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Abstract: The operation of many queueing systems is adequately described by the structured mul-
tidimensional continuous-time Markov chains. The most well-studied classes of such chains are
level-independent Quasi-Birth-and-Death processes, GI/M/1 type and M/G/1 type Markov chains,
generators of which have the block tri-diagonal, lower- and upper-Hessenberg structure, respectively.
All these classes assume that the matrices of transition rates are quasi-Toeplitz. This property greatly
simplifies their analysis but makes them inappropriate for the study of many important systems,
e.g., retrial queues with a retrial rate depending on the number of customers in orbit, queues with
impatient customers, etc. The importance of such systems attracts significant interest to their analysis.
However, in the literature, there is a methodological gap relating to the ergodicity condition of
the corresponding Markov chains. To fulfill this gap and facilitate the analysis of a wide range of
such systems, we show that under non-restrictive assumptions, the following hold true: (i) if the
customers can balk or are impatient or non-persistent, then the Markov chain describing the behavior
of the system belongs to the class of asymptotically quasi-Toeplitz Markov chains; (ii) this chain is
ergodic; (iii) known algorithms can be applied for the calculation of the stationary distribution of the
corresponding queueing system.

Keywords: ergodicity; multidimensional continuous-time asymptotically quasi-Toeplitz Markov
chain; impatience; retrials

MSC: 60K25; 60K30; 68M20; 90B22

1. Introduction

The impatience (reneging, abandonment, etc.) of customers is a typical feature of many
(if not all) real-world service systems. If the processing of a customer that waits in the queue
does not start during a certain period of time (patience time), the customer leaves the system,
independently of other customers, without service. Impatience is related to psychological
reasons if the customers are humans, the obsolescence of information, perishing of the
products, departure of the waiting mobile user from the cell, etc. As early works on queues
with customers’ impatience, the papers [1–5] can be mentioned. Now, the literature devoted
to the analysis of queues with impatient customers is very extensive. Results of research in
the field of queues with customer impatience are presented, e.g., in [6–9].

If the total rate of customer departure due to impatience increases with growth in
the number of customers in the buffer, it is intuitively clear that the number of customers
in the buffer never becomes infinite. This means that such a system is always stable.
However, to the best of our knowledge, these intuitive reasonings are not supported by
formal statements proven in the existing literature. Here, we present such a proof for a
rather wide class of queueing models.

The motivation for writing this paper is twofold. On one hand, in recent times, we
have reviewed a lot of papers where the authors consider queues with customer impatience
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and completely ignore a discussion of ergodicity conditions or prove it in a non-correct way.
On the other hand, we have done our own intensive research on queues with customer
impatience, and usually, the reviewers of our manuscripts require the full formal proof of
ergodicity of the considered Markov chain. Therefore, we believe that the results presented
in this paper will be helpful to researchers. These results remove the problem of the proof
of ergodicity and also present the recommendation of numerically stable algorithms for the
computation of the stationary distribution of the system states.

The structure of the text is the following. Section 2 contains more detailed motivation
for this paper’s preparation and some necessary preliminary information from the theory
of structured multidimensional Markov chains (MCs). In Section 3, the ergodicity of the
queueing system with impatient customers is proved for the system, the counterpart of
which with patient customers is described by the Quasi-Birth-and-Death (QBD) process
or M/G/1 type MC. The ergodicity in the case of customers balking with the probability
of joining the queue approaching zero when the queue length increases is also proven
there. In Section 4, the ergodicity of the multi-server retrial queueing system with impatient
customers is stated. In Section 5, the ergodicity of the multi-server retrial queueing system
with non-persistent customers is stated. Section 6 concludes the paper.

2. Preliminary Information
2.1. Basic Information about Multidimensional Continuous-Time Markov Chains under Study

The operation of many queueing systems can be described by a suitably constructed
multidimensional continuous-time MC {it, nt}, t ≥ 0. The first component of the MC it has
a countable state space, it ≥ 0, and corresponds to the current number of customers in the
queueing system, buffer, orbit or network. The process nt describes the transitions of a finite
component of the MC. The process nt having a finite state space indeed may be a whole
finite set of finite components representing various auxiliary processes, e.g., the number
of busy or broken servers in multi-server systems, the state of the underlying process
of arrivals (if the arrivals occur in the Markov arrival process (MAP) or batch Markov
arrival process (BMAP) or marked Markov arrival process (MMAP), etc.), the state of the
underlying process of service (if the service time has a phase type, PH distribution, or
service is defined by the Markov service process, MSP), the random environment, which
has an impact on the system operation or the number of customers at other stages of a
tandem system with finite intermediate buffers, etc. An account of the physical meaning of
these components is very important for writing down the generator of the MC. However,
for the purposes of this paper, we assume that the values of these finite components
are enumerated in some order. Thus, without the loss of generality, for the simplicity
of denotations, in Section 2, we consider the case of only one finite component nt. In
Sections 3 and 4 devoted to retrial queues, we consider the case where the finite component
nt is two-dimensional.

The set of states of the MC having the fixed value, say, i of the first, countable,
component is called level i of the MC, i ≥ 0. We suppose that there exists a finite number
i0, i0 ≥ 0, such that the cardinalities of all levels i such that i > i0 are equal. In particular,
in Section 2, we will assume that there exists an integer number N such that the component
nt of the MC admits, for any t, t ≥ 0, and all it ≥ i0, the values in the set {0, 1, 2, . . . , N}.
The cardinality of the levels i for i ≥ i0 is equal to N + 1. The levels having numbers
0, 1, . . . , i0 − 1 can have various dimensions, and we do not impose any specific assumptions
about the behavior of the MC for these levels except the obvious requirement of the
boundedness of the transition rates from these levels.

Let Q be the generator of the MC {it, nt}, t ≥ 0. Within this paper, we assume that
this generator has the upper-Hessenberg structure
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Q =


Q0,0 Q0,1 Q0,2 Q0,3 Q0,4 . . .
Q1,0 Q1,1 Q1,2 Q1,3 Q1,4 . . .

O Q2,1 Q2,2 Q2,3 Q2,4 . . .
O O Q3,2 Q3,3 Q3,4 . . .
...

...
...

...
...

. . .

 (1)

where the matrices Qi,j consist of the entries Q(n,n′)
i,j defining, except the diagonal entries

Q(n,n)
i,i , transition rates from the state (i, n) to the state (j, n′). The mentioned diagonal

entries are negative. Their moduli define the rates of the MC η exit from the corresponding
state. For i > i0, j ≥ i − 1, Qi,j are square matrices of size N + 1. Here, O denotes zero
matrix. By I, we will denote the identity matrix. If it is necessary, the size of the matrix can
be indicated by the subscript.

The popular partial case suggests that the matrix Q is block tri-diagonal. The MCs
having a generator of a block tri-diagonal structure are called Quasi-Birth-and-Death
processes (QBD).

2.2. Level-Independent Quasi-Birth-and-Death Processes and M/G/1 Type Markov Chains

The most well studied in the literature classes of MCs having the structure of form
(1) are the level-independent QBD and M/G/1 type MCs. These classes assume that the
matrices of transition rates are block quasi-Toeplitz, i.e., the value of the block Qi,j for
i > i0, j ≥ i − 1, depends on the difference j − i but does not depend on i and j separately.
The name quasi-Toeplitz goes back to the concept of the Toeplitz matrix. The prefix “quasi”
reflects the possibility of a violation of the Toeplitz property of the generator for some
low levels.

For M/G/1 type MCs, there exist matrices Q−, Q0, Q+k, k ≥ 1, such that

Qi,i−1 = Q−, Qi,i = Q0, Qi,i+k = Q+k, k ≥ 1, i > i0.

For level-independent QBDs, Q+k = O for k > 1. For brevity, we will denote Q+1 = Q+.
The classes of the level-independent QBD and M/G/1 type MCs were investigated

in detail by M. Neuts; see, e.g., his seminal books [10,11]. Following M. Neuts, we assume

that the matrix Q = Q− +Q0 +
∞
∑

k=1
Q+k is irreducible.

The necessary and sufficient condition for the ergodicity of M/G/1 type MCs is given
by M. Neuts in the following form.

Lemma 1. M/G/1 type MC is ergodic if and only if the inequality

qQ−e > q
∞

∑
k=1

kQ+ke (2)

holds good where the row vector q is the unique solution to the system

qQ = 0, qe = 1,

where 0 is the zero row vector and the column vector e has all entries equal to 1.

The following statement immediately follows from this lemma.

Corollary 1. The level-independent QBD is ergodic if and only if the inequality

qQ−e > qQ+e (3)

holds good.



Mathematics 2024, 12, 2214 4 of 16

Sometimes, in application to a concrete queueing system, it is possible to analytically
obtain the vector q and reduce inequalities (2) or (3) to a simple scalar form.

2.3. Level-Dependent Quasi-Birth-and-Death Processes and M/G/1 Type Markov Chains,
Asymptotically Quasi-Toeplitz Markov Chains

The classes of the level-independent QBD and M/G/1 type MCs are extremely useful
for the analysis of a variety of queueing models, in particular, various queueing models
with an infinite buffer. However, the inherent feature of many important queueing systems
is that the MC describing the behavior of the system is level-dependent. This implies that
the blocks of the corresponding generator describing transition rates from the level i to the
level j depend not only on the difference j − i but also on i and j separately. It is mentioned
in [12] that level-dependent QBDs are often more realistic and, while efficient and stable
numerical solution techniques are available for level-independent QBDs, there are only a
few approaches that try to exploit the block structure in the level-dependent case.

As the most important queueing models described by the level-dependent QBDs,
retrial queueing models and queues with customer impatience have to be mentioned. More
information about the retrial queues, real-world examples and known results can be found,
e.g., in the books [13,14] and papers [15–19].

The importance of retrial queueing models stems from their suitability for modeling
various real-world systems, including contact centers, delivery systems and the extremely
popular wireless communication networks. The total intensity of retrials of customers
staying in the orbit in the overwhelming majority of real systems and networks depends on
the number of these customers. This makes the MC describing the behavior of the system
level-dependent.

The impatience (reneging, abandonment, etc.) of customers also makes the M describ-
ing system behavior level-dependent.

Due to the practical importance of the analysis of level-dependent MCs, the notion of
asymptotically quasi-Toeplitz Markov chains (AQTMCs) was introduced in the paper [20].
The rough intuitive definition of AQTMCs is as follows. The AQTMC is an MC with the
block upper-Hessenberg structure (1) of a generator that does not possess the quasi-Toeplitz
property; however, in asymptotic ones, for very large values of the countable component
of the chain, this property appears. A more exact and formal definition of AQTMC is
given below.

The main motivation for introducing AQTMCs is the necessity of considering retrial
queues, with the retrial rate proportional to the number of customers in orbit, the BMAP
arrival process and the phase-type distribution of service times, see [21]. The significant
difference between a system with an infinite buffer and a similar system with retrials is
that in the former system, a new customer is immediately picked up for service from the
buffer when some server is released. In an analogous situation in the latter system, there
exists an interval during which the server (or servers) remains idle despite the customer’s
presence in the orbit. This period finishes via a new primary customer arrival or the retrial
of a customer from the orbit. When the number of customers staying in the orbit infinitely
increases, such a period becomes shorter and completely disappears in the limit. Therefore,
the AQTMC behaves in limit exactly as the corresponding limiting quasi-Toeplitz MC.

In the case when the generator of the AQTMC is block tri-diagonal, the AQTMC is
a special case of the level-dependent QBD. The difference is that no assumptions about
the blocks of a generator are made for the level-dependent QBD, while their asymptotic
behavior is suggested for AQTMC.

It is worth noting that, due to the absence of a quasi-Toeplitz property of the MCs,
which describes many queueing systems with customer retrials and (or) impatience,
the problem of solving the infinite system of equilibrium equations for the stationary
probabilities of the chain is quite difficult. Therefore, many researchers impose, from the
early beginning, quite unrealistic assumptions about the considered system, like the orbit
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capacity is finite, and the rate of retrials from the orbit is constant, independent of the
current number of customers in the orbit, etc.

Some other researchers solve the infinite system of equilibrium equations via its
truncation, see, e.g., [22]. The worst case, from a mathematical point of view, is when this is
direct (brute force) truncation. Some equations are cut, and the remaining finite system is
solved with the use of a computer. The better case is when the researchers use so-called
soft truncation. One of the possible ways for soft truncation was offered by M.F. Neuts and
B.M. Rao in [23]. This soft truncation suggests that the blocks of the generator for levels
exceeding some fixed threshold become constant, independent of the level. In application
to the analysis of a multi-server retrial queue, this means that after the number of customers
in the orbit reaches some threshold (and until it drops below this threshold), the retrial
rate becomes constant. But this suggestion is definitely not realistic because, usually, the
total retrial rate is proportional to the number of customers staying in the orbit. When soft
truncation is implemented, the results from [10] can be applied. If the generator is block
tri-diagonal, i.e., the MC is the QBD, the vectors of the stationary probabilities of the states
that belong to high levels have a matrix geometric form. When the truncation threshold is
chosen suitably, the algorithm from [23] can give satisfactory results.

However, to apply this algorithm, it is necessary first to prove that, under the fixed set
of transition rates, the considered QBD is ergodic and that the computed distribution is
indeed the stationary distribution of the MC. Unfortunately, the paper [23] does not contain
information about the conditions for ergodicity of the MC. Some researchers derive the
ergodicity condition via the use of the results from [10] for level-independent QBD. But the
obtained condition is the ergodicity condition for the MC with other dynamics of the MC
when the current level of the MC is above the truncation threshold. Obviously, it is not the
ergodicity condition for the initial level-dependent QBD.

The problem of the derivation of ergodicity conditions in the case of level-dependent
MCs is very important but is not sufficiently addressed in the existing literature.

The condition given for the level-dependent QBDs in [24] is not a constructive one. It
is given as a requirement for the convergence of some matrix series, the terms of which
contain the infinite set of matrices (denoted as Ri in [24]) that are formally computed
recursively. In the case of level-independent QBD, the recursion turns to the quadratic
matrix equation. As it is known, see [10], the solution of this equation with the required
properties exists only if the QBD is ergodic. Therefore, in the more complicated case of
level-dependent QBD considered here, the situation is more difficult; the existence of a
solution to the infinite recursion has to be justified, and at least the ergodicity of QBD
has to be postulated. Thus, there is an evident vicious circle. To check the ergodicity, it is
required to compute the matrices Ri which, in turn, may have a chance to be computed
only if the QBD is ergodic.

2.4. Conditions for Ergodicity and Non-Ergodicity of Asymptotically Quasi-Toeplitz
Markov Chains

Constructive sufficient conditions for the ergodicity and non-ergodicity of AQTMCs,
a special case of which is an important class of level-dependent QBD, were presented
in [20]. Here, we briefly reproduce the results relevant to our analysis from [20].

According to the definition of AQTMCs, an MC χt = {it, nt} belongs to the class of
AQTMCs if

(A) Its generator has the upper-Hessenberg structure (1);
(B) The following matrices Yk, k ≥ 0, exist:

Yk = lim
i→∞

U−1
i Qi,i+k−1 + δk,1 I, k ≥ 0,

where δk,1 = 1 if k = 1 and δk,1 = 0; otherwise, Ui is the diagonal matrix with the
diagonal entries defined by the moduli of the diagonal entries of the matrix Qi,i. In
other words,
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Ui = −I ◦ Qi,i, i ≥ i0,

where ◦ is the Hadamard product of matrices symbol, see, e.g., [25], and the matrix
∞
∑

k=0
Yk is the stochastic one;

(C) Some technical assumptions related to the requirement of the finiteness of the average
size of the jump-up of the level of AQTMC (see Theorem 4 in [20]) are fulfilled. These
assumptions are evidently implemented, e.g., under the suggestion that Yk = O for
k > K + 1 where K is a finite integer, K ≥ 1. Thus, below, we impose this suggestion.

A sufficient condition for the ergodicity of AQTMCs proven in [20] is given as follows.

Let us introduce the matrix generating function Y(z) =
∞
∑

k=0
Ykzk, |z| < 1. Ergodicity

conditions are different depending on the irreducibility or reducibility of the matrix Y(1). It

is worth noting that although we supposed above that the matrix Q = Q− +Q0 +
∞
∑

k=1
Q+k

is irreducible, the matrix Y(1) can be (and often is) reducible. Therefore, two variants of
the ergodicity condition have to be analysed.

Lemma 2. If the matrix Y(1) is irreducible, the sufficient condition for the ergodicity of AQTMCs
is the fulfillment of the inequality

y
∞

∑
k=1

kYke < 1 (4)

where the row vector y is the unique solution of the system

y = y
∞

∑
k=0

Yk, ye = 1. (5)

If the matrix Y(1) is reducible, then, by means of the coordinated permutation of rows
and columns, the matrix Y(1) can be represented in the normal form, see [26],

Y(1) =



Y{1,1} O O . . . O O O O
O Y{2,2} O . . . O O O O
...

...
...

. . .
...

...
...

...
O O O . . . Y{m,m} O O O

Ym+1,1 Ym+1,2 Ym+1,3 . . . Ym+1,m Y{m+1,m+1} O O
...

...
...

. . .
...

...
...

...
Ys,1 Ys,2 Ys,3 . . . Ys,m Ys,m+1 . . . Y{s,s}


where Y{l,l}, l = 1, . . . , m are irreducible stochastic matrices, the matrices Y{l,l}, l =
m + 1, . . . , s, are irreducible matrices, and for each l, l = m + 1, . . . , s, at least one of the
matrices Yl,1, . . . , Yl,l−1 is non-zero.

Correspondingly to the normal form of the matrix Y(1) =
∞
∑

k=0
Yk, all matrices Yk, k ≥ 0,

can also be represented in a similar form. In particular, we denote by Y{l,l}
k the diagonal

blocks of the matrix Yk, k ≥ 0, l = 1, . . . , m.
According to [20], the following statement is true.

Lemma 3. In the case of the reducible matrix Y(1), the sufficient condition for the ergodicity of
AQTMCs is the fulfillment of all m inequalities

y{l}
∞

∑
k=1

kY{l,l}
k e < 1, l = 1, . . . , m, (6)



Mathematics 2024, 12, 2214 7 of 16

where the row vector y{l} is the unique solution of the system

y{l} = y{l}
∞

∑
k=0

Y{l,l}
k , y{l}e = 1, l = 1, . . . , m. (7)

The use of Lemmas 2 and 3 allows for the determination of ergodicity conditions for
various queueing systems. Sometimes, these conditions can be easily verified numerically.
Finite systems (5) or (7) of the linear algebraic equations are solved, and their solutions are
substituted into inequalities (6) or (7). Sometimes, the inequalities can be reduced to a nice
scalar form.

However, the application of these conditions to the analysis of concrete queueing
models requires preliminary verification that the MC describing a queueing model indeed
belongs to the class of AQTMCs. To this end, a computation of the blocks Yk, k ≥ 1, of the
one-step transition probability matrix for the limiting discrete-time jump MC is necessary.
It may not be easy.

It appears that if the customers arriving at the system can balk (abandon) the system
with the probability tending to 1 when queue length upon arrival infinitely increases,
or if the customers waiting in the system are impatient or non-persistent, sometimes, this
verification and the other steps for the proof that the considered MC is ergodic are not
necessary. It can be stated that the considered MC belongs to the class of AQTMCs and is
ergodic (the corresponding queueing system has a stationary regime of operation) for any
set of the system parameters.

Here, we present the results, which allow us to skip, under quite non-restrictive
assumptions, the necessity of proving the affiliation of the considered MC to the class of
AQTMCs, including the computation of the matrices Yk, k ≥ 0. This justifies the direct
use of the algorithms developed for the computation of the stationary distribution of
AQTMCs in [20,27–29] to compute the stationary distribution of the considered queueing
system. The use of the algorithms from [20,27] requires certain analytical derivations
(calculation of the limits of some matrices) to obtain the explicit form of the blocks Yk of the
one-step transition probability matrix of the limiting discrete-time MC for the AQTMC.
The algorithms proposed in [28,29] do not need such derivations because they operate
directly only with the blocks of the generator of the AQTMC. It should also be stressed that
the results of this paper render unnecessary the derivation and control of the fulfillment
of an ergodicity condition for MCs describing various queueing systems because it is
shown here that these MCs are always ergodic due to customers’ balking, impatience
or non-persistence.

3. Impact of Customers’ Impatience in the Systems Described, in the Absence of
Impatience, by the Level-Independent QBD and M/G/1 Type MC
3.1. Problem Statement

Let us consider a queueing system, the behavior of which, in the absence of customer
impatience and non-persistence, is described by a regular irreducible continuous-time MC
ζ̃t = {it, nt}, where the countable component it defines the number of customers in the
system, it ≥ 0. The process nt describes the transitions of a finite component, defining,
along with the component it,, the dynamics of the system.

Let us now assume that the customers who arrive to receive service in the system are
impatient. Impatience means the ability of a customer to depart (renege) from the system
while waiting in a buffer. We denote the MC describing this system as ζt = {it, nt}. Note
that the MCs ζ̃t = {it, nt} and ζt = {it, nt} have the same state space but different dynamics.

We assume that if the current state of the queueing system belongs to level i, then,
during an interval of very small length ∆, with the probability αi∆ + o(∆), one customer
permanently departs from the system, and the finite component nt makes the transition
possible. The matrix of the corresponding transition probabilities is denoted by Ψ. It is most
likely that Ψ = I. However, for generality, we admit any stochastic matrix Ψ. We suppose



Mathematics 2024, 12, 2214 8 of 16

that the impatience rates αi tend to infinity when i goes to infinity. Note that the most
popular and reasonable dependence of αi on i is αi = iα or αi = max{0, i − J}α. Here, α is
the impatience rate (the parameter of exponentially distributed patience time) of individual
customers, and it is assumed that customers renege from the system due to impatience
independently of each other; J is the number of customers that cannot renege from the
system. For example, if the component it is the number of customers in the system, and
only customers staying in the buffer can renege, then J corresponds to the current number
of customers that receive service.

Our aims are to prove that the MC ζt belongs to the class of AQTMCs and is ergodic
for any values of the system parameters.

3.2. Problem Solution

Firstly, we consider the partial case when the MC ζ̃t = {it, nt} describing the dynamic
of the system with patient customers is the level-independent QBD. This means that the
generator Q̃ of this MC is the block tri-diagonal matrix having the blocks Q̃i,j, of the form:

Q̃i,i = Q0, Q̃i,i+1 = Q+, Q̃i,i−1 = Q−, i > i0.

It is easy to see that the MC ζt = {it, nt} describing the dynamic of the system with
impatient customers is the level-dependent QBD. The generator Q of this MC is the block
tri-diagonal matrix having the blocks Qi,j, which define transition rates between the states
that belong to the level i and states that belong to the level j, of the form:

Qi,i = Q0 − αi IN+1, Qi,i+1 = Q+, Qi,i−1 = Q− + αiΨ, i > i0.

Lemma 4. The level-dependent QBD ζt belongs to the class of AQTMCs.

Proof. It is clear that the block tri-diagonal structure of the generator Q of the MC ζt is the
special case of the structure (1).

It is evident that the matrix Ui for the MC ζt is defined by

Ui = αi IN+1 − Q̂0,

where Q̂0 is the diagonal matrix with the diagonal entries defined by the diagonal entries
of the matrix Q0.

Calculating the limiting matrices Yk in the definition of AQTMC, it is easy to see that
these limits indeed exist and are defined by

Y0 = Ψ, Y1 = O, Y2 = O.

Thus, the MC ζt satisfies the definition of AQTMCs. The lemma is proven.

Theorem 1. The MC ζt is ergodic for any choice of the system parameters.

Proof. To prove the theorem, we apply Lemma 2 or Lemma 3. If the matrix Ψ is irreducible,
then the ergodicity condition (4) turns to the inequality 0 < 1, which is always true.

If the matrix Ψ is reducible, then the ergodicity conditions (6) with an account of
evident equalities Y{l,l}

1 = Y{l,l}
2 = O, l = 1, . . . , m, also turn to inequality 0 < 1, which is

always true.
Thus, we have proven that the MC ζt is ergodic for any choice of the system parame-

ters.

Now, let the MC ζ̃∗t = {it, nt} not be the level-independent QBD but the more general
M/G/1 type MC having the generator, which is a particular case of the generator of
form (1).
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Let us assume that for i > i0, the blocks of the generator Q̃ of this chain are defined by
the formulas

Q̃i,i = Q0, Q̃i,i−1 = Q−, Q̃i,i+k = Q+k, k = 1, . . . , K, Q̃i,i+k = O, k > K.

Here, K is an integer number, K ≥ 1. When K = 1, the MC ζ̃∗t is the QBD. The case of QBD
has been analyzed above. Now, let us assume that K > 1. Note that the requirement that
the number K be finite is not essential.

It is easy to see that the blocks of the generator of the MC ζ∗t = {it, nt} describing the
corresponding system with customer impatience are defined by

Qi,i = Q0 − αi IN+1, Qi,i+k = Q+k, k = 1, . . . , K, Qi,i−1 = Q− + αiΨ, i > i0.

Lemma 5. The MC ζ∗t belongs to the class of AQTMCs.

The proof of this lemma repeats the proof of Lemma 4. However, here, not just two
matrices Y1 and Y2 in the definition of AQTMC but all matrices Yk, k = 1, 2, . . . , K + 1, are
equal to O.

Theorem 2. The MC ζ∗t is ergodic for any choice of the system parameters.

The proof of this theorem repeats the proof of Theorem 1, taking into account that,
here, all matrices Yk, k = 1, . . . , K + 1, are equal to O, while the matrix Y0 is stochastic.

3.3. The Case of the Impatience Rate Dependent on the Value of Both Components of the Chain

In the problem statement, we have assumed that if the current state of the queueing
system belongs to level i, then, during an interval of very small length ∆, with the probabil-
ity αi∆ + o(∆), one customer permanently departs from the system, and the impatience
rate αi tends to infinity when i tends to infinity.

Analyzing the proof of the ergodicity of the considered MC for all values of the system
parameters, it is not difficult to see that the obtained result can be generalized as follows.

Let us assume that if the state of the MC ζ∗t is (i, n), then the probability that one
customer permanently departs from the system during an interval of a very small length ∆
is equal to α

(n)
i ∆ + o(∆) and

α
(n)
i → ∞ for all values of n = 0, 1, . . . , N.

As above, the component nt can make transitions defined by the stochastic matrix Ψ at the
moment of the customer reneging.

In other words, here, we consider a more general case than the one considered above
by assuming the possibility of having different impatience rates under different states of
the finite component of the MC.

It is easy to prove, by analogy with the previous statements, the following assertions.

Lemma 6. The MC ζ∗t belongs to the class of AQTMCs.

Theorem 3. If the impatience rates α
(n)
i tend to infinite when i approaches infinite for any value

of n, n = 0, 1, . . . , N, then the MC ζ∗t and its particular case ζt are ergodic for any choice of the
system parameters.

The proof repeats the proof of Theorem 1 because it is easy to check that the matrix
Y0 is equal to the stochastic matrix Ψ while all other limiting matrices Yk, k ≥ 1, are equal
to zero.
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3.4. The System with Customers Balking

Let us return to the queueing system described by the MC ζ̃t = {it, nt} defined in
Section 2.1. It is quite typical for many real-world systems that the queue length is visible for
arriving customers, and they can join or abandon the queue with a probability depending
on the current queue length. In this subsection, we briefly consider such a scenario when
the customers can abandon (balk) the system upon arrival. Namely, let us assume that
the customer (or a batch of customers) arriving to the system when the current number of
customers in the queue is equal to i (i.e., the MC ζ̃t = {it, nt} resides in the state belonging
to the level i), joins the queue with the probability qi and abandons the system with the
complimentary probability.

We omit consideration of the simpler case when K = 1 and assume that K ≥ 1. Let us
denote the MC describing the queue with customers balking by η∗

t . It is easy to verify that
the blocks of the generator of the MC η∗

t = {it, nt} are defined via the blocks of the MC ζ̃t
as follows:

Qi,i = Q0 + (1 − qi)
K

∑
k=1

Q+k, Qi,i+k = qiQ+k, k = 1, . . . , K, Qi,i−1 = Q−, i > i0.

Lemma 7. The MC η∗
t belongs to the class of AQTMCs.

Proof. It is easy to see that, here, the matrix Ui is defined by

Ui = −I ◦ (Q0 + (1 − qi)
K

∑
k=1

Q+k), i > 0,

and the limiting matrices Yk exist and are defined by formulas

Y0 = −(I ◦ T )−1Q−, Y1 = I − (I ◦ T )−1T , Yk = O, k = 2, . . . , K,

where

T = Q0 +
K

∑
k=1

Q+k.

This implies that the MC η∗
t indeed belongs to the class of AQTMC.

Theorem 4. If the probabilities qi tend to zero when i approaches infinity, then the MC η∗
t is

ergodic for any choice of the system parameters.

Proof. We obtain that the stochastic matrix Y(1) =
K
∑

k=0
Yk is, here, the sum of only two

sub-stochastic matrices, Y0 and Y1, and the matrix Y0 is a non-zero matrix. Taking into
account the explicit form of the matrices Y0 and Y1, we obtain that the matrix Y(1) is defined
by the formula

Y(1) = I − (I ◦ T )−1(Q− + T ) = I − (I ◦ T )−1Q.

It was supposed above that the matrix Q is irreducible. A multiplication of this matrix
from the left by the diagonal matrix with all non-zero diagonal entries and summing up
with the identity matrix cannot make the resulting matrix reducible. Thus, the matrix Y(1)
is irreducible.

Therefore, inequality (4) as a sufficient condition for the ergodicity of AQTMCs can
be rewritten here in the form yY0e > yY2e and always holds good because the matrix Y0 is
non-zero sub-stochastic, while the matrix Y2 is a zero matrix. The theorem is proven.

Remark 1. The obtained result holds good also in a more general situation when the joining
probabilities have the form q(k)i , i.e., they depend on both the queue length i at the arrival moment
and the number k of customers in the arrived batch of customers. The MC ζ∗t and its particular case
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ζt are ergodic for any choice of the system parameters if the probabilities q(k)i tend to zero for all
values of k, k = 1, 2, . . . , K, when i approaches infinity.

4. Impact of Customers’ Impatience in the Multi-Server Retrial Queueing Systems
4.1. Problem Statement

Let us consider the N-server retrial queueing system with patient customers. A cus-
tomer who arrives at the system when less than N servers are busy immediately starts
service. A customer who arrives when all servers are busy moves to the special virtual
place called orbit and retries to enter service after exponentially distributed times. Let the
total retrial rate from the orbit be equal to νi when the number of customers staying in
the orbit of an infinite capacity is equal to i, i ≥ 1. We assume that ν0 = 0 and that there
exists a finite or infinite limit of values νi when i tends to infinity. The most popular in
the literature dependencies of νi on i are the classical retrial policy, when νi = iν, where ν
is an individual retrial rate, and the constant retrial rate when νi is equal to the constant
independent of i.

If some server is available at a retrial moment, the retrying customer occupies the
server and departs from the system after service completion. If all servers are busy at the
retrial moment, the retrying customer returns to the orbit.

The behavior of the system is described by the three-dimensional MC ξ̃t = {it, nt, rt},
where it is the number of customers in the orbit, it ≥ 0, nt is the number of busy servers,
nt = 0, 1, . . . , N, rt is the state of some auxiliary components of the chain, rt = 1, . . . , R, at
the moment t. As in the previous section, we start analysis from the case when the generator
Q̃ of the MC ξ̃t has the block tri-diagonal structure with the non-zero blocks Q̃i,j defined
by the formulas

Q̃i,i = A− νiI0, i ≥ 0, Q̃i,i+1 = C, i ≥ 0, Q̃i,i−1 = νiB, i ≥ 1.

Here, the subgenerator A defines the transition rates of the components {nt, rt} of the MC
ξ̃t that do not lead to a change in the value of the component it of this chain. The ma-
trix C defines the rates of transitions of the components {nt, rt} of the MC ξ̃t that imply
the increase in the value of the component it by 1. The matrix B defines the transition
probabilities of the components {nt, rt} of the MC ξ̃t that imply the decrease in the value
of the component it by 1. The matrix I0 is defined by the formula I0 = Ĩ ⊗ IR, where
Ĩ = diag{1, 1, . . . , 1, 0}, diag{. . . } denotes the diagonal matrix with the diagonal entries
listed in the brackets, and ⊗ is the symbol of Kronecker product of matrices, see [30].

In detail, the matrix C is defined by the formula C = (I − Ĩ)⊗ C where the matrix C
defines the transition rates of the component rt of the MC ξ̃t at the moment of a customer’s
arrival to the system in the presence of N busy servers. The matrix B is defined by the
formula B = diag+{B0, B1, . . . , BN−1} where the diag+{. . . } denotes the matrix having
all zero blocks except the blocks Bn above the diagonal, n = 0, 1, . . . , N − 1. The block Bn
defines the transition probabilities of the component rt of the MC ξ̃t at the moment of a
retrying customer service beginning in the presence of n busy servers.

The concrete form of the described blocks for the particular case of the considered
general retrial queueing system, such as the BMAP/PH/N type retrial queue, can be
found in [21,31]. Here, BMAP denotes the batch Markov arrival process; for details, see,
e.g., [32–34]. The PH denotes the phase-type distribution of service times. Details about
the PH distribution can be found, e.g., in [10,32,34,35].

In [21], the component rt of the MC ξ̃t is the set of components such as the underlying
process of the BMAP flow of customers and the underlying processes of the PH distribution
of service time on all busy servers. In [31], the component rt of the MC ξ̃t is the set of
components such as the underlying process of the BMAP flow of customers and the number
of servers providing service at each phase. For more details about these two different ways
for tracking the PH distribution of service time in busy servers, see, e.g., [36]. For the
purposes of this paper, the explicit form of the blocks A, B and C does not matter.
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Let us now modify this queueing system by assuming that the customers staying
in the orbit are impatient. The mechanism of orbiting customers reneging from the orbit
is the same as the mechanism of waiting customers reneging from the buffer described
in the previous section. The total rate of customers reneging from the orbit when the
number of customers in the orbit is equal to i, i ≥ 1, is denoted by αi. We suppose that
lim
i→∞

αi = ∞. We denote the matrix of transition probabilities of the components {nt, rt} at

the moment of a customer reneging as Ψ. Note that, in this section, in which we separate
two finite components, the size of the square matrix Ψ is (N + 1)R. In the previous section,
the corresponding matrix had a size (N + 1).

The MC describing the considered retrial queue in the presence of customer impatience
is denoted by ξt .

Our aim is to prove that the MC ξt is affiliated to the class of AQTMC and is ergodic
for any value of the system parameters.

4.2. Problem Solution

As in the previous section, we start our analysis from the case when the generator Q
of the MC ξt has the block tri-diagonal structure.

It can be verified that the non-zero blocks Qi,j of this generator are defined by
the formulas

Qi,i = A− νiI0 − αi I(N+1)R, i ≥ 0,Qi,i+1 = C, i ≥ 0,Qi,i−1 = νiB + αiΨ, i ≥ 1. (8)

Lemma 8. The MC ξt belongs to the class of AQTMCs.

Proof. Let us denote Â as the diagonal matrix with the diagonal entries defined by
the moduli of the diagonal entries of the matrix A. Also denoted as Ui is the matrix
Ui = Â+ ((νi + αi) Ĩ + αi(I − Ĩ))⊗ IR.

It is not difficult to verify that the following limits exist:

Yk = lim
i→∞

U−1
i Qi,i+k−1 + δk,1 I, k = 0, 1, 2,

and are defined as

Y1 = Y2 = O, Y0 =
γ

γ + 1
( Ĩ ⊗ IR)B + (

1
γ + 1

Ĩ ⊗ IR + (I − Ĩ)⊗ IR)Ψ. (9)

Here,
γ = lim

i→∞

νi
αi

.

If γ = 0, i.e., αi tends to infinity more fast than νi, then, Y0 = Ψ. If γ = ∞, i.e., αi tends to
infinity more slowly than νi, then, Y0 = ( Ĩ ⊗ IR)B + ((I − Ĩ)⊗ IR)Ψ. If γ is a finite positive
number, the matrix Y0 is a stochastic matrix defined in Formula (9).

Therefore, results from [20] can be used for the derivation of a sufficient condition for
the ergodicity of the MC ξt. Note that when K = 1, inequalities (4) and (6) in the ergodicity
conditions for AQTMCs take the form

yY0e > yY2e, y{l}Y{l,l}
0 e > y{l}Y{l,l}

2 e, l = 1, . . . , m.

Because, according to (9), the matrix Y0 is a stochastic one while Y2 = O, these
inequalities are trivially fulfilled.

Therefore, the following statement is proven.

Theorem 5. The MC ξt describing the retrial queueing model with impatient customers is ergodic
for any choice of the system parameters.
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Let ξ∗t be the MC which is the generalization of the MC ξt to the case when the
generator of the chain has not three but K + 1 non-zero block diagonals, similar to the MC
ζ∗t considered in the previous section as the generalization of the MC ζt.

The validity of the following corollaries is easily established.

Corollary 2. The MC ξ∗t is affiliated to the class of AQTMCs.

Corollary 3. The MC ξ∗t is ergodic for any choice of the system parameters.

Remark 2. If arriving customer balking (refusal to go to orbit upon arrival if all servers are busy)
would be incorporated into the considered retrial queueing system described by the MC ξ̃t, and the
probability of moving to orbit qi tends to zero, then, the modified retrial queueing model will be
stable for all values of the system parameters.

5. Impact of Customers Non-Persistence in the Multi-Server Retrial Queueing Systems
5.1. Problem Statement

Let us consider the same three-dimensional MC ξ̃t = {it, nt, rt} describing the behavior
of the multi-server retrial queueing system as in the previous section. The generator Q̃ of
this chain is defined by the blocks Q̃i,j given by Formula (8).

Let us now modify the queueing system by assuming that if a customer makes the
retrial in the presence of i customers in the orbit, and all servers are busy, then, with the
probability pi, i ≥ 1,, this customer returns to the orbit, and with the complementary
probability, it departs from the system permanently. We assume that there is a limit

p = lim
i→∞

pi

and p < 1.
This assumption is fulfilled, in particular, when the customers staying in the orbit

decide whether to return to the orbit in the case when all servers are busy at the retrial
moment independently of each other with the probability p, p < 1.

Notions of customer impatience and non-persistence are close. Both impatience and
non-persistence cause the same effect, namely, that the customer permanently leaves the
system. The difference is that the departure due to impatience can occur at an arbitrary mo-
ment during the customer staying in the orbit, while the departure due to non-persistence
can occur at any retrial moment. In the context of retrial queues, it is more reasonable
for the customer waiting in the orbit to check the status of the servers before departing,
whether or not all servers are busy at this moment. However, sometimes, the customers
can leave the system without making the “last” trial. For example, in modeling the cell of
the mobile communication network, the retrying customer can decide to stop retrials after
any unsuccessful retrial and can also leave the cell due to the loss of connection to the base
station under the move to another cell.

Let us denote by ξ̂t the MC describing the dynamics of the system with non-persistent
customers. Additionally, let us assume that a customer departure from the system due to
non-persistence does not cause any changes in the value of the components {nt, rt} of the
MC ξ̂t. The contrary case can be considered analogously.

The aim of this section is to briefly show that the MC ξ̂t is always ergodic.

5.2. Problem Solution

As in the previous sections, we start analysis from the case when the generator Q of
the MC ξ̂t has the block tri-diagonal structure.

It can be verified that the non-zero blocks Qi,j of this generator are defined by formulas

Qi,i = A− νiÎ0
i , i > 0,Qi,i+1 = C, i > 0,Qi,i−1 = νiB̂i, i > 1,
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where
Î0

i = ( Ĩ + (1 − pi)(I − Ĩ))⊗ IR, i ≥ 1,

B̂i = B + (1 − pi)(I − Ĩ)⊗ IR, i > 1.

Lemma 9. The MC ξ̂t belongs to the class of AQTMCs.

Proof. Let, as in the previous section, Â be the diagonal matrix with the diagonal entries
defined by the moduli of the diagonal entries of the matrix A.

It is easy to see that the matrix Ui appearing in the definition of the AQTMC is defined
by the formula

Ui = Â+ νiÎ0
i .

It is not difficult to verify that the following limits

Yk = lim
i→∞

U−1
i Qi,i+k−1 + δk,1 I, k = 0, 1, 2,

indeed exist and are defined as

Y1 = Y2 = O, Y0 = B + (I − Ĩ)⊗ IR.

This completes the proof of the lemma.

Again, the matrix Y0 is a stochastic one, and, irrespective of whether the matrix Y0
is irreducible or reducible, the fact that Y1 = Y2 = O implies the trivial fulfillment of
inequalities (4) or (6) in a sufficient condition of ergodicity of the MC.

Therefore, the following statement is proven.

Theorem 6. The MC ξ̂t describing the retrial queueing model with non-persistent customers is
ergodic for any choice of the system parameters.

Let ξ̂∗t be the MC which is the generalization of the MC ξ̂t to the case when the
generator of the chain has not three but K + 1 non-zero block diagonals, similar to the MC
ζ∗t considered in Section 2 as the generalization of the MC ζt.

The validity of the following corollary is easily established.

Corollary 4. The MC ξ̂∗t is affiliated to the class of AQTMCs.

Corollary 5. The MC ξ̂∗t is ergodic for any choice of the system parameters.

Remark 3. Theorem 5 states that the retrial queue is always stable (the corresponding MC is
ergodic) if the customers are impatient. Theorem 6 states that the retrial queue is always stable if
the customers are non-persistent. It is easy to check that the retrial queue is always stable if the
customers are both impatient and non-persistent.

For reader convenience, the random processes used and analyzed in the text are
summarised in Table A1 in Appendix A.

6. Conclusions

In this paper, it is shown that for a great variety of queueing models, including a
wide range of variants of the BMAP/PH/N-type queues, with an infinite buffer or orbit,
the following is true. If the customers waiting in the buffer or the orbit are impatient with
an infinitely increasing total impatience rate, then, the multidimensional MC describing
the behavior of the system is affiliated to the class of AQTMCs and is always ergodic.
The same is valid for systems with customers balking upon arrival as well as for the retrial
queue with non-persistent customers, with the limiting value of the probability to return to
the orbit when all servers are busy at the retrial moment less than 1.
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The account of customer impatience, balking or non-persistence usually leads, gener-
ally speaking, to an essential complication in the computation of the stationary distribution
compared to the systems with patient customers due to the space-inhomogeneous behavior
of the corresponding MC. But, as it is shown in this paper, the obtained MC belongs to
the class of AQTMCs. This has the following two important implications : (i) the question
about the existence of a stationary distribution (under non-restrictive assumptions) always
has a positive answer; (ii) effective and numerically stable algorithms from [20,27–29] can
be used to compute the stationary distribution of the considered queueing system instead
of various truncation schemes popular in the existing literature.

The presented results are planned to be extended to the case when the impatience rate
depends not only on the value of the denumerable component but also on the value of the
finite component of the MC and tends to infinity not mandatory for all but at least for some
values of the finite component.
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Appendix A

Table A1. Processes denotation.

Process Denotation System Specifics Section

ζ̃t QBD NO Section 2.2
ζt QBD IMP Section 2.2
ζ̃∗t M/G/1 NO Section 2.2
ζ∗t M/G/1 IMP Sections 2.2 and 2.3
η∗

t M/G/1 BALK Section 2.4
ξ̃t QBD retrial NO Section 3.1
ξt QBD retrial IMP Section 3.1
ξ∗t M/G/1 retrial IMP Section 3.1
ξ̂t QBD retrial NONPER Section 4.1
ξ̂∗t M/G/1 retrial NONPER Section 4.1

The first column of the table presents a process denotation. The second column
defines the type of the system (or the MC) described by this process. QBD means the
Quasi-Birth-and-Death process, and M/G/1 denotes the M/G/1 type MC. These symbols
supplemented by the word “retrial” correspond to the systems of the same type but with
the retrials. The third column identifies the specifics of the system described by the
corresponding process. Here, IMP means that the customers are impatient, and BALK
means that the customers can balk upon arrival. NONPER means that the retrial customers
are non-persistent. NO means that the system does not have any specifics like denoted by
the symbols IMP, BALK and NONPER.
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