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Annomayus. PaccMOTPEHO OTHOHATIPABICHHOE BpaLEHHE ITOJSIPHOTO POTOpa (BpallaTeIbHEINA PITYET) B IOTEHIIHATIE
3aTOPMO’KEHHOTO BPAILICHNUS, YIPABIISIEMOE TMXOTOMHBIMH (DIIyKTyaIiussMi OpUEHTAIMH dIeKTprdeckoro mois. [Iposenen
aHaJIN3 CUMMETPHUH, KOTOPBIH MOKa3al OTCYTCTBUE paTUeT-3(h(eKTa MpH HEYETHOM KOJIMYECTBE SIM MOTEHIHUAJIA 3aTop-
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HOTO POTOpPA € AEKTPUUECKUM 11oieM. [TokazaHo, 4To B 000MX ciIydasx MaKCcHUMallbHasi CKOPOCTh BPAIIEHUSI IOCTUTACTCS
IPY OOJIBIINX AIIEKTPHUECKHUX TOJISIX, (UIYKTYHPYIOLIHUX 110 3HAKY, M MIMEET KOJIOK0JI000pa3Hyto (popMy B 3aBUCHMOCTH OT
aMIUTATYAbI YIJIOBBIX (DIIYKTyaluii, HIMPUHY KOTOPOH M HAJIMYHKE TIIATO MOYKHO PETYIHMPOBATH CPEAHUM YITIOM (DITyKTyanuii.
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3aBUCHMOCTB CKOPOCTH BPAILIEHHUS OT 4aCTOTHI (IYKTYyaIMi TAKKe UMEET KOJIOKOI000pa3Hyto (hopMy, IIMPOKYIO ISl CTO-
XaCTHYECKHUX AMXOTOMHBIX (MIyKTyaluid ¥ y3KyIO JUIsl IETEPMHUHUCTHYECKUX TUXOTOMHBIX (DIIYKTyalnii, C OAMHAKOBBIMU
JIMHEHHBIMU HU3KOYaCTOTHBIMU aCUMIITOTHKAMHU.

Knrouegvie cnosa: BpalarellbHbIi pITYET; 3aTOPMOKEHHOE BpalieHue; 1uddy3noHHbIN TpaHCIOPT; ainabaTniecKue
OPOYHOBCKHE MOTOPBI; IUXOTOMHBIN IPOLECC; TAPMOHHYECKHE (QIYKTyalnH.

Bnazooapnocms. PaboTa 4aCTHYHO BBINIOJIHEHA B PaMKaX TOCYIapCTBECHHON MPOTPaMMBI HAYYHBIX MCCIICIOBAHHN
Pecniybmiku Bemapych «@oToHMKA U 3IIEKTPOHMKA Ui MHHOBanui» (3amanue 1.17.1 «MogenupoBaHue u CO3IaHUC
(hOTOHHBIX U ONITOIEKTPOHHBIX HAHOCTPYKTYP Ha OCHOBE I'pa)eHOMOIOOHBIX MATEPHAJIOB JIJIS YIIPABICHHUS ONTHICCKUM
H3ITyYCHHEM ).
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Abstract. We explore the unidirectional rotation of a polar rotor (rotational ratchet) in a hindered-rotation potential (HRP),
controlled by the dichotomous fluctuations of the orientation of the electric field. A symmetry analysis is carried out, which
shows the absence of the ratchet effect for either an odd number of wells of the HRP or for an even number of wells if the
average angle of the fluctuating orientations of the electric field coincides with any symmetry axes of the HRP. Analytical
expressions are obtained for the average rotation velocity of the rotor in the double-well HRP in the low-temperature
adiabatic approximation, when the hopping rotation occurs and thermodynamic equilibrium has time to be established
in each state of the dichotomous process, and in the high-temperature approximation at arbitrary fluctuation frequencies,
when the thermal energy is much greater than both the reorientation barrier of the HRP and the energy of the dipole rotor —
electric field interaction. We showed that the maximum rotation velocity is achieved at large electric fields that fluctuate
in sign, and the dependence of the rotation velocity on the amplitude of the angular fluctuations is bell-shaped, the width
of which and the presence of the plateau can be tuned by the value of the average fluctuation angle. The dependence of the
rotation velocity on the fluctuation frequency is also bell-shaped, wide for the stochastic fluctuations and narrow for
the deterministic dichotomous ones, with the same linear low-frequency asymptotics.

Keywords: rotational ratchet; hindered rotation; diffusion transport; adiabatic Brownian motors; dichotomous process;
harmonic fluctuations.
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Introduction

Ratchet systems (also called Brownian motors) include nanomachines that, under the influence of various
nonequilibrium fluctuations, convert a chaotic Brownian motion into a translational, reciprocating or rotational
motion [1-8]. In natural systems, ratchets provide contractile activity of tissues (muscular activity), cell mo-
tility (e. g., the motility of bacterial flagella), and intra- and intercellular transport of organelles and relatively
large particles of substances (cell nutrition and waste disposal). Current knowledge shows that biomolecules
that control a number of intracellular fundamental processes have one common feature, namely, they all re-
spond to energy absorption or energy dissipation by changing their conformation and, hence, their physical
shape in one plane. Cyclically repeated single-plane changes in their shapes cause a unidirectional, linear or
rotational, motion in molecules and the associated processes, that are controlled by this motion; this is the basis
of mechanical activity and work performed within cells [9].

Moving on to the consideration of rotational ratchets, note that the difference between molecular motors
(or ratchets) and molecular rotors is that the former exhibit unidirectional rotation while the latter may randomly
rotate in any direction. A molecular rotor is usually understood to mean a molecular system in which a molecule
or part of a molecule (the rotor or rotator proper) rotates against another part of the molecule or against a macro-
scopic entity such as a surface or a solid (stator). Rotation of the rotor can occur freely (without a rotational
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potential) or by thermally activated jumps (hindered rotation) in the presence of an N-well rotational potential,
where the value of N corresponds to the order of the rotation axis and is determined by the symmetry of the
stator [10; 11]. A powerful tool for analysing the local environment of a surface molecular rotor is scanning
tunneling microscopy (STM) [12]. For example, the fert-butyl groups on an Au(111) surface are characterised
by a rotational potential with N =12 [13], whereas a single acetylene (C,H,) rotor on an achiral PdGa(111)
surface is in a potential with N =6 [14]. Asymmetry in the potential energy landscape is commonly achieved
by adsorbing chiral molecules on achiral surfaces or by the electric field generated by the STM tip at a certain
position relative to the rotor (see reference [14] and supplementary materials for it).

Hindered rotational motion is also typical of chemisorbed polyatomic molecules or polyatomic groups tightly
bound to a surface through one atom, whereas other atoms can have several equilibrium positions in the potential
induced by the nearest substrate atoms. For example, for hydroxyl groups strongly bonded by an oxygen atom
to a surface atom forming an oxide, the equilibrium positions of the hydrogen atom are determined by a radial
distance of 1 A relative to the oxygen atom, a polar angle of about 90°, and N values of the azimuthal angle
corresponding to N symmetric wells of the hindered-rotation potential (HRP). The number A is one unit less
than the valence of the surface atom forming the oxide and is equal to the number of symmetrically located
oxygen atoms of the substrate closest to the hydroxyl group in question [15;16].

First nanomachines in which unidirectional rotation occurred under the influence of light were constructed in
the late 1990s by the scientific team of professor B. L. Feringa [17]. Further, the efficiency of those light-driven
machines increased significantly [18]. In the experiment published in [14], a system was also considered in
which the rotor was an acetylene molecule C,H,, and the stator was a cluster of three palladium atoms on the
surface of a palladium — gallium crystal PdGa(111) with broken rotational symmetry. The unidirectional rotation
of the acetylene molecule occurred due to the quantum tunneling effect in a scanning tunneling microscope.
The rotational symmetry can also be broken with the fluctuating electric field itself, the orientation of which does
not coincide with the symmetry axes of HRP [19]. This result was obtained using the low-temperature kinetic
approach, in which the particle motion in a periodic N-well potential relief is reduced to a hopping overcoming
the potential barriers. One more simplification of the consideration performed in reference [19] was the use
of the second-order perturbation theory in a small alternating electric field £ (t) =E,cosot (E, and o are the
amplitude and frequency of the field change with time ¢, respectively). It turned out that, with the mentioned
simplifications made, the ratchet effect occurs only at N =2 and at the orientations of the electric field different
from the orientations of the axes of the potential wells and barriers. The analysis of the ratchet driven by the adi-
abatic dichotomous arbitrary-amplitude fluctuations of the electric field £ (t) =+ F characterised by an arbitrary
angle @ to a symmetry axis of the HRP, showed the presence of the ratchet effect at even values N > 2 [20].

In contrast to the previous approaches to describing rotational ratchets, this article considers systems with
dichotomous change in the orientations of the applied electric field themselves. The use of the low-temperature
and high-temperature approximations leads to the analytical expressions for the average rotation velocity, the
analysis of which provides the comprehensive information about the properties of the system not only at arbi-
trary, relative to the thermal energy, energies of the interaction of the rotor with the fluctuating electric field,
but also at arbitrary fluctuation frequencies.

It should be noted that modern electron beam lithography [21] allows the formation of systems of closely
spaced nanoelectrodes, the switching of electrical potentials between which ensures the creation of electric fields
of a given intensity and direction. For example, in reference [22] the formation of structures consisting of two,
four, six, and eight electrodes converging into a nanoscale region was reported. The dichotomy of the process is
an essential simplification of the description and, in addition, gives a significant increase in the average rotation
velocity at low frequencies of the potential switching.

N-well HRP in an external electric field

Let’s consider a flat polar rotor in an N-well HRP, one of the wells of which is oriented along the axis x of
a 2D coordinate system. Let the rotor be characterised by a dipole moment p and be placed in an external elect-
ric field of a magnitude £, the orientation of which fluctuates in the plane of the rotor rotation and is specified
by the values of two azimuthal angles ¢, and ¢_ (the case of dichotomous fluctuations). Then the potential
energy of the rotor in the states «plus» and «minus» of the dichotomous process is represented as

Ui((p)z—[%JcosN(p—chos((p—(p+), (1)

where AU is the energy barrier of the HRP.
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The potential energy (1) can be rearranged to the standard additive-multiplicative form of the potential

energy of a pulsating ratchet:

U(x, t)=u(x)+ G(t)w(x), (2)
in which the time function cs(t) plays the role of a fluctuation variable with the zero mean <G(t)> =0, while
u(x) and w(x) are periodic functions of the particle coordinate x, that describe the average potential energy
and its fluctuating component, respectively [23]. In the case of dichotomous fluctuations, the dependence G(t)
can be represented as a switching, either random or deterministic, of its values between +1 and —1. For the rota-
tional motion, the coordinate is the angular variable ¢. Therefore, the potential energy U ( X, t) can be attributed
to states «plus» or «minus» of the dichotomous process characterised by the variable cs(t) =+1 and denoted as
U* ((p) It is clear that for relations (1) and (2) to be equivalent, the functions u (x) and w(x) with x = ¢ must be

AU
u((p) = —(TJcochp — nE coso, cos((p ON ),

w(@)=—pEsing;sin(¢ - @), 3)
+Q_ - Q_
%:cmch ’(plzcmch .

Note that in the particular case ¢, = g, the values of the angles ¢, and ¢_ differ by =. This corresponds

to the sign fluctuations of the electric field oriented at an angle ¢ to the axis x. Then ¢, =@, ;=0 — g,

. . . A ..
sin(@ — ¢y ) =cos(@ — ¢ ), and we obtain that the average potential energy u(¢)= —[TUJ cos No is inde-

pendent of the applied electric field while its fluctuating part w(¢)=—pE cos(¢ — ¢, ) becomes equal to the

interaction energy of the polar rotor with the external electric field of the orientation ¢, (the second term of
equation (1)). The behaviour of rotor systems with the sign fluctuations of the applied electric field have been
analysed in a number of works [13;14]. This work differs from those previous studies by considering the ge-
neral case when it is not the sign that fluctuates, but the electric-field orientations themselves, i.e. the para-
meter ¢, is arbitrary.

Besides the energy parameters, AU and pLE, the potential energy (1) is characterised by the number N of azi-
muthal potential wells and the parameters ¢, and ¢,, that specify the average angle of the fluctuating orienta-
tions of the electric field and the fluctuation amplitude, respectively. We should exclude from the consideration
the parameters’ values that make the ratchet effect impossible. First of all, we exclude the values at which there

are no fluctuations (i. e. w(¢) = 0), namely, pE = 0 and @, = 0; here and hereafter we do not mention the trivial

values, such as, for example, the value ¢, =  that corresponds to the difference ¢, — ¢_=2m.
Next, we do not need the values that are prohibited by the symmetry restrictions. Such prohibitions cover the
potential energies that are described by shift-symmetric or symmetric periodic coordinate functions [2; 24-27].

For periodic potential energies U™ (x + L) =U" (x) (L is the period) associated with the two states of the dicho-
tomous process, the shift-symmetric and symmetric functions are defined by the following identities:

U;i (x+§j=—U:h (x), Usi(x+xs)=Usi(—x+xS), (4)

where x; is the location of the symmetry axis. An additional symmetry prohibition exists in ratchet systems
with the time dependence of the particle potential energy (2) specified by the function G(t) that belongs to the
universal symmetry type [26]. For a symmetric dichotomous process (equal durations of the states «plus» and
«minusy), this additional symmetry property corresponds to G(t) =11 with <G(t)>= 0 and is specified by the
following identity:

Ui(x+xs)=U¢(—x+xs). (5)
In our model, for which the coordinate is the angular variable ¢, the functions under consideration have the
natural period 27, L = 2. Since U™ (¢ + 1) =—U~ (¢) for odd N, the first of the properties (4) leads to the ab-

sence of the ratchet effect when the number of wells of the HRP is odd.
The potential energy (1) will satisfy the second identity in the pair (4) if both u () and w(¢) are symmetric

with the same symmetry axis specified by the angle ¢,. Since the parameters AU and pE are arbitrary, the func-
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tion u(¢) is symmetric for ¢, = %, g=0,1,..., N—1, if either o, :g or @, # = with sin (@, — ¢, ) =0. In turn,

the function w((p) is symmetric if cos ((pS - (Po) = 0. Since the conditions sin((pS -0, ) =0 and cos ((pS - (Po) =0

cannot be simultaneously satisfied, the only case when the two functions u ((p) and w((p) are symmetric toge-
ther is specified by the equations ¢, =~ and cos(@,— @y ) =0.

To satisfy the identity (5), the functions u(¢) and w(¢p) must be symmetric and antisymmetric, respecti-
vely, with the same symmetry axis . This is realised when sin((pS - (po)z 0. Summarising, from the above

symmetry analysis, it follows that, at arbitrary amplitude ¢, of the orientation fluctuations, the ratchet effect
is impossible for an odd number of wells of the HRP, as well as for an even number of wells, if the average
angle @, of the fluctuating orientations of the electric field coincides with any of the symmetry axes of the HRP

Q= n_]\;]’ q=0,1,..., N—1, which are oriented along the extrema of this potential.

Hopping rotation in a double-well HRP

At thermal energies kg7 (kg is Boltzmann constant, 7 is the absolute temperature) that are low compared to
the reorientation barrier AU, the main contribution to the unidirectional rotation of the rotor is made by the hop-
ping rotation. The description of such a rotation is simplified by the fact that the rotation parameters include the
rate constants of transitions between the particle states in neighbouring potential wells [19; 28], i. e. the rate
constants for overcoming the potential barriers that separate these wells. Therefore, we can take into account
not only thermally activated overcoming the potential barriers, but also tunneling, which occurs at tempera-
tures close to the absolute zero and, thus, to study ratchet systems in a wide temperature range with both the
classical and quantum descriptions [29; 30].

Using the results of reference [31], the authors of reference [20] obtained an expression for the average
rotation velocity Q2 of the ratchet driven by the adiabatic alternation of two periodic N-well potential re-
liefs (states «plus» and «minus») characterised by the sets of minimum and maximum energy values v;.

min, n
+ . . .
and vy, ,, respectively, corresponding to the same angular coordinates @, , and @, , (n=1,2,..., N,

0=0min0<Pmac.1 < Pmin.1 <Pmax.2 +*+ < Prin. ¥ 1 < Prmax, ¥ < Prmin, v = 270). The adiabatic alternation is under-
stood as such an alternation when the time intervals between the switching potential reliefs (t" and 1) are
so long that the thermodynamic equilibrium has time to be established in each of them. The average angular
velocity € is expressed through the nested sums of the functions Rﬁm’ , and Rim , that depend on the sets of
minimum and maximum energy values as follows:

Q:2TTEAN, AN = i (R;lax,n _R;ax,n) i (R;rniﬂam _R;ﬁn,m)’

n=2 m=2

e oP(B) L exp(Bvi) (©6)

” gexp(ﬁv;ax,z) ﬁexp(—ﬁ"&m,/)’

where T =1"+ 17 is the period of the potential relief alternation, = (kBT )_1 is the reverse thermal energy.

The analysis of the relations (6) for the rotor in the N-well HRP with dichotomous sign fluctuations of the
external electric field (¢, = @z, ¢_ = ¢, — m) showed that the ratchet effect existed for even values of N, and

max, > “Ymin,m —

the average angular velocity was proportional to £"sin (N Qp ) at e =PuFE <1 and tended to (2—:]Sin (N (038 )

at % > 1. The ratchet effect of the highest intensity was associated with N = 2. That is why we will consider

just the case N = 2 in our analysis of the rotational ratchet with the dichotomous fluctuations of electric-field
orientations.
When the inequality pE < AU is satisfied, we can assume that the values of the angles @, , =(n—1)

and @, , = [n - %) n (n =1, 2) approximately correspond to the angular locations of the minima and maxima

of the potential (1) with N =2, and
+ AU + AU

Vininn = " +(=1)"nEcosg,, Viaxon = - +(=1)"HEcosg,. (7)
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Substituting expressions (7) into the relations (6) for R-. and R._ with n=N=2 gives

min, n max, n
Riin, 2= (1 + eZSCOS(Pi )71, R_r_'—nax, 2= (1 + e—ZSSiD(Pi )71 , €= B”’E (8)

Thus, using (8) and the identity (1 +e )71 = %, we finally get
A, = %[tanh(ssin(m) - tanh(ssin(p_ ):H:tal’lh(SCOS(p_) - tanh(SCOS(p+ )], 9)

S . 2n
which is the ratchet velocity up to the constant factor —~

Note that in the adiabatic mode of the motion, the average angular velocity does not depend on the barrier
AU of the HRP. Therefore, the result (9), obtained for uE <« AU, can be used for both small and large values
of the energy parameter €. The quantity (9) vanishes when either sin@, =sin¢_ or cos¢, = cos@_. This means

that the average orientation angle ¢, is equal to either 0 or E; these values coincide with the orientations of the
electric field either along the minima or along the maxima of the HRP. This result coincides with the result of
the general symmetry analysis carried out at the beginning of our article.

Figure 1 represents two families of functions A, (¢, ) evaluated for two different values of the average orientation
angle @, and corresponding to several values of €. The highest average angular velocity can be achieved at ¢, = I
(solid lines), when this average orientation of the fluctuating electric field provides large simultaneous fluctuations
of the maxima and minima of the potential energy. The location of the maxima of each family of functions A, (¢, )
correspond to the amplitude of the orientation fluctuations ¢, = g, 1. . to the sign fluctuations of the electric field.

1.0
0.8
0.6
AZ
0.4
0.2
0
0.25 0.50 0.75 1.00
9
I

Fig. 1. The dependence of the average velocity Q of the rotation ratchet (in units 2—n)
on the amplitude ¢, of the angular fluctuations of the electric field. t
The values of € are indicated near the curves.
The solid and dashed curves correspond to the values

of the average orientation angle ¢, equal to g and ZLE)’ respectively

Note that the value of A, is bounded from above by the value 1, i. e. the maximum possible average angular
velocity is equal to 2—: This value is achieved at large € and ¢, = g The width of the plateau can be tuned
with the parameter ¢,. The width of the plateau, which exits at large €, decreases with the decrease of ¢, from

T
the value —.

The asymptotic behaviour of the average angular velocity at low electric fields follows from the expres-
sion (9) ate <« 1: n
Q= ?82 sin2(p1 sin 2@,. (10)

The angular dependences of this asymptotics turn out to be the same as in the high-temperature approximation
considered in the next section.
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Continuous rotation in the high-temperature mode

The high-temperature approximation implies that the potential energy of a pulsating ratchet fluctuates with
coordinate and time such that the fluctuation amplitude is much less than the thermal energy ;7. This helps one
to obtain analytical representations for the average velocity of the ratchet in the general case of arbitrary forms
of those coordinate and time dependences [32—34]. The choice of the potential energy fluctuations in the form of

a spatially harmonic signal, i. e. as
w(x)=w, cos{%{% —Xoﬂ (11)

essentially simplifies the description. Then, assuming (11) and arbitrary functions u (x) and G(t) (with <c5( t)> =0)
in the additive-multiplicative potential energy (2), the average ratchet velocity can be represented as [35]

(v)= 2n( L jB3w§‘P(F]Im{uze4“”‘°}, 5= @

T(§]=S[fr@)+skfﬁikKf@)=fm5%(ﬂeSCK&(ﬂ=<cUo+rkﬂ%)% (12)

If Shx 2w
uqzz(.!.dxu(x)e -, kq=TC], g=0,%1,£2,....
L2
Here t,,= n is the characteristic diffusion time (D is the diffusion coefficient) over the potential energy peri-

od L, and K (s) is the Laplace transform of the correlation function K. (7), that depends on both the current
time ¢ and the inverse correlation time . Due to the spatially harmonic shape of the potential energy fluctua-
tions w(x), the average velocity of such a ratchet depends only on the second harmonic u, of the function u (x)
The importance of the result (12) is that, within the high-temperature approximation, it is valid for arbitrary
time dependences of potential energy fluctuations described by the function G(t).

Note that potential energy fluctuations in the form of a spatially harmonic signal were considered in referen-
ces [27; 36] to describe ratchets with a sawtooth and step function u(x) In this work, the function u((p) in-

cludes the HRP, and the function w((p) (see the expression (3) valid for dichotomous fluctuations of the angu-

lar variable) exactly corresponds to the spatially harmonic signal (11) with x=¢, L =2n, 27k, =@, — I

2
005{275(% — X H =—sin(¢ — @), and w,=pEsin@,. The second harmonic of the function u(¢) from equa-

2

tion (3) is equal to u, = —%, SO Im{uze4“i }‘0} = —%sin(%ﬁuo )= %sin(Z(pO ). Therefore, the expression (12)

for the average angular velocity of the rotational ratchet driven by the dichotomous fluctuations takes on the follo-
wing form:

Q:%BAUSZS‘P(gjsinchlsin&po. (13)

This result is valid for BAU <1 and € < 1. The angular dependence (both on ¢, and ¢,) coincides with the
asymptotic behaviour (10) obtained in the adiabatic approximation.

For symmetric stochastic dichotomous fluctuations with (c(#))=0, we have K. (t) =exp(-T't) and K- (s) =
=(I'+ s)fl. Thus,
r
s

w(gj[__;j; (14)

1+ —
s
The adiabatic approximation is valid for ' < s. Then s‘i’(gj ~I and
ngﬁAUs2 sinz(plsin2(p0. (15)
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If we characterise the average durations of the states of the dichotomous process by times t, and t_, then
the inverse correlation time is I' =" + t_'. For the symmetric process, 1, = t_and [' = e where t=1, + T_

is the average period of the process. Therefore, the expression (15) includes the same factor T ' as the expres-
sion (10) does; this distinguishes the average velocities in the adiabatic approximation. Expression (10) is
valid for a hopping rotation, when BAU > 1, while the expression (15) was obtained in the high-temperature
approximation with AU < 1. From the comparison of these expressions we conclude that the average angular
velocity is proportional to BAU at high temperatures, but it saturates as the temperature decreases, and the factor
BAU reaches . That is, for the hopping motion in the adiabatic approximation, the dependence of the average
angular velocity on the reorientation barrier AU disappears.

Let’s consider time-periodic (i. e. deterministic) fluctuations cs(t + r) = cs(t) with the period t. Due to the
periodicity, the function () can be expanded into a Fourier series:

o(t)=>.5; exp(—ioajt), ;=
J

Averaging over the period yields

@,Jeo,il,.... (16)

(o(r)) =1 ! dio (1) = 5,0,

K (1) :%jdtoc(to +1)o(ty) = Zo‘éj ‘2 exp(—io)jt), (17)
0 J#*

.2
© |G| o
\p(szwzu—f_ (18)
Here and in equations (16), (17) the parameter I = — is included in the definition of the frequencies ®.: o = E1“j .
T J J 2

From the expression (18) we can obtain \P(?j for a deterministic dichotomous process if we consider

a symmetric step function G(t) with the period t: G(t) =lfor0<t< % and G(t) =—1 for %< t<7. Then g, =
= L[l - (—l)j } and the summation in the formula (18) over odd j is performed analytically:
nj
‘I’(Ej —Lianh S — cosh2 5. (19)
s) s r r

In the adiabatic approximation I' < s, the approximate equality sV (gj ~ T is again satisfied and we return to

the expression (15). This means that in the adiabatic mode, deterministic and stochastic fluctuations lead
to the same result. This is explained by the fact that in this mode, the lifetime of each state of the dichotomous
process is much longer than the relaxation time t,, and, in each potential profile, the equilibrium state has time
to be established regardless of whether the dichotomous states are switched deterministically or stochastically.

We emphasise that the applicability of the formula (13), which contains the angles ¢, and ¢, representing the
average over the dichotomous fluctuations and the fluctuation amplitude, strictly speaking, is limited to the con-

sideration of a dichotomous process. At the maximum fluctuation amplitude ¢, = g, the values of the angles ¢,

and ¢_ differ by m. Therefore, we can assume that the magnitude of the electric field £ (t) itself, oriented at an
angle ¢ to the axis x, fluctuates. For a dichotomous process, E (t) =+FE. However, we can consider the general
case with £ (t) =F c(t), where G(t) is an arbitrary function of time, not necessarily equal to =1. For such a case,
the formula (13) will be valid for a non-dichotomous process, if we put sin ¢, =1 and sin 2@, = —sin2¢; in it.
As the simplest example of a non-dichotomous periodic process, let’s consider the sinusoidal periodic function

o(t)=sinw,z, in which the only term with j =1,

- 1 .
S, |2 =—, remains in the sum (18), so that
4
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(20)

e

Note that the low-frequency asymptotics of the expression (20) is quadratic in I, in contrast to the linear
asymptotics in (15) for adiabatic dichotomous processes.

Figure 2 represents the graphs of the function ‘P(gj calculated using relations (14), (19), and (20). The ar-

gument of this function determines the dimensionless fluctuation frequency, while the function itself is a factor
in the expression (13), and therefore determines the average angular velocity of the rotor in question. The inset
represents the low-frequency asymptotics, that are linear and coincident for the deterministic and stochastic
dichotomous processes while quadratic for the sinusoidal fluctuations. This clearly demonstrates the advantage
of the dichotomous process over the non-dichotomous one: the former provides much higher values of the ave-
rage angular velocity compared to the latter. The periodic fluctuations lead to the narrow bell-shaped curves

2
with maxima at ge (0.61—0.65) and the high-frequency asymptotics proportional to (%) . The stochastic

dichotomous fluctuations correspond to the wide «bells» with the maximum at gzl and the high-frequency

asymptotics s
=
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Fig. 2. The dependence of the factor ¥, which determines, according to equation (13),
the average angular velocity Q of the rotation ratchet, on the dimensionless fluctuation frequency —.
The curves 7, 2, and 3 correspond to the deterministic dichotomous, sinusoidal, s
and stochastic dichotomous fluctuations, given by equations (19), (18), and (13), respectively.
The inset details the low-frequency behaviour of the curves 7, 2, and 3

Discussion and conclusions

This article is the first to consider a rotational ratchet controlled by a dichotomous change in the orientations
of the applied electric field. The average angle ¢,, which describes the amplitude of the orientation fluctuations,

is an arbitrary-valued parameter, in contrast to the previously considered case with @, = g corresponding only to
the sign fluctuations of the electric field, i. e. to the angle between the orientations of the fluctuating field equal

to 1 [19; 20]. The ratchet effect is very sensitive to changes in parameters of the ratchet system, so the presence
of one more parameter always provides an additional control over the average rotation velocity. The performed
symmetry analysis showed that the ratchet effect is absent for an odd number of the wells of the HRP, as well
as for an even number of the wells, if the average angle ¢, of the fluctuating orientations of the electric field
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coincides with any symmetry axes of the HRP. The latter result can be associated with the well-known pro-
perty according to which the existence of the ratchet effect requires synchronous fluctuations of the depths of
the wells and the heights of the barriers of the periodic potential relief [3; 19]. Since the symmetry axes of the
HRP pass through its minima and maxima, the coincidence of ¢, with these orientations leads to fluctuations of
either only the depths of the wells or only the heights of the barriers. There are no synchronous fluctuations, and
therefore no ratchet effect.

Analytical expressions for the average rotation velocity have been obtained in the low-temperature and
high-temperature approximations. At low temperatures, when the thermal energy is much less than the reori-
entation barrier, the hopping rotation occurs. The description of this rotation is the simplest in the adiabatic
approximation, i. e. at low-fluctuation frequencies I, since in each of the states of the adiabatic process, equi-
librium has time to be established. It does not matter whether these states are switched deterministically or
stochastically. For the hopping motion, the relaxation time is determined by the inverse rate constant for over-

coming the barrier AU of the HRP, that, according to the Arrhenius law, is equal to k =k, exp[——iz ], where
B

k, 1s the characteristic frequency of the angular oscillations of the rotor in the potential well. Therefore, the

applicability of the adiabatic mode of the hopping motion is specified by the inequalities kg7 < AU and I' < k.

In this mode, the average rotation velocity Q is proportional to I' and independent of AU. The main ratchet

parameters are the average angle ¢, of the field orientations and the amplitude ¢, of the orientation fluctua-

tions, as well as the dimensionless electric field strength & = M—, which can take arbitrary values. Note that

the hopping rotation can be considered outside the adiabatic approximation as well, at frequencies I” satisfying
k < I'< k. Then Q will depend on both AU and the mechanism of switching the states of the dichotomous
process, and the value of Q2 will saturate with the growth in I" and be limited in order of magnitude to the va-
lue of k (this follows from the general description of the properties of flashing ratchets within the framework
of the kinetic approach [37]). For example, for the hydroxyl groups of an oxide surface, the values k at room
temperatures are of the order of 100 GHz [15], which is the upper limit of the rotation frequency of most rotor
systems [10; 11]. When I">> k, in the calculations of 2, one should take into account the intrawell motion, that,
when considered correctly, must lead to the general ratchet property: Q — 0 when I'— o [2].

Analytical expression (9), obtained for the average hopping-rotation velocity in the low-temperature ap-
proximation, and the corresponding families of the dependencies ¢, of the average velocity show that the

maximum ratchet effect is associated with large electric fields fluctuating in sign, i.e. with ¢ >1 and @, = uy

In this case, the width of the plateau, that means the largest velocity, is maximum when the average angle ¢, of
the fluctuating orientations of the electric field is the bisector of the angles of the symmetry axes of the HRP,

Le @,= g, and the fluctuations of the barriers and wells of this potential are most correlated.

The high-temperature approximation assumes that the thermal energy is much greater not only than the
reorientation barrier of the HRP, but also the interaction energy of the dipole rotor with the electric field £,
i.e. € <« 1. Therefore, the angular dependence of the average rotation velocity (13), obtained in this approxima-
tion, coincides with the dependence (10), obtained for the adiabatic hopping motion at € <« 1. The difference is

that the expression (13) contains also the small factor AU and the function ¥ g which distinguishes sto-

chastic and deterministic dichotomous angular fluctuations outside the adiabatic approximation. At the maximum
amplitude of dichotomous angular fluctuations (¢, = g), one can replace these fluctuations by arbitrary-time

dependences of the electric field £ (t) with <E (t)> =0, oriented at the angle ¢ to the axis x. Then the formu-

la (13) with @, :g and @, =@, — g will be valid for arbitrary fluctuations £ (t)

The performed analysis of the dependence of the average rotation velocity €2 on the type of electric-field
fluctuations showed that the low-frequency asymptotic behaviour of the velocity is proportional to the fluctua-
tion frequency I for a dichotomous process with a jump-like change in either the magnitude or direction of
the field. For continuous changes in the field strength with time, the low-frequency asymptotics of the velocity
is proportional to the fluctuation frequency squared. Deterministic fluctuations lead to a bell-shaped frequen-
cy dependence Q(F), the width of which is much narrower than that for a stochastic dichotomous process.
The high-frequency asymptotics of the velocity is proportional to I' for the deterministic fluctuations and to
"' for stochastic ones. Both frequency dependences tend to zero in the high-frequency limit, as it should be
for ratchet systems.
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