the local
model fraction £ are illustrated in Fig. 9 for « = 0.05 and k =10, both for linear and quadratic models. It can be observed that the
pull-in voltage decreases as the internal length scale parameter u increases, especially for low values of the local model fraction
£. However, the effect of y on the pull-in voltage becomes vanishing small as £ tends to 1. Again, the QDL model predicts higher
pull-in voltages with respect to the LDL model.
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Fig. 9. Critical pull-in voltage parameter f* versus the local model fraction £ evaluated within the LDL and QDL models (solid and dashed lines, respectively),
for various values of dimensionless internal length scale parameter y and for the fixed geometric coefficient k = 10 and vdW parameter a = 0.05.
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Fig. 10. Critical pull-in voltage parameter §* versus the local model fraction £ evaluated within the LDL and QDL models (solid and dashed lines, respectively),
for various values of the geomelric coefficient k and for the fixed dimensionless internal length scale parameter g = 0.05 and vdW parameter a = 0.05.

The effects of the geometric coefficient & on the variations of the critical pull-in voltage parameter f* with the local model
fraction £ predicted by both models are then depicted in Figs. 10 and 11, for g = (.05 and for two different values of a, namely 0.05
and 1.0, respectively. One can see that the pull-in voltage generally increases with the geometric coefficient k, namely for a large
gap. Moreover, the pull-in voltages predicted by the two models are close enough for low values of « and k, but their difference
increases for large values of the vdW parameter a.

The variations of the voltage parameter § with the corresponding tip deflection w; of the nanotweezer arm evaluated within
the LDL and QDL models are presented in Fig. 12, for some values of the vdW parameter « and for the fixed geometric coefficient
k = 100, for fixed dimensionless internal length scale parameter y = (.1 and for vanishing local model fraction & = 0. The maxima
of these variations correspond to the critical pull-in values f* and wj.. These results show that the QDL model predicts pull-in
parameters a bit larger than those derived by the LDL model, especially for large vdW parameter a. It must be observed that the
initial deflection of the nanotweezer arms without any external voltage applied, namely for f = (), increases with the vdW parameter
a and approaches the critical pull-in deflection as « attains its critical value «* for a freestanding nanotweezer.

To validate the assumption on the quadratic load distribution, in Fig. 13 we plotted the quadratic loading function in (19) for
n = 2 (dashed blue lines) and the actual loading function in (14) evaluated by considering the deflection obtained from the QDL
model (solid red lines), for three values of f§, being the higher value close to the pull-in voltage parameter f*. One can observe that
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Fig. 11. Critical pull-in voltage parameter §* versus the local model fraction £ evaluated within the LDL and QDL models (solid and dashed lines, respectively),
for various values of the geomelric coefficient k and for the fixed dimensionless internal length scale parameter g = 0.05 and vdW parameter a = |.
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Fig. 12. Voltage parameler f§ versus the tip deflection wy of the nanotweezer arm evaluated within the LDL and QDL models (solid and dashed lines, respectively),
for various values of the vdW parameter a and for the fixed geometric coefficient k = 100, for fixed dimensionless internal length scale parameter y = 0.1 and
local model fraction & =0.

for each value of f the solid and dashed curves are quite close each other, thus proving the accuracy of the QDL model. In particular,
for lower value of § the quadratic loading function turns out to be a bit lower than the actual loading function, whereas for high
values of f the order is reversed. Therefore, the pull-in voltage provided by the QDL mode is a bit lower than the actual pull-in
voltage. The linear loading distribution of the LDL model is always higher than the actual loading function, and they coincide only
at the nanobeam edges for s = 0 and s = 1. Therefore, the pull-in voltage provided by the LDL mode is generally much lower than
the actual pull-in voltage.

9. Conclusions and discussion

In this work, the pull-in voltage and the maximum static deflection of CNT nanotweezers are investigated by considering the
effect of electrostatic and vdW forces, and nonlocal constitutive behavior of the material. Two size-dependent models are developed
by using a TPNL constitutive model of the CNTs and assuming two simplified loading distributions along the arms, namely linear
and quadratic. The analytical results attained here show that there are obvious changes in pull-in voltage and deflection as the
constitutive behavior changes from local to nonlocal, as well as the effects of the vdW forces are increased. These contributions
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Fig. 13. Loading distribution along the nanotweezer arm defined by the quadratic function f,(s) in (19) and the actual distribution f(w) in (14) calculated
by considering the deflection w obtained from the QDL model, for three values of the voltage parameter § and for a = 0.5, k = 10, g =0.05, and £ =0.5.

cannot be overlooked if the system is required to achieve reliability and sensitivity to functionality at the nanoscale In conclusion,
the use of the TPNL theory of elasticity for modeling nanotweezer behavior under electrostatic loadings has shed light on the
significance of considering nonlocal effects at the nanoscale. The proposed analytical model can be used to accurately determine
the required voltage for a desired gap distance. It has enhanced the understanding of the behavior of these devices at the nanoscale
and has paved the way for more accurate predictions and design considerations in this field. Moreover, it provides a means to
compare and validate further numerical investigations.
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