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A B S T R A C T

Urban green space (UGS) monitoring is significant in optimizing urban planning, protecting the ecological
environment, and improving residents’ quality of life. However, in urban environments, shadow interference and
the emergence of new construction materials pose challenges to monitoring green vegetation in high-resolution
imagery. This study found that existing vegetation indices (VIs), such as normalized difference vegetation index
(NDVI) and enhanced vegetation index (EVI), perform inadequately in extracting vegetation in urban areas,
resulting in significant omissions and errors. By conducting in-depth analysis and quantitative experiments on
the reflectance of typical urban ground objects, this study developed a new vegetation extraction method, the
moderate red-edge vegetation index (MREVI), to enhance the extraction accuracy of UGS vegetation from un-
manned aerial vehicle (UAV) high-resolution multispectral remote sensing (RS) images. Experimental results
demonstrate that MREVI performs exceptionally well in complex urban environments, significantly suppressing
non-vegetation areas, achieving an overall accuracy (OA) of 98.6% and a Kappa coefficient of 0.97. This study
supports for urban planning, UGS monitoring, and the evaluation of urban plant carbon sequestration capacity.

1. Introduction

With the acceleration of global urbanization, urban green space
(UGS) vegetation coverage continues to decline, resulting in increased
ecosystem fragmentation (Chen et al., 2017; Richards and Belcher,
2019; Yang et al., 2018). The expansion of impervious surfaces in cities
has triggered a series of severe challenges, including the urban heat is-
land effect, respiratory diseases, and flood hazards, which heighten the
potential risks of casualties and economic losses (Ibrahim et al., 2014;
Nero, 2017; Wang et al., 2024). UGSs, as a crucial component of urban
ecosystems, play a significant role in enhancing urban environmental
adaptability and resilience (Chen et al., 2018; Khodadad et al., 2023;
Zahoor et al., 2023). They help increase surface water infiltration,
mitigate surface runoff from heavy rainfall, and thus reduce the impact
of floods on urban infrastructure and residential areas (Kim and Park,
2016; Li et al., 2019; Staccione et al., 2024). This function is particularly
critical in highly urbanized areas (Ercolani et al., 2018; Wang et al.,
2024). Additionally, green vegetation in UGSs improves air quality by

absorbing and filtering pollutants, which reduces the incidence of res-
piratory diseases (Diener and Mudu, 2021; Fu et al., 2024; Sæbø et al.,
2012). Against the backdrop of global climate change, achieving carbon
neutrality has become a common goal of the international community.
Vegetation and soil in UGSs serve as long-term carbon storage mediums
and are key elements in indirectly reducing urban carbon emissions
(Zhao et al., 2023; Zhuang et al., 2022). Therefore, protecting and
properly utilizing UGSs is essential for mitigating adverse climate events
and improving urban environments, and requires the exploration of new
technologies to enhance their ecological service functions and support
sustainable development.

Satellite remote sensing (RS) technology, with its efficiency, cost-
effectiveness, and broad coverage, has become a crucial tool for
revealing the spatial distribution and structural characteristics of vege-
tation (Di et al., 2019; Kopecká et al., 2017; Neyns and Canters, 2022).
Many researchers have used satellite imagery for continuous dynamic
monitoring of vegetation at various scales. For example, Wang et al.
(2021) utilized Landsat TM/ETM+and OLI imagery from 2011 to 2018
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to monitor and assess vegetation recovery in an open-pit coal mine in
Dongsheng, Inner Mongolia, China. Lewińska et al. (2020) employed
MODIS 8-day reflectance data from 2001 to 2018 to monitor short-term
vegetation loss and decadal degradation in the Caucasus eco-region.
Beale et al. (2022) quantified the impact of human activities on vege-
tation cover changes in the lower Bias and Sutlej river basins using
Landsat data from 1989 to 2020. However, the spatial resolution limi-
tations of satellite imagery can lead to mixed pixel issues, reducing the
accuracy of distinguishing vegetation from other land cover types
(Neyns and Canters, 2022; Sathyakumar et al., 2019). Additionally,
factors such as weather conditions, revisit intervals, and fixed orbits also
constrain the application capabilities of satellite RS (Lyu et al., 2022).

In recent years, unmanned aerial vehicle (UAV) RS technology has
gained popularity due to its high resolution, strong timeliness, and
flexible data acquisition. UAV RS provides unprecedented insights and
data precision, with spatial resolutions ranging from sub-meter to
centimeter levels, enhancing the ability to differentiate land cover types
in complex landscapes (Behera et al., 2023). Currently, UAV RS has been
widely applied in urban mapping, disaster management, precision
agriculture, and marine environmental monitoring (Delavarpour et al.,
2021; Feng et al., 2015; Hu et al., 2022; Yang et al., 2022). For instance,
Feng et al. (2015) effectively differentiated urban vegetation cover types
by combining visible light images from UAVs with random forest and
texture analysis. Zhang et al. (2021) improved the accuracy of wheat
leaf area index and leaf dry matter estimation by integrating vegetation
indices (VIs), color indices, and image textures, demonstrating the po-
tential of fixed-wing UAVs in precision agriculture. Song and Park
(2020) validated the effectiveness of VIs derived frommultispectral UAV
imagery for detecting aquatic plants.

Over the past few decades, vegetation index (VI) methods have made
significant progress in identifying and extracting vegetation due to their
high efficiency and ease of implementation (Gao et al., 2020; Rokni and
Musa, 2019; Sotille et al., 2020). Visible, NIR, and shortwave infrared
band VIs have been widely used to assess and monitor vegetation health,
growth status, and moisture content (Braga et al., 2021; Dong et al.,
2019; Gitelson et al., 1996; Liu et al., 2022). Nevertheless, many current
UAV-based RS studies rely heavily on RGB images (Guo et al., 2021b;
Zhang et al., 2019). For instance, Song et al. (2023) combined high-
resolution satellite RS imagery and UAV visible light images, using a
newly constructed hue–saturation–value green enhancement vegetation
index (HSVGVI) to achieve accurate extraction of desert vegetation and
land desertification monitoring in arid regions of northwest China. Yan
et al. (2019) proposed a color mixing analysis method based on the HSV
color space, which improved the accuracy and efficiency of fractional
vegetation cover (FVC) estimation from UAV RGB images. Zhang et al.
(2019) introduced a new green–red vegetation index (NGRVI) using
UAV visible light images, which outperformed other commonly used
visible light VIs in extracting vegetation information in arid and semi-
arid areas. RGB VIs, which are primarily based on color information to
identify land cover, have limited accuracy in distinguishing features
with similar colors (Chen et al., 2024; Xu et al., 2023). To overcome this
challenge, researchers are exploring more advanced UAV multispectral
and hyperspectral RS technologies to more accurately differentiate and
identify various types of vegetation and land cover. Wang et al. (2022a)
estimated turfgrass greenness using UAV-mounted multispectral and
RGB sensors, indicating that multispectral imagery is more advanta-
geous in capturing non-green vegetation. Sun et al. (2021) proposed a
new hyperspectral image-based vegetation index (HSVI), which signif-
icantly improved the accuracy of UGS vegetation extraction and
addressed the issue of VI saturation.

High-resolution UAV RS technology holds promise for the precise
monitoring of UGS vegetation. However, existing studies are con-
strained by limitations in spectral, spatial resolution, or the complexity
of urban environments, and have not yet achieved high-precision
extraction of UGS vegetation (Cheng et al., 2023; Wang et al., 2022b;
Yu et al., 2016; Zhou et al., 2014). Shadows are an inevitable component

of RS scenarios, and in urban areas with dense high-rise buildings, the
impact of shadows becomes more pronounced as the spatial resolution
of RS imagery increases (Bi et al., 2024; Luo et al., 2020). Shadows can
lead to the loss of image information and affect the recovery of the true
information of the original scene, causing errors in subsequent vegeta-
tion analysis (Tang et al., 2020). Furthermore, the emergence of new
construction materials in urban areas, such as artificial surfaces in sports
venues and blue roofs, also poses significant challenges to vegetation
extraction techniques (Sun et al., 2021; Herold et al., 2004).

There are currently various VIs, each with its advantages and limi-
tations. For example, the normalized difference vegetation index (NDVI)
is the most popular index for vegetation assessment, but this does not
mean it is universally effective (Huang et al., 2021; Qi et al., 2023). In
the process of mapping UGS vegetation, this study found that VIs like
NDVI and the enhanced vegetation index (EVI) often misidentify or miss
UGS vegetation in high-resolution multispectral imagery from UAVs.
This issue is particularly common in areas with shadows, vegetation
under shadows, waterproofed roofs, and tennis court surfaces, affecting
the accuracy of vegetation information. Therefore, the objectives of this
study are: 1) to analyze the spectral reflectance characteristics of typical
features in complex urban scenes; 2) to develop a VI suitable for high-
resolution multispectral UAV imagery in urban areas; and 3) to
compare the newly developed index with several published VIs in terms
of vegetation information extraction.

2. Materials and methods

2.1. Study area

Fig. 1 shows the extent of the Gongchenqiao Campus of Zhejiang
Shuren University, located in the Gongshu District of Hangzhou, Zhe-
jiang Province, China. This campus was selected as the target area for
this study due to its diverse land cover types. The vegetation areas
within the campus include trees, shrubs, and lawns, while non-
vegetation areas encompass buildings, roads, water bodies, and
various sports facilities. The campus buildings are mainly concentrated
in the central and western regions, including teaching buildings, li-
braries, dormitories, and administrative offices, with reasonable spacing
between structures.

Hangzhou is located in the subtropical monsoon climate zone, ex-
periences an average annual temperature ranging between 13 ◦C and
20 ◦C and an average annual rainfall of about 1400 mm. These climatic
conditions, characterized by significant seasonal rainfall, provide ample
water resources for vegetation growth. The campus boasts a high
vegetation coverage rate, with trees primarily lining the roads and
surrounding buildings, offering substantial shading. Shrubs and lawns
are widely distributed in open areas and around sports facilities,
creating a multi-layered green landscape. The abundant vegetation not
only enhances the campus’s aesthetic appeal but also contributes to
improving air quality and the microclimate, significantly mitigating the
urban heat island effect. The diverse land cover types and extensive
vegetation cover make the campus an excellent study subject and
experimental area for this research.

2.2. UAV multispectral image acquisition and preprocessing

The DJI Matrice 300 RTK UAV was used for data collection in this
study. The UAV is equipped with an RTK module to ensure high-
precision positioning. The MicaSense RedEdge MX camera was
employed for high-resolution multispectral image acquisition, capturing
images in five bands: blue, green, red, near-infrared, and red-edge. At a
flight altitude of 120 m, the Ground Sampling Distance (GSD) is
approximately 8 cm. The central wavelengths and key parameters are
shown in Table 1 and Table 2.

The image acquisition was conducted on May 14, 2024, between
9:00 AM and 10:00 AM, under clear weather conditions with consistent
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lighting. The flight path was planned using the DJI Pilot 2, and the entire
operation was carried out automatically using the flight route mode with
equidistant interval photo mode to ensure efficient image capture. The
specific flight parameters are listed in Table 3.

This study used the professional UAV image processing software
Pix4Dmapper 4.4 to perform orthomosaic generation on the collected

data, generating digital orthophoto maps (DOMs). Simultaneously,
radiometric calibration was conducted using images of radiometric
calibration panels taken before the flight, along with known standard
reflectance information. This produced independent raster files for each
spectral band within the study area, with these raster images having
identical dimensions. Next, the ‘Band Stack’ function in ENVI 6.0 was
utilized to create a new 5-band TIFF image from these rasters, with an
image GSD of 8 cm/px, as shown in Fig. 1(d).

2.3. Spectral reflectance analysis of typical land covers

An analysis of reflectance across different bands was produced to
effectively differentiate the spectral characteristics of green vegetation
and non-vegetation areas in high-resolution multispectral UAV imagery.
In this study, the regions of interest (ROIs) were manually selected on
the UAV multispectral orthophoto to analyze the spectral reflectance
curves of typical land covers. The considered land cover types encom-
passed various vegetation types, including trees, shrubs, and lawns, as
well as non-vegetation types such as buildings, bare soil, and water

Fig. 1. Map of study area. (a), (b) and (c) show the location map of the study area; (d) digital orthophoto images of UAV in the study area; (e) a cropped orthophoto
of Shuren Square in South Campus and (f) its oblique view.

Table 1
Spectral bands of the MicaSense RedEdge MX.

Band
Number

Band
Name

Center Wavelength
(nm)

Bandwidth FWHM
(nm)

1 Blue 475 20
2 Green 560 20
3 Red 668 10
4 Near IR 840 40
5 Red Edge 717 10

Table 2
Specifications of the Micasense RedEdge MX.

Items Contents

Pixel size 3.75 μm
Resolution 1280 × 960 (1.2 MP×5 bands)
Sensor size 4.8 mm × 3.6 mm
Focal length 5.4 mm
Ground sample distance 8 cm per pixel at 120 m AGL
Capture speed 1 capture per second (all bands)

Table 3
Basic parameters of the flight missions.

Sensor Fly Speed
(km/h)

Fly Height
(m)

Overlap
(%)

Gained
images

Aligned
images

RedEdge
MX

15 115 80 1158 1158
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bodies. The mean reflectance for each land cover type across the spectral
bands were calculated, resulting in the spectral reflectance mean curves
for different typical land cover types in the UAV multispectral imagery,
as shown in Fig. 2.

Due to the strong absorption by chlorophyll, vegetation typically has
a low reflectance in the visible spectrum, around 10 %, while in the NIR
range of 0.7 to 1.3 µm, the reflectance increases to about 50% (Candiago
et al., 2015; Knipling, 1970). The green line in Fig. 2 illustrates the
reflectance curve of UGS vegetation, showing the highest reflectance in
the NIR band among the five bands, with the NIR and red-edge reflec-
tance significantly greater than that of the visible bands. For three types
of typical vegetation—trees, shrubs, and lawns—the curves in Fig. 2
demonstrate similar spectral reflectance characteristics. In contrast, the
spectral reflectance curves for non-vegetation categories like roads and
buildings show smaller differences in reflectance values between the
NIR and visible bands. Generally, the differences in reflectance between
the NIR and visible bands allow for the easy distinction between typical
vegetation areas and non-vegetation areas through the calculation of VIs
(Bhandari et al., 2012; Veraverbeke et al., 2012). However, shadow
interference becomes more pronounced for ultra-high-resolution UAV
imagery captured at low altitudes due to the dense tall buildings or trees
blocking sunlight in urban areas. From the spectral reflectance curves,
the reflectance of UGS vegetation under shadow decreases across all
spectral bands, particularly in the NIR and red-edge bands (Tang et al.,
2020). This reduction significantly weakens the characteristic difference
between the NIR and visible bands. Additionally, new construction
materials in urban areas, such as the blue surfaces of tennis courts and
blue waterproof-coated roofs, exhibit significantly higher reflectance in
the NIR band compared to the green and red bands. The reflectance
differences among these bands are similar to those of vegetation, which
may lead to potential errors in extraction.

Through further analysis of the reflectance curves of various land
cover types, it is observed that the red-edge band is effective in dis-
tinguishing between vegetation and non-vegetation. Vegetation exhibits
lower reflectance in the red band due to chlorophyll’s absorption of most
red light for photosynthesis (Sims and Gamon, 2002). In the electro-
magnetic spectrum, the red-edge band is highly sensitive to vegetation
and shows a strong correlation with parameters reflecting vegetation
growth status (Dong et al., 2019; Guo et al., 2021a). The reflectance of
vegetation increases sharply at the boundary between red and NIR,

typically within the 670–760 nm range, a phenomenon known as the
red-edge effect, which is useful for assessing plant health (Horler et al.,
1983; Filella et al., 1994). In contrast, the red-edge band does not show a
significant increase for the blue surfaces of tennis courts and blue
waterproof-coated roofs, as depicted in Fig. 2.

As part of our methodological approach to establish an effective
vegetation index for UAV multispectral imagery, a detailed analysis of
the reflectance differences in the five bands for typical land covers was
conducted. This analysis included mean values and standard deviations,
the results of which are presented in Table 4.

Vegetation shows low reflectance in the red band, with mean
reflectance of 2.33 % for trees, 3.33 % for shrubs, 5.57 % for lawns, and
0.54 % for vegetation under shadow cover. In contrast, non-vegetation
areas such as roads and buildings have higher reflectance values of
19.24 % and 7.90 %, respectively. Reflectance values in the red-edge
band significantly increase for trees, shrubs, lawns, and shadow-
covered vegetation, reaching 15.48 %, 24.62 %, 20.35 %, and 2.39 %,
respectively. For the blue surfaces of tennis courts and blue waterproof-
coated roofs, there is no significant increase in reflectance, and in some
cases, a decrease is observed. Reflectance in the NIR band reaches its
maximum, with trees, shrubs, and lawns showing higher values than
other categories, at 38.41 %, 46.65 %, and 38.28 %, respectively. Due to
shadow coverage, the mean NIR reflectance for vegetation drops to 5.37
%. However, the difference between the red-edge and red bands is
substantial for vegetation, with mean reflectance increases from the red
to red-edge band being 563 % for trees, 639 % for shrubs, 265 % for
lawns, and 343 % for shadow-covered vegetation. The red-edge band
reflectance values for all vegetation types fall between those of the NIR
and red bands, and the differences between red-edge and red, as well as
NIR and red-edge bands, are relatively similar. For instance, the differ-
ence between the red-edge and red bands for shrubs is 21.29 %, while
the difference between NIR and red-edge bands is 22.03 %, yielding a
ratio of approximately 1.03. Trees, grasses, and shadow-covered vege-
tation also show relatively small ratios between these two differences, at
1.74, 1.21, and 1.61, respectively.

Based on the spectral reflectance analysis of typical land cover types,
this study identifies the following characteristics that are typical of
vegetation but not entirely met by non-vegetation categories: 1) Sig-
nificant differences in reflectance between the red-edge and red bands;
2) Reflectance in the NIR band is significantly higher than in other

Fig. 2. Reflectance of typical ground objects in different bands.
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bands; 3) Reflectance in the red-edge band falls between the red and NIR
bands, with similar differences observed between red-edge and red, as
well as NIR and red-edge bands.

2.4. Construction of the new red-edge vegetation index

Following the analysis presented in Section 2.3, vegetation shows a
distinct pattern of reflectance across the red, red-edge, and NIR bands, a
pattern that is not observed in non-vegetation categories. Consequently,
this study constructs a novel VI utilizing the reflectance characteristics
of the red, red-edge, and NIR bands to enhance the accuracy of UGS
vegetation extraction.

There is a substantial difference between the mean reflectance of the
red-edge and red bands for vegetation. In contrast, non-vegetation types
show more minor differences in reflectance between these bands. The
normalized difference between the red-edge and red bands has been
evaluated and applied in vegetation analysis by some studies (Pu and
Landry, 2012; Timmer et al., 2022; Zhu et al., 2017). This feature forms
the basis for constructing the new VI in this study, calculated as follows:

NDVIrededge =
ρRE − ρRed
ρRE + ρRed

(1)

Where ρRE represents the reflectance in the red-edge spectral band
and ρRed represents the reflectance in the red spectral band.

Due to the three-dimensional structure of urban areas, the shadow

interference effect is more significant in urban environments than in
natural environments. The impact of shadows on vegetation reflectance
must be considered (Pu and Landry, 2012). Shadow coverage signifi-
cantly reduces reflectance in the NIR band, yet vegetation still exhibits a
peak in reflectance in this band (Xu et al., 2013). Thus, multiplying by
the NIR band can amplify the difference between vegetation, shadowed
vegetation, and shadows, mathematically expressed as follows:

ρRE − ρRed
ρRE + ρRed

× ρNIR (2)

Where ρNIR represents the reflectance in the near-infrared spectral
band.

Multiplying by the NIR reflectance effectively enhances the index
value difference between vegetation and shadowed areas. However,
some background regions may have their values incorrectly amplified
due to higher reflectance in the NIR band. To further enhance the
distinction between vegetation and background, this study applied
constraints based on the spectral reflectance curve characteristics of

vegetation. This ensures that the red edge band remains at a moderate
reflectance level between the NIR and red bands. The mathematical
representation is as follows:

max(ρRE, ρNIR) − max(ρRED, ρRE)
ρRED + ρRE + ρNIR

×
min(ρRE, ρNIR) − min(ρRED, ρRE)

ρRED + ρRE + ρNIR
(3)

In the formula, max(a, b) represents the function that calculates the
maximum value between a and b, and min(a,b) represents the function
that calculates the minimum value between a and b, where a and b
denote the reflectance of any bands.

For vegetation types, the reflectance of the red-edge band is mod-
erate, the corresponding pixel calculations of
max(ρRE, ρNIR) − max(ρRED, ρRE) and min(ρRE, ρNIR) − min(ρRED, ρRE) will
yield relatively moderate values. Consequently, the product of these
expressions will be relatively large, effectively preserving the vegetation
pixel characteristics. If the red-edge band reflectance is too high or too
low, the calculations for the two expressions will produce significantly
different values, resulting in a smaller product, and the corresponding
land cover pixels will be suppressed as background information. Addi-
tionally, Normalization was performed to ensure comparability of re-
sults across different land cover pixels.

Thus, the new vegetation index proposed in this study is named the
Moderate Red-edge Vegetation Index (MREVI), calculated as follows:

To facilitate comparison and analysis, the results were scaled by a
factor of 100 due to the small values obtained from the continuous
multiplication of decimal values.

2.5. Binary vegetation image extraction

To extract vegetation from images, it is common practice to set an
optimal threshold for vegetation and non-vegetation pixels based on the
VI calculated from reflectance RS images, and then binarize the image.
When the vegetation index value exceeds the optimal threshold, the
pixel is classified as vegetation; otherwise, it is classified as non-
vegetation. The mathematical description for extracting vegetation
based on the VI threshold is as follows:

M(x, y) =
{
1,MREVI(x, y) ≥ τ
0,MREVI(x, y) < τ (5)

In the above equation,M represents the binarized vegetation

Table 4
Reflectance in the blue, green, red, red-edge, near-infrared bands of typical objects.

Typical objects Blue band Green band Red band RE band NIR band

Mean Sd. Mean Sd. Mean Sd. Mean Sd. Mean Sd.

Tree 1.62 0.50 4.81 1.80 2.33 0.82 15.48 5.24 38.41 11.70
Shrub 1.91 0.59 5.74 2.76 3.33 1.62 24.62 3.85 46.65 8.05
Lawn 3.07 0.73 7.70 0.85 5.57 1.87 20.35 2.31 38.28 7.11
Bare land 6.20 0.90 10.34 1.63 15.42 2.02 19.93 2.44 25.55 3.59
Road 12.73 7.05 15.19 8.17 19.24 10.78 21.49 12.06 23.05 12.31
Building 5.99 7.20 6.70 8.13 7.90 10.13 8.56 10.59 9.30 10.38
Water 1.48 0.23 2.23 0.48 1.67 0.36 2.04 0.30 2.73 0.16
Shadow 1.94 1.22 1.93 1.10 1.82 1.06 2.50 1.09 3.78 1.18
Tennis court (Blue) 20.90 3.15 9.06 1.91 7.90 8.00 8.50 0.58 35.39 5.47
Roof (Blue) 26.36 1.76 14.63 4.20 12.07 3.83 11.87 3.43 32.42 3.22
Vegetation (shadow) 0.52 0.12 1.04 0.27 0.54 0.14 2.39 0.56 5.37 1.18

MREVI = 100×
(max(ρRE, ρNIR) − max(ρRED, ρRE))×(min(ρRE, ρNIR) − min(ρRED, ρRE))

(ρRED + ρRE + ρNIR)
2 ×

ρRE − ρRED
ρRE + ρRED

× ρNIR (4)
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image, τ is the classification threshold for vegetation and non-vegetation
pixels,M(x, y) = 1 indicates a vegetation pixel, andM(x, y) = 0 in-
dicates a non-vegetation pixel.

In this study, the optimal threshold for the VI was selected based on
the principle of maximizing the extraction of vegetation pixels while
minimizing the interference from non-vegetation pixels. To achieve this,
various thresholds were tested for each VI through multiple trials. The
resulting binarized vegetation images were manually compared to
determine the optimal segmentation threshold for each VI.

2.6 Reference data and evaluation metrics.
To validate and evaluate the accuracy of the proposed VI in

extracting vegetation information, 500 validation points were randomly
selected within the study area as reference data. The coordinates of each
validation point were randomly generated using a Python program,
ensuring no duplicate points were selected. Through manual visual
interpretation and field verification, 204 validation points were identi-
fied as UGS vegetation types, including trees, shrubs, lawns, and
shadow-covered vegetation. The remaining 296 validation points were
classified as background types.

The accuracy of the vegetation extraction results was evaluated using
metrics related to the error matrix. The error matrix is a tool used to
describe classification performance by comparing actual classes with
predicted classes, providing a robust evaluation of the VIs performance
in accurately extracting vegetation information within urban areas.
Specifically, the following key metrics were calculated:

A. Overall Accuracy (OA).
OA represents the proportion of correctly classified pixels to the total

number of pixels, reflecting the overall performance of the VI in
extracting vegetation information.

OA =

∑k
i=1Cii

N
(6)

where Cii is the element on the diagonal of the error matrix (i.e., the
number of correctly classified pixels),N is the total number of pixels, and
k is the number of categories. Since vegetation extraction can be
considered a binary classification task, classifying pixels as vegetation or
non-vegetation, k is 2 in this study.

B. Producer Accuracy (PA).
PA represents the proportion of pixels that actually belong to a

particular class that are correctly predicted as that class, mainly used to
measure the sensitivity of the VI.

PAi =
Cii

∑k
j=1Cij

(7)

where Cii is the number of correct classifications for class i,
and

∑k
j=1Cij is the total number of reference pixels for class i.

C. User Accuracy (UA).
UA represents the proportion of pixels predicted to belong to a

particular class that actually belong to that class, mainly used to mea-
sure the accuracy of the VI.

UAi =
Cii

∑k
j=1Cji

(8)

where
∑k

j=1Cji is the total number of pixels classified as class i.
D. Kappa Coefficient.
The Kappa coefficient is used to assess the consistency and reliability

of vegetation information extraction accuracy compared to actual con-
ditions, considering the effect of chance agreement on classification
accuracy.

k =
Po − Pe
1 − Pe

(9)

where Po is the observed agreement probability, and Pe is the ex-
pected agreement probability.

3. Experiments and results

3.1. Published vegetation indices

Many scholars have developed various VIs using the spectral
reflectance characteristics of visible and multispectral bands for
different scenarios (Gao et al., 2020; Li et al., 2016; Rouse et al., 1974).
We selected the currently popular and primary VIs from published works
to extract and compare the accuracy of UGS vegetation information. The
calculation formulas are detailed in Table 5.

3.2. Vegetation index calculation and analysis

Representative areas with different surface features within the study
area were selected for comparison to demonstrate the effectiveness and
general applicability of the proposed vegetation index. Fig. 3 shows
regions containing various typical land cover types, such as large areas
of tree cover (Fig. 3(a), 3(e), 3(f)), scattered shrubs (Fig. 3(a)), areas
with wilted grassland (Fig. 3(a), 3(f)), blue tennis courts and red
basketball courts (Fig. 3(a)), buildings with various colors and styles
(Fig. 3(b), 3(c)), shadows caused by building obstructions (Fig. 3(b), 3
(c), 3(e)), dark green pond water (Fig. 3(c)), concrete roads (Fig. 3(d)),
red plastic tracks and green artificial turf soccer fields (Fig. 3(d)).

High-resolution multispectral RS images from UAVs in the study area
were processed using the VIs listed in Table 5. The results of these ex-
pressions were linearly stretched to produce grayscale images of the VIs,
as shown in Fig. 3.

Fig. 3 shows that vegetation areas are generally brighter in the
grayscale images of each VI, while non-vegetation areas are visibly
darker. The brightness levels of different vegetation areas vary, with
tree-covered regions being the brightest and shrub and lawn areas
having relatively lower brightness. The calculation results demonstrate
that all the VIs can effectively highlight vegetation-covered areas.
However, it is important to note that existing VIs showed varying
confusion under complex scene conditions. In an ideal scenario, the
index values for vegetation areas should be higher than those for any
non-vegetation areas, resulting in higher brightness in the grayscale
images. Nonetheless, in the grayscale images generated from NDVI, EVI,
NDRE, SVI, and MGRVI, the blue surface of the tennis court appears
brighter than some vegetation areas. Similarly, the blue-coated rooftops
showed NDVI, NDRE, SVI, and MGRVI high brightness values. EVI
successfully suppressed most of the blue-coated rooftops but still showed
abnormally high brightness for boundary areas. NDVI, NDRE,
NDVIrededge, and MGRVI show higher brightness in shadowed areas
caused by building obstructions, while EVI, SVI, and MREVI display
lower brightness in these areas compared to vegetation. EVI and SVI
show significantly lower brightness in shadowed vegetation areas
compared to well-lit vegetation areas, and even lower than some back-
ground areas. For the green artificial turf soccer field, NDRE and MGRVI
yielded grayscale values similar to grassland. Except for MGRVI, other
VIs had lower grayscale values for water areas than vegetation areas.

Table 5
The major vegetation indices compared in this study.

Index Formulation Reference

NDVI (ρNIR − ρRed)/(ρNIR + ρRed) Rouse et al. (1974)
EVI 2.5× (ρNIR − ρRed)/(ρNIR + 6× ρRed − 7.5×

ρBlue + 1) Huete et al. (2002)

NDRE (ρNIR − ρRE)/(ρNIR + ρRE) Gitelson and Merzlyak
(1994)

NDVIrededge (ρRE − ρRed)/(ρRE + ρRed) Pu and Landry (2012)
SVI (ρNIR − ρRed)/(ρNIR + ρRed)× ρNIR Xu et al. (2013)
MGRVI (ρGreen2 − ρRed2)/(ρGreen2 + ρRed2) Bendig et al. (2015)
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The statistical characteristics, including the mean and standard de-
viation, were calculated for typical land cover types in each vegetation
index image using the same ROIs to better compare the reliability of
these vegetation index images in extracting vegetation information as
shown in Table 6.

In the statistical results of EVI, the vegetation index values for the
blue surface of the tennis court showed apparent saturation, and the

index values for the blue roofs fluctuated abnormally. In the NDVI and
NDRE results, there was overlap and intersection in the grayscale sta-
tistical characteristics between shadows, blue-coated roofs, and vege-
tation types. SVI assigned lower index values to shadow-covered
vegetation than some background types. In the MGRVI results, the high
standard deviation for shrubs and lawns may cause their index values to
overlap with those of background types. According to the statistical

Fig. 3. Grayscale images of vegetation indices.

Table 6
Statistical characteristics of vegetation indices.

Typical objects NDVI EVI NDRE NDVIrededge SVI MGRVI MREVI

Mean Sd. Mean Sd. Mean Sd. Mean Sd. Mean Sd. Mean Sd. Mean Sd.

Tree 0.88 0.03 0.63 0.14 0.42 0.07 0.73 0.04 0.34 0.10 0.60 0.09 2.6865 1.0524
Shrub 0.86 0.04 0.70 0.10 0.30 0.06 0.76 0.05 0.40 0.07 0.35 0.43 3.0076 0.9004
Lawn 0.66 0.15 0.46 0.17 0.26 0.06 0.50 0.16 0.23 0.10 0.09 0.31 1.2170 1.1712
Bare land 0.24 0.05 0.14 0.06 0.02 0.03 0.12 0.02 0.06 0.02 − 0.38 0.06 0.0261 0.0178
Road 0.09 0.03 0.06 0.02 0.04 0.02 0.05 0.01 0.02 0.01 − 0.21 0.04 0.0014 0.0013
Building 0.12 0.13 0.02 0.06 0.06 0.08 0.06 0.05 0.00 0.01 − 0.16 0.14 0.0016 0.0040
Water 0.25 0.10 0.02 0.00 0.14 0.06 0.10 0.05 0.00 0.00 0.28 0.03 0.0033 0.0053
Shadow 0.41 0.15 0.04 0.01 0.23 0.08 0.20 0.08 0.01 0.00 0.07 0.07 0.0184 0.0240
Tennis court (Blue) 0.63 0.02 0.99 0.04 0.60 0.03 0.03 0.01 0.22 0.04 0.11 0.12 0.0091 0.0073
Roof (Blue) 0.46 0.09 − 0.05 0.99 0.47 0.08 0.00 0.02 0.15 0.03 0.19 0.04 0.0014 0.0051
Vegetation (shadow) 0.81 0.04 0.11 0.02 0.38 0.04 0.62 0.06 0.04 0.01 0.55 0.14 0.2739 0.1037
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results of NDVIrededge and MREVI, no overlap or intersection was found
between the grayscale statistical characteristics of vegetation and non-
vegetation types.

3.3. Vegetation information extraction and accuracy evaluation

To further qualitatively and quantitatively evaluate the performance
of each VI in extracting UGS vegetation from high-resolution multi-
spectral UAV imagery, a threshold-based classification method was used
to generate UGS vegetation images. These images will represent the
extracted vegetation information. Through multiple experiments and
comparisons, the optimal threshold values for each VI were determined,
as listed in Table 7.

In the binarized UGS vegetation images, pixels representing vege-
tation areas are set to green, while non-vegetation areas (background)
are set to black to display the results of vegetation information extrac-
tion visually. Consistent with previous analysis, six target areas within
the study region, representing various types of land cover, were selected
for comparison. These areas include tree cover, shrubs, lawns, artificial
turf fields, water bodies, blue-coated rooftops, and shadows. The results
of vegetation information extraction using different VIs are shown in
Fig. 4.

The binarized images of each VI in Fig. 4 provide a visual reference
for evaluating the accuracy of vegetation information extraction. In
Fig. 4(a) and 4(b), the vegetation information extraction maps of NDVI,
EVI, NDRE, and SVI misclassify the blue surfaces of tennis courts and
blue-coated rooftops as vegetation. Except for MGRVI, which failed to
exclude water bodies from vegetation types, all other VIs effectively
suppressed water body information (see Fig. 4(c)). MGRVI struggled to
identify sparsely vegetated grass areas, and failed to recognize the
purple shrubs as vegetation (see Fig. 4(f)). NDVI, NDRE, NDVIrededge, and
MGRVI misclassified some shadow-covered background areas as vege-
tation (see Fig. 4(b), 4(e), and 4(f)). In Fig. 4(c) and 4(e), In the results of
EVI and SVI, there is significant under-extraction of vegetation under
shadow coverage. NDRE and MGRVI incorrectly classified parts of the
artificial turf soccer field as vegetation (see Fig. 4(e)). The proposed
MREVI successfully avoided these issues, providing the most spatially
accurate distribution of vegetation pixels compared to UAV RS images.

To quantitatively assess the accuracy of each VI, this study evaluated
them using reference data from the experimental area. The error matrix
calculated from the extraction results of each VI is shown in Fig. 5. In
these matrices, the values on the main diagonal reflect the number of
correctly classified instances for each category, while the off-diagonal
values indicate errors. NDVI performs best in terms of the number of
correct classifications for the vegetation category. In contrast, SVI and
NDRE show the highest number of errors in classifying vegetation and
non-vegetation categories, respectively. The error matrix for MREVI
shows the highest sum of values on the main diagonal, indicating the
highest accuracy and the fewest misclassified pixels among all VIs.

The classification accuracy of vegetation and non-vegetation types
was easily derived using the error matrix, as shown in Table 8.
Compared to other VIs, NDVI has the highest PA for the vegetation
category, reaching 99.51 %, while NDRE has the lowest PA for non-
vegetation, at only 78.38 %. MREVI achieves the highest UA for vege-
tation (98.05 %), while SVI has the lowest UA for non-vegetation (84.71

%). For NDVI, EVI, NDRE, SVI, and MGRVI, the Kappa coefficients range
from 0.7 to 0.8, indicating a high level of consistency in vegetation in-
formation extraction accuracy. The OA of NDVIrededge is 97.00 %, with a
Kappa coefficient of 0.93, indicating a high level of precision in vege-
tation extraction. MREVI shows the best OA at 98.60 %, with a Kappa
coefficient of 0.97, demonstrating the superior accuracy of the proposed
VI. Overall, MREVI outperforms all other VIs, followed by NDVIrededge.
NDVI and EVI also show good accuracy. While NDVI, NDVIrededge, EVI,
and MGRVI perform well on some indicators, their OA and Kappa values
are not as high as those of MREVI. In contrast, SVI and NDRE show
weaker accuracy in distinguishing between vegetation and non-
vegetation.

4. Discussion

This study introduced a new index, MREVI, and validated its effec-
tiveness in extracting UGS vegetation from high-resolution multispectral
UAV images in urban areas. We found that shadow interference and the
presence of new construction materials are major factors complicating
vegetation extraction in urban environments. Through a detailed anal-
ysis of the spectral reflectance characteristics of typical land cover in the
study area, it was observed that vegetation exhibits significant variation
in reflectance across the red, red-edge, and NIR bands, whereas non-
vegetation does not meet these criteria. Based on this pattern, MREVI
effectively suppresses background areas that do not meet the vegetation
spectral reflectance characteristics. The results of vegetation extraction
in the experimental area show that MREVI performs exceptionally well
in urban areas, significantly addressing the challenges in vegetation
information extraction and effectively reducing both over-extraction
and under-extraction issues. The OA and Kappa coefficient reach 98.6
% and 0.97, respectively, marking improvements of 1.6 % and 4 %
compared to the second-highest accuracy achieved by NDVIrededge.

Shadows are often considered noise in RS images as they alter the
spectral characteristics of objects and may interfere with the analysis of
ground surface (Alavipanah et al., 2022; Wójcik-Długoborska and Bialik,
2020). The reflectance and spectral curve shapes of shadowed vegeta-
tion differ from those of vegetation under sunlight, impacting the
calculation of VIs (Zhang et al., 2015). Due to a significant decrease in
reflectance, EVI and SVI fail to effectively extract vegetation under
shadow, resulting in substantial loss of vegetation information and a
decrease in accuracy. The spectral characteristics of shadowed areas
resemble the variation patterns of vegetation in certain bands, which is a
primary cause of confusion for many VIs. NDVI, NDRE, NDVIrededge, and
MGRVI misclassify shadow pixels as vegetation, increasing extraction
errors. Although reflectance decreases, shadowed vegetation still shows
a significant peak in the NIR band (Xu et al., 2013). By considering this
feature, MREVI enhances the distinction between vegetation, shadowed
vegetation, and shadows. Therefore, MREVI effectively mitigates the
negative impacts of shadows in high-resolution imagery, accurately
extracting vegetation in shadowed regions and suppressing shadows.

On the other hand, the emergence of new materials in urban areas
adds complexity to classification scenarios (Herold et al., 2004). In the
study area, blue surfaces of tennis courts and roofs have partially
affected the performance of existing VIs, leading to errors and omissions
in extraction. NDVI, EVI, NDRE, and SVI struggle with this confusion
due to reflectance differences in the NIR and red bands that are similar to
those of vegetation. By utilizing reflectance characteristics in the red-
edge band, MREVI effectively distinguishes these areas from vegeta-
tion, as these areas do not show a significant increase in reflectance in
the red-edge band.

The quality of RS images may be affected by factors such as terrain
complexity, lighting conditions, sensor quality issues, and radiation
calibration accuracy, potentially resulting in anomalous spectral infor-
mation (Cao et al., 2019). For instance, in certain anomalous conditions,
reflectance in the red-edge band may exceed that in the NIR band,

Table 7
Threshold of vegetation indices.

Vegetation index Optimal threshold

NDVI 0.4
EVI 0.3
NDRE 0.18
NDVIrededge 0.3
SVI 0.15
MGRVI 0.3
MREVI 0.1
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Fig. 4. Extraction results using different vegetation indices.

Fig. 5. Error matrix of vegetation index extraction results.
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contrary to the spectral characteristics of vegetation. In such cases,
MREVI calculates values as 0, effectively eliminating this type of noise
interference.

In terms of the completeness and accuracy of vegetation information
extraction, NDVIrededge performs well overall but still fails to avoid the
impact of shadow interference, which is a major cause of increased
extraction errors. NDRE and MGRVI show significant issues with both
omission and commission errors. For instance, due to overlapping VI
values with grass types, artificial turf fields are identified as vegetation.
MGRVI, which is based on visible light bands, performs poorly in
extracting vegetation due to limited spectral information. It struggles to
identify non-green vegetation, such as purplish shrubs, and produces a
substantial amount of noise in the results. In contrast, MREVI achieves
the best performance in vegetation extraction within the study area. It
excels in identifying wilted lawns, effectively suppresses shadow inter-
ference, and shows fewer issues with holes and noise. Additionally, the
grayscale images computed from the MREVI vegetation index show
different brightness levels for vegetation areas, while non-vegetation
types are effectively suppressed, appearing almost black. The gray-
scale difference between vegetation and non-vegetation areas is clear,
with no evident overlap in grayscale statistical characteristics, facili-
tating the determination of an appropriate threshold for extracting UGS
vegetation.

The effectiveness of vegetation extraction is largely determined by
the choice of vegetation index; however, the selection of the segmen-
tation threshold is also crucial. In this study, we used a manual approach
to select the threshold, which inevitably introduced subjectivity. To
improve the objectivity and accuracy of threshold selection, exploring
automatic threshold selection methods is worthwhile. Such methods
could reduce human bias and potentially improve both the efficiency
and accuracy of vegetation extraction (Chen et al., 2022; Dong et al.,
2008). Furthermore, the scope of the image data analyzed in this study is
limited; thus, the applicability and precision of the newly developed
MREVI need broader validation in future research. With technological
advancements, many modern multispectral sensors, including Sentinel-
2, WorldView-2 satellites, and multispectral cameras mounted on UAVs,
now offer red-edge bands, providing greater potential for the application
of MREVI (Delegido et al., 2013; Guo et al., 2021a). Therefore, future
research should focus on expanding the applicability of MREVI to
various environments and sensor data, and explore automatic threshold
selection methods to enhance the automation and accuracy of vegeta-
tion extraction.

The proposed MREVI significantly enhances the accuracy of vege-
tation extraction in urban environments and holds broad application
potential in supporting decision-making and management across several
critical areas of environmental protection. For instance, in UGS man-
agement, MREVI can assist city planners in identifying changes in urban
FVC, developing more rational greening strategies, and improving the
quality of life for urban residents (Cao et al., 2024; Richards and Belcher,
2019). By accurately identifying vegetation cover in cities, researchers
can gain deeper insights into the role of vegetation in regulating urban
climates and develop corresponding mitigation strategies (Zhou et al.,
2023). High-precision vegetation cover data can also help estimate

urban vegetation’s carbon sequestration capacity more accurately, aid-
ing city managers in assessing the effectiveness of greening measures on
carbon emission reduction and providing technical support for low-
carbon city initiatives (Qin et al., 2022; Deng et al., 2024). Future
research should further explore MREVI’s role in broader environmental
monitoring and management contexts, offering scientific evidence for
urban planning and greening and promoting sustainable urban
development.

5. Conclusions

This study developed a novel vegetation index (VI), the moderate
red-edge vegetation index (MREVI) suitable for urban areas. It is
designed to handle urban complexity and improve the accuracy of
extracting urban green space (UGS) vegetation from unmanned aerial
vehicle (UAV) high-resolution multispectral remote sensing (RS) im-
ages. The study also compared the accuracy of vegetation extraction
between the newly developed MREVI and several published VIs. The
conclusions are as follows:

(1) Published VIs are subject to interference from shadows and new
urban materials, leading to varying degrees of misclassification
and omission, which limits the accuracy of vegetation extraction.

(2) The experiments in this study show that MREVI performs
exceptionally well in urban areas. The inclusion of the red-edge
band aids in identifying vegetation and significantly enhances
the suppression of background interference.

(3) The spatial distribution of vegetation pixels extracted by MREVI
is highly consistent with UAV RS images. The overall accuracy
(OA) and kappa coefficient of vegetation information extraction
reach 98.6 % and 0.97, respectively.

In summary, MREVI shows great potential in improving the accuracy
of UGS vegetation extraction; however, there are some limitations in this
study. This research is primarily based on high-resolution remote
sensing data from a specific region, and the results may be constrained
by the spatial and temporal resolution of the data, spectral character-
istics, and sensor performance. Therefore, the applicability of MREVI in
different regions and diverse environments needs further validation.
Future studies should apply MREVI to various environments and sensor
data to assess its qualitative and quantitative accuracy in UGS vegeta-
tion extraction under different climates, seasons, and land cover types.
Moreover, further investigation into MREVI’s practical applications in
urban planning, climate regulation, carbon sink estimation, and envi-
ronmental monitoring is essential to fully leverage its potential in sup-
porting sustainable urban development.
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