УДК 546.03.05 + 535-15

АНАЛИЗ СПЕКТРОВ ИК-ПОГЛОЩЕНИЯ КЕТОИМИНАТА ВАНАДИЯ(III) И АЦЕТИЛАЦЕТОНАТОВ ВАНАДИЯ(III) И ВАНАДИЛА

 $H. H. KOCTЮK^{1}, T. A. ДИK^{1}, A. Р. ЦЫГАНОВ^{2}$

¹⁾Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь ²⁾Белорусский государственный технологический университет, ул. Свердлова, 13а, 220006, г. Минск, Беларусь

Анномация. Методом электрохимического синтеза получены кетоиминат ванадия(III) $[V(CH_3C(N)C(H)C(O)CH_3)_3]$, ацетилацетонат ванадия(III) $[V(CH_3C(O)C(H)C(O)CH_3)_3]$ и ацетилацетонат ванадила $[VO(CH_3C(O)C(H)C(O)CH_3)_2]$. На основании данных ИК-спектроскопии установлено, что в результате электролиза произошло формирование квазиароматического металлоцикла – основного структурного элемента хелата. Периферийные метильные группы кетоимината и ацетилацетона не подверглись трансформации под воздействием электрического тока.

Ключевые слова: ацетилацетон; кетоиминат ванадия(III); ацетилацетонат ванадия(IIII); ацетилацетонат ванадия(IIII); ацетилацетонат ванадия(IIII); ацетилацетона

IR SPECTRAL ASSAY OF THE VANADIUM(III) KETIMINATE AND VANADIUM(III) AND VANADYL ACETYLACETONATES

N. N. KOSTYUK^a, T. A. DICK^a, A. R. TSYHANAU^b

^aBelarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus ^bBelarusian State Technological University, 13a Sviardlova Street, Minsk 220006, Belarus Corresponding author: T. A. Dick (dick@bsu.by)

Образец цитирования:

Костюк НН, Дик ТА, Цыганов АР. Анализ спектров ИК-поглощения кетоимината ванадия(III) и ацетилацетонатов ванадия(III) и ванадила. Журнал Белорусского государственного университета. Химия. 2024;2:61–69.

EDN: MWCMPO

For citation:

Kostyuk NN, Dick TA, Tsyhanau AR. IR spectral assay of the vanadium(III) ketiminate and vanadium(III) and vanadyl acetylacetonates. *Journal of the Belarusian State University. Chemistry.* 2024;2:61–69. Russian.

EDN: MWCMPO

Авторы:

Николай Николаевич Костью – кандидат химических наук; ведущий научный сотрудник научно-исследовательской лаборатории прикладной механики кафедры теоретической и прикладной механики механико-математического факультета.

Татьяна Алексеевна Дик – доктор физико-математических наук; ведущий специалист деканата механико-математического факультета.

Александр Риммович Цыганов — доктор сельскохозяйственных наук, кандидат химических наук, академик НАН Беларуси, профессор; профессор кафедры физической, коллоидной и аналитической химии факультета технологии органических вешеств.

Authors:

Nikolai N. Kostyuk, PhD (chemistry); leading researcher at the laboratory of applied mechanics, department of theoretical and applied mechanics, faculty of mechanics and mathematics. *nnkostyuk@bsu.by*

Tatiana A. Dick, doctor of science (physics and mathematics); leading specialist at the dean's office of the faculty of mechanics and mathematics.

dick@bsu.by

Alexander R. Tsyhanau, doctor of science (agricultural science), PhD (chemistry), academician of the National Academy of Sciences of Belarus, full professor; professor at the department of physical, colloidal and analytical chemistry, faculty of organic substances technology.

tziganov@belstu.by

Abstract. Vanadium(III) ketiminate $[V(CH_3C(N)C(H)C(O)CH_3)_3]$, vanadium(III) acetylacetonate $[V(CH_3C(O)C(H)C(O)CH_3)_3]$ and vanadyl acetylacetonate $[VO(CH_3C(O)C(H)C(O)CH_3)_2]$ were obtained by electrochemical synthesis. Based on IR spectroscopy data, it was established that as a result of electrolysis, the formation of a quasi-aromatic metallocycle, the main structural element of the chelate, took place. The peripheral methyl groups of ketiminate and acetylacetone did not undergo transformation under the influence of electric current.

Keywords: acetylacetone; vanadium(III) ketiminate; vanadium(III) acetylacetonate; vanadyl acetylacetonate; chelate; IR spectrum; absorption band.

Введение

В настоящее время соединения ванадия широко применяются в промышленности в качестве легирующих компонентов износо- и коррозионно-стойких сталей и сплавов, способных функционировать в агрессивных средах, а также при высоких температурах. В технологиях порошковой металлургии ванадий используют для изготовления постоянных магнитов. Последние два десятилетия в металлургической, судостроительной, автомобильной, аэрокосмической и химической промышленности, в ядерной энергетике при изготовлении катализаторов, автономных источников электропитания, систем вентиляции и отопления и других изделий все большее применение находит фольга из ванадия [1]. Использование фольги из ванадия позволяет в значительной степени экономить этот достаточно дорогостоящий металл.

Гораздо большим потенциалом для экономии ванадия обладают пленки и покрытия, полученные методом химического осаждения из газовой фазы (chemical vapor deposition, CVD). Для синтеза ванадиевых пленок и покрытий CVD-методом ранее использовался галогенидно-водородный метод разложения при температуре испарения исходных галогенидов ванадия 600–900 °C и нагреве подложки до 1100–1300 °C. В настоящее время более перспективным считается карбонильный метод разложения с применением вакуума (1–10 Па). В качестве исходных веществ для реализации CVD-метода пытались также использовать циклопентадиенильные и бисареновые соединения ванадия. Однако все методы имеют определенные недостатки. Так, при галогенидно-водородном методе разложения и при использовании циклопентадиенильных и бисареновых соединений ванадия выделяются агрессивные газы (иод и иодоводород), продукты пиролиза циклопентадиена, бензола, толуола и др. В результате термического разложения карбонилов ванадия выделяется также угарный газ. Покрытия и пленки из металлического ванадия, полученные данными методами, содержат примеси оксидов и карбидов металла [2].

Альтернативными прекурсорами для получения ванадиевых пленок и покрытий CVD-методом являются β-дикетонаты ванадия [2; 3]. Они способны переходить в газовую фазу при умеренно высоких температурах (до 300 °C) без разложения, а также нечувствительны (в отличие от карбонилов, циклопентадиенилов и бисареновых соединений ванадия) к влаге воздуха. Кроме того, β-дикетонаты ванадия используются в качестве катализаторов при полимеризации пропилена при низких температурах (до –65 °C) [4]. С их помощью также проводят сополимеризацию этилена с пропиленом.

Одними из наиболее эффективных методов получения β -дикетонатов переходных металлов являются одностадийный электрохимический синтез [5; 6], позволяющий получать хелаты металлов высокой степени чистоты [5], и гомофазный метод, базирующийся на реакциях обмена лигандами в растворах [2]. Синтез β -дикетонатов металлов методами обменных реакций в растворах требует дополнительной очистки целевого продукта: либо многократной перекристаллизации его из органических растворителей, либо вакуумной сублимации [3], что значительно снижает выход целевого продукта. В то же время электрохимический метод синтеза позволяет получать β -дикетонаты переходных металлов с выходом по металлу более 100% и гарантированно высокой степенью чистоты [5–7]. Однако применение электролиза для получения хелатов переходных металлов требует повышенного контроля за состоянием лиганда (β -дикетона) в связи с тем, что по ходу проведения электролиза возможна трансформация лиганда как за счет вовлечения в электролиз периферийных групп, так и за счет отщепления второго протона в γ -положении с последующей димеризацией β -дикетона [8]. В качестве контрольного метода исследования состояния лиганда можно использовать ИК-спектральный метод анализа, позволяющий получать исчерпывающую информацию как об образовании квазиароматического металлоцикла, так и о состоянии периферийных групп β -дикетона [9–14].

Целью настоящей работы является электрохимическое получение кетоимината ванадия(III) и ацетилацетонатов ванадия(III) и ванадила, а также их детальное исследование методом ИК-спектроскопии для контроля процесса комплексообразования: формирования основного координационного узла квазиароматического металлоцикла и состояния периферийных метильных групп лигандов.

Материалы и методы исследования

В качестве исходных лигандов использовались ацетилацетон (2,4-пентандион, Hacac, $C_5H_8O_2$) и кето-иминат (2-имино-4-пентанон, Hkimi, C_5H_8ON) компаний *Merk* (Германия) или *Aldrich Chemical* (США), которые перегонялись непосредственно перед проведением электролиза.

При синтезе ацетилацетоната и кетоимината ванадия(III) и ацетилацетоната ванадила в качестве растворителей применяли дистиллированную воду или бидистиллят, ацетонитрил квалификации «для хроматографии», бензол и дихлорметан квалификации «ч. д. а.». Ацетонитрил дополнительно перегоняли над осушителями непосредственно перед экспериментом.

Электролиз проводили в бездиафрагменной электрохимической ячейке при постоянном токе от стабилизированного источника питания в инертной атмосфере (аргон) или при барботировании осущенным воздухом в потенциометрическом режиме при напряжении 3 В. В качестве электролита использовали раствор 0,1 моль/л бромида тетраэтиламмония и 1 моль/л ацетилацетона или кетоимината в ацетонитриле. Анодом служила пластина из ванадия марки BhM-2 (чистота металла более $99\,\%$), катодом – пластина из никеля. Температура электролита поддерживалась равной $(40\pm0,5)\,^{\circ}$ С с помощью термостата U-15 (Германия). Полученные ацетилацетонаты ванадия(III) и ванадила, а также кетоиминат ванадия(III) после упаривания на роторном испарителе реакционной смеси экстрагировали бензолом или смесью бензола и дихлорметана в соотношении 1:1 и повторно перекристаллизовывали из дихлорметана.

ИК-спектры в интервале частот 4000–400 см⁻¹ регистрировали на спектрофотометре Specord 75IR (*Analytik Jena*, Германия). Образцы готовили в виде таблеток с бромидом калия и суспензий в вазелиновом масле.

Содержание ванадия в полученных соединениях определяли гравиметрическим методом. Весовая форма – V_2O_5 . Анализ на содержание углерода и водорода осуществляли по методу Прегля. Полученные данные приведены в табл. 1.

Таблица 1

Результаты элементного анализа ацетилацетоната и кетоимината ванадия(III) и ацетилацетоната ванадила

Table 1

Results of elementary analysis of vanadium(III) acetylacetonate and ketiminate and vanadyl acetylacetonate

Формула хелата	Брутто-формула	Содержание V, %		Содержание С, %		Содержание Н, %	
		Найдено	Вычислено	Найдено	Вычислено	Найдено	Вычислено
V(acac) ₃	$VC_{15}H_{21}O_6$	14,57	14,63	51,37	51,73	6,69	6,08
V(kimi) ₃	VC ₁₅ H ₂₁ O ₃ N ₃	14,84	14,88	52,48	52,64	6,31	6,18
VO(acac) ₂	$VC_{10}H_{14}O_{5}$	19,15	19,21	45,84	45,30	5,47	5,32

Результаты и их обсуждение

В табл. 2 представлены значения колебательных частот ИК-спектров ацетилацетонатов ванадия(III) и ванадила. Отнесение наблюдаемых полос поглощения проводилось на основании данных, изложенных в расчетных статьях [9–13]. В работе [13] была изучена роль кинематических факторов в формировании валентных колебаний $\nu(CO)$ и $\nu(CC)_{ch}$ в β -дикетонатных комплексах. В частности, показано, что частоты колебаний $\nu(CC)_{ch}$ оказались слабочувствительными к изменению длины координационной связи металл – кислород хелата. Аналогичный результат получен при исследовании частот колебаний $\nu(CO)$. Установлено, что не изменяются также частоты колебаний периферийных групп. На основании этого можно сделать вывод о корректности использования данных расчетных статей, описывающих, например, спектральное поведение хелатов меди, золота и хрома [9; 10; 14], для отнесения частот колебаний в ИК-спектрах ацетилацетонатов ванадия(III) и ванадила, а также кетоимината ванадия(III). Основным структурным узлом β -дикетонатного координационного соединения является шестичленный квазиароматический металлоцикл, имеющий сопряжение типа π – π и характеризующийся тем, что делокализация общего электрона не распространяется на атом металла [15; 16].

На рисунке изображена обобщенная структурная формула *трис*-ацетилацетоната ванадия на основании данных, представленных в работах [9–14].

Таблица 2

Значения колебательных частот в ИК-спектрах ацетилацетонатов ванадия(III) и ванадила и их отнесение

Table 2

Values of vibrational frequencies in the IR spectra of vanadium(III) and vanadyl acetylacetonates and their assignment

Колебательные частоты $V(acac)_3$, V, cm^{-1}	Отнесение	Колебательные частоты $VO(acac)_2$, V, cm^{-1}	Отнесение	
2995 пл.		3000 о. сл.		
2975 сл.			ν(CH) _{CH3}	
2923 сл.				
_	_	1585 пл.	$v(CC)_{ch} + v(CO) + \delta(CH_3)$	
1568 o. c.	$v(CC)_{ch} + v(CO) + \delta(CH_3)$	1560 пл.	δ(CH ₃)	
1556 пл.	δ(CH ₃)	1550 o. c.	(GG) (GG) 2(GH)	
1539 пл.		1530 o. c.	$v(CC)_{ch} + v(CO) + \delta(CH_3)$	
1518 o. c.	$v(CC)_{ch} + v(CO) + \delta(CH_3)$	_	-	
1505 пл.		1505 пл.	$v(CC)_{ch} + v(CO) + \delta(CH_3)$	
_	_	1455 пл.	δ(CH ₃)	
1422 сл.	$v(CC)_{ch} + v(CO) + v(CC) + \delta(CCH\gamma)$	1418 ср.	$v(CC)_{ch} + v(CO) + v(CC) + \delta(CCH)$	
_	_	1390 пл.	δ(CH ₃)	
1380 с.	$v(CC)_{ch} + \delta(CH_3) + \delta(CCH_3)$	1373 с.	$v(CC)_{ch} + \delta(CH_3) + \delta(CCH_3)$	
1358 с.	$\delta(\text{CH}_3) + \delta_{\text{ch}}$	1357 с.	$\delta(\text{CH}_3) + \delta_{\text{ch}}$	
1274 ср.	$v(CC)_{ch} + v(CC) + \delta_{ch}$	1284 ср.	$v(CC)_{ch} + v(CC) + \delta_{ch}$	
1180 о. сл.	$v(CO) + v(CC) + \delta(CCH\gamma)$	1190 сл.	$v(CO) + v(CC) + \delta(CCH\gamma)$	
1025 с.	ν (CC) + δ (CH ₃) (качание)	1022 ср.	ν (CC) + δ (CH ₃) (качание)	
1020 пл.	$v(CC) + \delta(CH_3)$	_	_	
_	-	999 o. c.	v(VO) (ванадил)	
933 ср.	$v(CC)_{ch} + v(CO) + \delta_{ch}$	939 с.	$v(CC)_{ch} + v(CO) + \delta_{ch}$	
801 сл.		800 c.	2(011) () 2	
791 о. сл.	δ (СН γ) (внепл.) + δ_{ch}	791 cp.	δ (СН γ) (внепл.) + δ_{ch}	
773 ср.		_	-	
690 пл.	$v(VO) + v(CO) + \delta(CCH_3)$	687 c.	$v(VO) + v(CO) + v(CC) + \delta(CCH_3)$	
668 cp.	$\nu(VO) + \delta_{ch}$ (внепл.)	_	_	
660 пл.	$\delta(\text{ССH}_3) + \delta_{\text{ch}}$ (внепл.)	660 сл.	$\delta(\mathrm{CH_3}) + \delta_{\mathrm{ch}}$ (внепл.)	
612 о. сл.	$v(VO) + \delta(CCH_3)$	612 cp.	$\nu(VO) + \delta(CCH_3)$	
590 сл.	$\delta(\text{ССH}_3) + \delta_{\text{ch}}$ (внепл.)	_	_	
575 о. сл.		565 сл.	2 + (OV), c	
492 сл.	492 сл. $\nu(VO) + \delta_{ch}$		$v(VO) + \delta_{ch}$	
475 о. сл.		_	_	
450 c.	$v(VO) + \delta(CCH_3)$	467 о. сл.	$v(VO) + \delta(CCH_3)$	
442 сл.	$v(VO) + v(CC) + \delta(CCH_3) + \delta_{ch}$	_	_	
420 сл.	$v(VO) + \delta_{ch}$	427 сл.	$v(VO) + \delta_{ch}$	

 Π р и м е ч а н и е. Обозначение интенсивности: с. – сильная, ср. – средняя, сл. – слабая, о. с. – очень сильная, о. сл. – очень слабая. Обозначение колебаний: ν – валентные, δ – деформационные, внепл. – внеплоскостные. Другие обозначения: пл. – плечо, ch – хелат.

$$\begin{array}{c|c} & H \\ & C \\ & C$$

Структурная формула *mpuc*-ацетилацетоната ванадия The structural formula of *tris*-acetylacetonate vanadium

В области частот 3000-2920 см⁻¹ (см. табл. 2) для ацетилацетонатов ванадия(III) и ванадила наблюдается ряд слабых или очень слабых полос поглощения валентных колебаний $\nu(CH)_{CH_3}$. Данные колебания имеют выраженную степень характеристичности (от 99 до 100%) [10].

Полосы поглощения валентных колебаний СС- и СО-связей квазиароматического металлоцикла ацетилацетонатов ванадия(III) и ванадила наблюдаются в интервале частот 1585–1500 см⁻¹. Все они имеют смешанный характер: кроме валентных колебаний $\nu(CC)_{ch}$ и $\nu(CO)$, свой вклад в них вносят деформационные колебания $\delta(CH_3)$. Для полос поглощения с максимумами 1568 см $^{-1}$ (ацетилацетонат ванадия(III)) и 1550 см $^{-1}$ (ацетилацетонат ванадила) вклад деформационных колебаний δ (CH $_3$) может составлять $40\,\%$, а суммарный вклад деформационных колебаний $\nu({\rm CC})_{\rm ch}$ и $\nu({\rm CO})-51\,\%$ [10]. Полосы поглощения с максимумами частот 1556 см⁻¹ (ацетилацетонат ванадия(III)) и 1560 см⁻¹ (ацетилацетонат ванадила) являются практически характеристическими, так как вклад деформационных колебаний δ(СН₃) составляет 82 %. Полосы поглощения с максимумами 1518 и 1505 см-1 (ацетилацетонат ванадия(III)) и 1530 и 1505 см⁻¹ (ацетилацетонат ванадила) имеют смешанный характер, причем суммарный вклад валентных колебаний $v(CC)_{ch}$ и v(CO) составляет 34 %, а вклад деформационных колебаний $\delta(CH_3)$ – 60 %. В ИК-спектре ацетилацетоната ванадила наблюдается полоса поглощения с максимумом 1455 см полностью принадлежащая к деформационным колебаниям $\delta(CH_2)$. Аналогичная полоса поглощения в спектре ацетилацетоната ванадия(III) не наблюдается (см. табл. 2) [10]. Полосы поглощения с максимумами 1422 см^{-1} (ацетилацетонат ванадия(III)) и 1418 см^{-1} (ацетилацетонат ванадила) на 43 % состоят из валентных колебаний $\nu(CC)_{ch}$ и $\nu(CO)$, на 18 % – из валентных колебаний $\nu(CC)$ метильных групп и квазиароматического металлоцикла, на 23 % – из деформационных колебаний б(ССНу).

Как видно из представленной спектральной картины, основные полосы поглощения валентных колебаний $\nu(CC)_{ch}$ и $\nu(CO)$ квазиароматического металлоцикла лежат ниже 1585 см $^{-1}$, что свидетельствует о наличии сильного батохромного сдвига частот (более $100~{\rm cm}^{-1}$) в связи с образованием хелатного координационного узла. Полос поглощения валентных колебаний СО-связей ацетилацетона в ИК-спектрах обоих соединений не наблюдается. Данный факт позволяет сделать вывод об отсутствии в составе полученных хелатов нейтрального ацетилацетона.

Полоса поглощения с максимумом $1390 \, \mathrm{cm}^{-1}$ в ИК-спектре ацетилацетоната ванадила на $79 \, \%$ обусловлена деформационными колебаниями $\delta(\mathrm{CH_3})$. Как и полоса поглощения с максимумом $1455 \, \mathrm{cm}^{-1}$, полоса поглощения с максимумом $1390 \, \mathrm{cm}^{-1}$ в ИК-спектре комплекса ванадила не имеет аналога в ИК-спектре комплекса ванадия(III). В более низкочастотной области спектров обоих соединений вплоть до $400 \, \mathrm{cm}^{-1}$ характеристических полос поглощения не наблюдается: для ацетилацетоната ванадия(III) характеристичность составляет менее $13 \, \%$, а для ацетилацетоната ванадила — чуть более $22 \, \%$.

В результате расчета нормальных колебаний и распределения потенциальной энергии по естественным колебательным координатам для полос поглощения с максимумом $1380~{\rm cm}^{-1}$ (ацетилацетонат ванадия(III)) и $1373~{\rm cm}^{-1}$ (ацетилацетонат ванадила) вклад деформационных колебаний $\delta({\rm CH_3})$ составляет 52~%, вклад деформационных колебаний $\nu({\rm CC})_{\rm ch} - 13~\%$ [12]. В дальнейшем при продвижении в низкочастотную область спектра вклад валентных колебаний $\nu({\rm CC})_{\rm ch}$ и ν

вклад колебаний $\nu(CC)_{ch}$ падает до 13 %, а вклад колебаний $\nu(CC)$ возрастает до 51 %. Для полосы поглощения с максимумом 1180 см⁻¹ вклад валентных колебаний $\nu(CO)$ составляет 14 %, в то время как вклад деформационных колебаний $\delta(CCH\gamma)$ достигает 74 %. Аналогичная спектральная картина наблюдается для ацетилацетоната ванадила для полос поглощения с максимумами 1284 и 1190 см⁻¹ соответственно.

В полосы поглощения с максимумами 1025 и 1020 см $^{-1}$ (ацетилацетонат ванадия(III)) и 1022 см $^{-1}$ (ацетилацетонат ванадила) основной вклад (до 95 %) вносят деформационные колебания δ (CH₃) [10].

В спектре ацетилацетоната ванадила присутствует очень сильная полоса поглощения с максимумом 999 см $^{-1}$, которая относится к валентным колебаниям $\nu(VO)$ ванадила [3].

Полосы поглощения для ацетилацетоната ванадия(III) и ацетилацетоната ванадила с максимумами 933 и 939 см $^{-1}$ соответственно носят смешанный характер и состоят главным образом из валентных колебаний ν (CO) (на 23 %) и ν (CC) $_{ch}$ (на 43 %) [10]. Серии полос поглощения в интервале частот 800–770 см $^{-1}$ для обоих хелатов также носят смешан-

Серии полос поглощения в интервале частот 800-770 см⁻¹ для обоих хелатов также носят смешанный характер и состоят из внеплоскостных деформационных колебаний δ (CH γ) и деформационных колебаний δ _{ch}.

В низкочастотной области спектра, начиная с $670 \, \mathrm{cm}^{-1}$ и ниже, наблюдается серия полос, принадлежащих в том числе к валентным колебаниям v(VO). Так, вклад колебаний v(VO) в полосы поглощения с максимумом $690 \, \mathrm{cm}^{-1}$ (ацетилацетонат ванадия(III)) и $687 \, \mathrm{cm}^{-1}$ (ацетилацетонат ванадила) составляет $17 \, \%$. При продвижении по спектру в более низкочастотную область их вклад возрастает. Так, например, для полос поглощения с максимумами $450 \, \mathrm{u} \, 442 \, \mathrm{cm}^{-1}$ (ацетилацетонат ванадия (III)) вклад валентных колебаний v(VO) достигает $49 \, \mathrm{u} \, 45 \, \%$ соответственно.

В табл. 3 представлены значения колебательных частот в ИК-спектре кетоимината ванадия(III) и их отнесение. В области частот $3005-2850~{\rm cm}^{-1}$ присутствуют пять характеристических полос, из которых две первые полосы относятся к валентным колебаниям $\nu(CH\gamma)$. Три другие полосы поглощения принадлежат к валентным колебаниям $\nu(CH)_{CH_3}$. В ИК-спектре кетоимината ванадия(III), кроме упомянутых выше пяти полос поглощения, характеристической является еще только одна полоса поглощения с максимумом $1374~{\rm cm}^{-1}$. Она относится к деформационным колебаниям $\delta(HCH)$ метильных групп. При этом степень ее характеристичности составляет 95~% [14]. В целом в ИК-спектре кетоимината ванадия(III) количество характеристических полос поглощения не превышает 20~% (см. табл. 3).

Таблица 3

Значения колебательных частот в ИК-спектре кетоимината ванадия(III) и их отнесение

Table 3

Values of vibrational frequencies in the IR spectrum of vanadium(III) ketiminate and their assignment

Колебательные частоты V(kimi) ₃ , v, см ⁻¹	Отнесение	
3003 сл.	ν(CΗγ)	
2975 о. сл.	ν(CΠγ)	
2965 о. сл.	v(CH) _{CH3}	
2925 о. сл.		
2860 сл.		
1590 пл.	$\nu(CC)_{ch} + \nu(CO) + \nu(CN) + \nu(CCC)_{ch} + \delta(CH_3)$	
1565 пл.	w(CC) + w(CO) + w(CN)	
1555 o. c.	$v(CC)_{ch} + v(CO) + v(CN)$	
1533 o. c.	$\nu(CC)_{ch} + \delta(CH\gamma) + \delta(CH_3)$	
1518 пл.	(CC) +(CO) +(CN)	
1504 пл.	$v(CC)_{ch} + v(CO) + v(CN)$	
1418 cp.	2(CH.) ; 2	
1413 пл.	$\delta(\text{CH}\gamma) + \delta_{\text{ch}}$	
1374 o. c.	δ(ΗСΗ)	

Окончание табл. 3 Ending of the table 3

Колебательные частоты V(kimi) ₃ , v, см ⁻¹	Отнесение	
1359 o. c.	$\delta(CH_3) + \delta_{ch}$	
1340 пл.	$v(CC)_{ch} + \delta(HCH) + \delta(CCH)$	
1287 c.	$v(CC)_{ch} + v(CC) + \delta(HCH) + \delta_{ch}$	
1189 о. сл.	$v(CC)_{ch} + v(CC) + v(CO) + \delta(HCH) + \delta(CCH) + \delta(CH\gamma)$	
1026 c.	$\nu(CC) + \delta(CCH) + \delta_{ch}$ (внепл.) + $\delta(CH_3)$ (качание)	
1000 c.	$\nu(CC) + \nu(CC)_{ch} + \delta_{ch} + \delta(CH_3)$ (качание)	
945 пл.	$v(CC)_{ch} + v(CO) + v(CN) + \delta_{ch}$	
939 ср.	$v(CC)_{ch} + v(CO) + v(CN)$	
800 c.	$v(CC) + \delta(CCH) + \delta(CCH_3)$	
792 ср.	$\delta(CCH) + \delta(CH\gamma)$	
687 c.	$v(VO) + v(VN) + \delta(CCH) + \delta_{ch}$	
662 сл.	$\delta({ m CH_3}) + \delta({ m CH\gamma})$ (внепл.) + $\delta_{ m ch}$ (внепл.)	
613 cp.	$v(VO) + \delta_{ch} + \delta(CCH_3) + \delta(CH_3) + \delta(CCH)$	
565 о. сл.	$\nu(VO) + \delta_{ch}$ (внепл.) + $\delta(CCH)$	
489 o. c.	$v(VO) + \delta(CCH_3)$	
467 о. сл.	$\nu(VO) + \nu(CC) + \nu(CC)_{ch} + \delta_{ch} + \delta(CH_3)$	

В интервале частот $1600-1500~{\rm cm}^{-1}$ присутствует серия полос поглощения, сформированная преимущественно валентными колебаниями $\nu({\rm CO})$, $\nu({\rm CN})$ и $\nu({\rm CC})_{\rm ch}$ квазиароматического металлоцикла. При этом полосы поглощения с максимумами 1565; 1555; 1518 и $1504~{\rm cm}^{-1}$ имеют составной характер и принадлежат к упомянутым выше трем типам колебаний. Значения вкладов разных типов колебаний в полосы поглощения с перечисленными максимумами частот варьируются в следующих пределах: $\nu({\rm CO})$ – от $11~{\rm дo}~37~{\rm %}$, $\nu({\rm CN})$ – от $17~{\rm дo}~47~{\rm %}$, $\nu({\rm CC})_{\rm ch}$ – от $11~{\rm дo}~37~{\rm %}$, $\nu({\rm CN})$ – от $11~{\rm дo}~47~{\rm %}$, $\nu({\rm CC})_{\rm ch}$ – от $11~{\rm go}~37~{\rm %}$, $\nu({\rm CN})$ – от $11~{\rm go}~37~{\rm M}$, $\nu({\rm CN})$ – от $11~{\rm go}~37~{\rm go}~37$

Согласно расчетным данным [14] ниже 705 см^{-1} в большинство наблюдаемых полос поглощения будут вносить свой вклад валентные колебания v(VN) и v(VO). Однако оценить количественно этот вклад не представляется возможным, так как при формировании данного типа связи преимущественную роль будет играть не распределение потенциальной энергии по естественным колебательным координатам, а соотношение склонности металла-комплексообразователя к жесткому или мягкому типу взаимодействия с лигандами в рамках концепции ЖМКО (жестких и мягких кислот и оснований).

Таким образом, в ИК-спектрах ацетилацетоната и кетоимината ванадия(III) и ацетилацетоната ванадила наблюдаются все типы полос, характерные для ацетилацетонатов меди, золота и хрома [9–12; 14]. Об образовании квазиароматического металлоцикла свидетельствует батохромный сдвиг частот $\nu(CO)$ ацетилацетона, который составляет более $100~{\rm cm}^{-1}$. В интервале частот $1570-1410~{\rm cm}^{-1}$ валентные колебания квазиароматического металлоцикла представлены сериями полос поглощения, основной вклад в которые вносят проявляющиеся попарно валентные колебания $\nu(CC)_{\rm ch}$ и $\nu(CO)_{\rm ch}$ и $\nu(CO)_{\rm ch}$ а для кетоимината ванадия еще и валентные колебания $\nu(CN)_{\rm ch}$, что является характерным для ацетилацетонатов переходных металлов [3; 9–12]. Наличие валентных колебаний $\nu(CH)_{\rm CH_3}$, проявляющихся в интервале частот $3000-2900~{\rm cm}^{-1}$, свидетельствует об отсутствии какой-либо их трансформации под действием электрического тока. Дополнением и подтверждением для данного вывода служит проявление деформационных колебаний $\delta(CH_3)$, которые не только вносят вклад в образование ряда полос поглощения в ИК-спектре, но и присутствуют в качестве характеристических полос в спектрах всех трех соединений.

Заключение

В результате детального рассмотрения ИК-спектров кетоимината ванадия(III) и ацетилацетонатов ванадия(III) и ванадила можно сделать вывод об образовании квазиароматических хелатных циклов. Основной координационный узел для ацетилацетоната ванадия(III) состоит из трех квазиароматических металлоциклов (см. рисунок), а для ацетилацетоната ванадила — из двух квазиароматических металлоциклов. Показано, что под действием электрического тока не наблюдается каких-либо трансформаций периферийных метильных групп.

Библиографические ссылки

- 1. Чапала ЮИ. *Ванадий: свойства и применение* [Интернет]. Москва: Метотехника; 2018 [процитировано 21 марта 2024 г.]. 28 с. Доступно по: https://www.metotech.ru/articles/art_vanadiy_2.pdf.
 - 2. Сыркин ВГ. CVD-метод. Химическая парофазная металлизация. Москва: Наука; 2000. 496 с.
- 3. Malkerova IP, Makarevich AM, Alikhanyan AS, Kuz'mina NP. Volatility and thermal stability of vanadyl β-diketonate complexes. *Russian Journal of Inorganic Chemistry*. 2017;62(6):818–821. DOI: 10.1134/S0036023617060134.
- 4. Ma Y, Reardon D, Gambarotta S, Yap G, Zahalka H, Lemay C. Vanadium-catalyzed ethylene propylene copolymerization: the question of the metal oxidation state in Ziegler Natta polymerization promoted by (β-diketonate)₃V. *Organometallics*. 1999;18(15): 2773–2781. DOI: 10.1021/om9808763.
- 5. Kostyuk NN, Dick TA. Synthesis of ultrapure copper chelates. *Russian Journal of General Chemistry*. 2020;90(11):2141–2146. DOI: 10.1134/S1070363220110195.
- 6. Скопенко ВВ, Гарновский АД, Кокозей ВН, Кужаров АС, Гохон-Зоррилла Г, Бурлов АС и др. *Прямой синтез координационных соединений*. Скопенко ВВ, редактор. Киев: Вентури; 1997. 176 с.
- 7. Гарновский АД, Харисов БИ, Гохон-Зоррилла Г, Гарновский ДА. Прямой синтез координационных соединений из нульвалентных металлов и органических лигандов. *Успехи химии*. 1995;64(3):215–236.
- 8. Костюк НН, Дик ТА, Требников АГ. Анодное окисление металлического гадолиния в присутствии теноилтрифторацетона. *Журнал прикладной химии*. 2006;79(1):77–81. EDN: HSTQRR.
 - 9. Краденов КВ, Колесов БА. Анализ нормальных колебаний β-дикетонатов меди(II). Новосибирск: [б. и.]; 1986. 41 с.
- 10. Краденов КВ, Колесов БА. Расчет распределения колебательной энергии по естественным координатам на примере β-дикетонатов меди(II). Новосибирск: [б. и.]; 1986. 28 с.
- 11. Краденов КВ, Колесов БА, Йгуменов ИК. Влияние лигандных заместителей на колебания и силовую постоянную координационной связи в β-дикетонатах меди(II). Координационная химия. 1987;13(9):1178–1187.
- 12. Слабженников СН, Денисенко ЛА, Литвинова ОБ, Вовна ВИ. Расчет нормальных колебаний комплекса *трис*-ацетилацетоната хрома. *Координационная химия*. 2000;26(2):105–111.
- 13. Дик ТА, Костюк НН, Умрейко ДС. Роль кинематических факторов в формировании СО-, СС-колебаний в β-дикетонатных металлокомплексах. *Журнал прикладной спектроскопии*. 1991;54(5):736–739.
- 14. Краденов КВ, Колесов БА. Анализ нормальных колебаний комплексов (CH_3) $_2$ Au(AA), (CH_3) $_2$ Au(KuAA), (CH_3) $_2$ Au(TuoAA), (CH_3) $_3$ Au(TuoAA). Новосибирск: [б. и.]; 1988. 38 с.
- 15. Вовна ВИ, Андреев ВА, Чередниченко АИ. Фотоэлектронные спектры и электронная структура β -дикетонатов π и δ -элементов. В: Мартыненко ЛИ, редактор. β -Дикетонаты металлов. Том 1. Владивосток: Издательство Дальневосточного университета; 1990. с. 7–31.
- 16. Вовна ВИ, Чередниченко АИ, Устинов АЮ, Реутов ВА, Свистунов ГМ, Шапкин НП. Фотоэлектронные спектры γ-замещенных ацетилацетонатов металлов. В: Мартыненко ЛИ, редактор. β-Дикетонаты металлов. Том 1. Владивосток: Издательство Дальневосточного университета; 1990. с. 165–177.

References

- 1. Chapala YuI. *Vanadii: svoistva i primenenie* [Vanadium: properties and applications] [Internet]. Moscow: Metotekhnika; 2018 [cited 2024 March 21]. 28 p. Russian. Available from: https://www.metotech.ru/articles/art_vanadiy_2.pdf.
- 2. Syrkin VG. CVD-metod. Khimicheskaya parofaznaya metallizatsiya [CVD method. Chemical vapor-phase metallisation]. Moscow: Nauka; 2000. 496 p. Russian.
- 3. Malkerova IP, Makarevich AM, Alikhanyan AS, Kuz'mina NP. Volatility and thermal stability of vanadyl β-diketonate complexes. *Russian Journal of Inorganic Chemistry*. 2017;62(6):818–821. DOI: 10.1134/S0036023617060134.
- 4. Ma Y, Reardon D, Gambarotta S, Yap G, Zahalka H, Lemay C. Vanadium-catalyzed ethylene propylene copolymerization: the question of the metal oxidation state in Ziegler Natta polymerization promoted by (β-diketonate)₃V. *Organometallics*. 1999;18(15): 2773–2781. DOI: 10.1021/om9808763.
- 5. Kostyuk NN, Dick TA. Synthesis of ultrapure copper chelates. *Russian Journal of General Chemistry*. 2020;90(11):2141–2146. DOI: 10.1134/S1070363220110195.
- 6. Skopenko VV, Garnovskii AD, Kokozei VN, Kuzharov AS, Gojon-Zorrilla G, Burlov AS, et al. *Pryamoi sintez koordinatsionnykh soedinenii* [Direct synthesis of coordination compounds]. Skopenko VV, editor. Kyiv: Venturi; 1997. 176 p. Russian.
- 7. Garnovskii AD, Kharisov BI, Gojon-Zorrilla G, Garnovskii DA. Direct synthesis of coordination compounds from zero-valent metals and organic ligands. *Uspekhi khimii*. 1995;64(3):215–236. Russian.
- 8. Kostyuk NN, Dick TA, Trebnikov AG. [Anodic oxidation of gadolinium metal in the presence of thenoyltrifluoroacetone]. *Zhurnal prikladnoi khimii*. 2006;79(1):77–81. Russian. EDN: HSTQRR.

- 9. Kradenov KV, Kolesov BA. *Analiz normal nykh kolebanii* β-diketonatov medi(II) [Analysis of normal vibrations of copper(II) β-diketonates]. Novosibirsk: [s. n.]; 1986. 41 p. Russian.
- 10. Kradenov KV, Kolesov BA. Raschet raspredeleniya kolebatel'noi energii po estestvennym koordinatam na primere β -diketonatov medi(II) [Calculation of the distribution of vibrational energy over natural coordinates using the example of copper(II) β -diketonates]. Novosibirsk: [s. n.]; 1986. 28 p. Russian.
- 11. Kradenov KV, Kolesov BA, Igumenov IK. [Effect of ligand substituents on vibrations and force constant of coordination bonds in copper(II) β-diketonates]. *Koordinatsionnaya khimiya*. 1987;13(9):1178–1187. Russian.
- 12. Slabzhennikov SN, Denisenko LA, Litvinova OB, Vovna VI. [Calculation of normal vibrations of chromium *tris*-acetylacetonate complex]. *Koordinatsionnaya khimiya*. 2000;26(2):105–111. Russian.
- 13. Dick TA, Kostyuk NN, Umreiko DS. [The role of kinematic factors in the formation of CO-, CC-vibrations in β-diketonate metal complexes]. *Zhurnal prikladnoi spektroskopii*. 1991;54(5):736–739. Russian.
- 14. Kradenov KV, Kolesov BA. Analiz normal'nykh kolebanii kompleksov $(CH_3)_2Au(AA)$, $(CH_3)_2Au(KuAA)$, $(CH_3)_2Au(TuoAA)$, $(CH_3)_2Au(KuTuoAA)$, [Analysis of normal vibrations of complexes $(CH_3)_2Au(AA)$, $(CH_3)_2Au(KuAA)$, $(CH_3)_2Au(TuoAA)$, $(CH_3)_2Au(KuTuoAA)$]. Novosibirsk: [s. n.]; 1988. 38 p. Russian.
- 15. Vovna VI, Andreev VA, Cherednichenko AI. [Photoelectron spectra and electronic structure of β -diketonates of π and δ -elements]. In: Martynenko LI, editor. β -Diketonaty metallov. Tom 1 [Metal β -diketonates. Volume 1]. Vladivostok: Izdatel'stvo Dal'nevostochnogo universiteta; 1990. p. 7–31. Russian.
- 16. Vovna VI, Cherednichenko AI, Ustinov AYu, Reutov VA, Svistunov GM, Shapkin NP. [Photoelectron spectra of γ-substituted metal acetylacetonates]. In: Martynenko LI, editor. β-*Diketonaty metallov. Tom 1* [Metal β-diketonates. Volume 1]. Vladivostok: Izdatel'stvo Dal'nevostochnogo universiteta; 1990. p. 165–177. Russian.

Получена 12.04.2024 / исправлена 25.06.2024 / принята 25.06.2024. Received 12.04.2024 / revised 25.06.2024 / accepted 25.06.2024.