БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ
Ректор Белорусского
государственного университета
А.А.Король

Регистрационный №УД-13124/уч.

математическое моделирование

Учебная программа учреждения образования по учебной дисциплине для специальности:

1-31 03 04 Информатика

Учебная программа составлена на основе ОСВО 1-31 03 04-2021, типового учебного плана G31-1-029/пр-тип от 30.06.2021, учебных планов БГУ: №G31-1-031/уч. от 30.06.2021, №G31-1-021/уч.ин. от 23.07.2021, № G31-1-213/уч. от 22.03.2022.

составители:

- **И.** С. Козловская, доцент кафедры компьютерных технологий и систем факультета прикладной математики и информатики Белорусского государственного университета, кандидат физико-математических наук, доцент.
- **Е. С. Чеб**, доцент кафедры компьютерных технологий и систем факультета прикладной математики и информатики Белорусского государственного университета, кандидат физико-математических наук, доцент.
- **В. В. Дайняк**, доцент кафедры компьютерных технологий и систем факультета прикладной математики и информатики Белорусского государственного университета, кандидат физико-математических наук, доцент.
- С. В. Шолтанюк, старший преподаватель кафедры компьютерных технологий и систем факультета прикладной математики и информатики Белорусского государственного университета.

РЕЦЕНЗЕНТЫ:

- **Д.В.** Баровик, заместитель директора ОАО "Центр банковских технологий", канд. физ.-мат. наук, доцент;
- **В.И. Репников,** заведующий кафедрой Вычислительной математики ФПМИ, канд. физ.-мат. наук, доцент.

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой компьютерных технологий и систем БГУ (протокол № 14 от 24.05.2024)

Научно-методическим советом БГУ (протокол № 8 от 31.05.2024)

Заведующий кафедрой компьютерных технологий и систем

В. 1

В. В. Казаченок

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Дисциплина "Математическое моделирование" посвящена построению на основе законов, которым подчиняется рассматриваемый объект, математических моделей этого объекта и исследованию построенной модели. Этот курс естественным образом примыкает к курсу "Дифференциальные уравнения в частных производных и их приложения", но в отличие от него ориентирован на решение большего количества конкретных прикладных задач, а также тесно связан физике и численным методам. В курсе циклами дисциплин по Дифференциальные уравнения в частных производных и их приложения " круг таких задач ограничивался рамками классической физики, но применяемые при их исследовании методы являются преимущественно математическими, что дает возможность расширить область применения изучаемых уравнений и методов с тем, чтобы выйти за рамки классической физики и использовать их в квантовой механике, биологии, экологии, экономике и других областях. Все это в совокупности И методы исследования составляют математическое И моделирование.

Цели и задачи учебной дисциплины

Цель учебной дисциплины «Математическое моделирование» — дать краткую информацию о разнообразии математических моделей и проблемы, стоящие в разных направлениях естествознания, а также представить студентам научные направления математического моделирования.

Образовательная цель: формирование составной части банка знаний, получаемых будущими специалистами в процессе учебы и необходимых им в дальнейшем для успешной работы.

Развивающая цель: формирование у студентов основ математического мышления, изучение алгоритмов исследования разрешимости прикладных задач.

Задачи учебной дисциплины:

- 1. Освоение методов решения и исследования краевых задач для дифференциальных уравнений с частными производными;
 - 2. Математическое моделирование естественнонаучных процессов.

Место учебной дисциплины в системе подготовки специалиста с высшим образованием.

Учебная дисциплина «Математическое моделирование» относится к **модулю** «Интеллектуальные системы» государственного компонента.

Связи с другими учебными дисциплинами: учебная дисциплина «Математическое моделирование» тесно связана с такими дисциплинами как: «Дифференциальные уравнения в частных производных и их приложения», «Функциональный анализ», «Численные методы».

Требования к компетенциям

Освоение учебной дисциплины «Математическое моделирование» должно обеспечить формирование следующих компетенций:

БПК. Применять базовые принципы построения математических моделей и выполнять их анализ в типовых задачах организационного управления и

естественно-интеллектуальной активности человека, использовать системы искусственного интеллекта на практике.

В результате освоения учебной дисциплины студент должен:

знать:

- основы теории математического моделирования (основные определения и положения метода математического моделирования);
 - основные виды математических моделей;
- основные законы, которые действуют в различных областях научного знания и которым подчиняется исследуемый объект;
 - вывод основных уравнений математических моделей
 - методы исследования задач для математического моделирования;

уметь:

- выбирать вид математической модели и применяемый математический аппарат в зависимости от особенностей исследуемой системы и целей моделирования:
- использовать принципы метода математического моделирования и законы, действующие в исследуемой системе, для построения математической модели;
 - строить дифференциальные модели различных задач физики;
- выполнять корректную постановку граничных задач для уравнений математических моделей;
- использовать методы исследования для изучения задач математической физики.

владеть:

- методами математического моделирования;
- навыками самообразования и способами использования аппарата дифференциальных уравнений с частными производными для проведения математических и междисциплинарных исследований.

Структура учебной дисциплины

Дисциплина изучается в 7 семестре. Всего на изучение учебной дисциплины «Математическое моделирование» отведено:

- для очной формы получения высшего образования: 108 часов, в том числе 68 аудиторных часов, из них: лекции — 34 часа, лабораторные занятия — 30 часов, управляемая самостоятельная работа — 4 часа.

Трудоемкость учебной дисциплины составляет 3 зачетные единицы. Форма промежуточной аттестации – экзамен.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Раздел 1. Математическое моделирование

Тема 1.1. Принципы математического моделирования.

Принципы математического моделирования. Дифференциальные модели. Вывод уравнения колебания струны. Постановка краевых задач для волнового уравнения. Вывод уравнения теплопроводности. Постановка краевых задач для тепловых процессов.

Тема 1.2. Электродинамика.

Уравнения Максвелла. Материальные уравнения Максвелла. Уравнения для комплексных амплитуд. Вывод уравнения Гельмгольца.

Тема 1.3. Стационарные уравнения.

Уравнение Пуассона и Лапласа. Краевые задачи Дирихле и Неймана. Формулы Грина. Построение функции Грина для полупространства. Построение функции Грина для шаровой области.

Тема 1.4. Уравнение Лапласа.

Гармонические функции, их свойства. Фундаментальное решение для уравнения Лапласа. Объемный и поверхностный потенциалы.

Раздел 2. Математические методы обработки информации

Тема 2.1. Ряды Фурье для периодических функций.

Разложение периодической функции в ряд Фурье. Сходимость ряда Фурье в точке. Эффект Гиббса. Спектральный анализ периодических функций. Методы суммирования медленно сходящихся рядов. Примеры решения задач.

Тема 2.2. Непрерывное преобразование Фурье

Интеграл Фурье и преобразование Фурье непериодической функции. Основные свойства преобразования Фурье. Свертка двух функций. Спектральный и корреляционный анализ непериодических функций. Примеры решения задач.

Тема 2.3. Применение рядов Фурье и преобразования Фурье

Применение рядов Фурье для дифференциальных операторов на примере решения задачи о колебании осциллятора под действием периодической силы.

Применение непрерывного преобразования Фурье на примере решения задачи о случайных блужданиях на решетке.

Раздел 3. Введение в теорию динамических систем

Тема 3.1. Динамические системы.

Динамические системы с непрерывным и дискретным временем. Динамические системы с одномерным и двумерным фазовым пространством. Фазовые портреты динамических систем. Стационарные точки динамической системы с одномерным фазовым пространством. Бифуркационные диаграммы в одномерном фазовом пространстве. Основные типы бифуркаций (седлоузловая, транскритическая, вилкообразные бифуркации). Гистерезис.

Тема 3.2. Фазовый поток и фазовый портрет динамической системы.

Фазовый поток и фазовый портрет динамической системы с двумерным фазовым пространством. Изоклины и нульклины. Анализ устойчивости стационарных точек на основе линеаризации. Типы устойчивости стационарных точек. Предельные циклы. Теорема Пуанкаре-Бендиксона.

Раздел 4. Математическое моделирование в биологии. Модели популяций

Тема 4.1. Модель Мальтуса для популяции.

Точечная модель. Дифференциальная модель. Исследование автономных моделей. Логистическая модель популяции.

Тема 4.2. Модель Лотки-Вольтерра.

Математическая модель «хищник-жертва». Устойчивость популяционных моделей. Обобщения моделей.

Тема 4.3. Моделирование пространственно - распределенных популяций.

Моделирование перемещения бактерий. Функции рождения и уничтожения. Вывод уравнения Колмогорова - Петровского - Пискунова. Автомодельные решения популяционных уравнений.

Tema 4.4. Пространственное моделирование двухкомпонентных популяций.

Описательная модель популяции амеб. Моделирование механизмов передвижения. Функции рождения и уничтожения. Уравнения пространственной динамики популяции амеб. Закон сохранения количества вещества. Постановка начально - краевых задач.

Тема 4.5. Марковские стохастические процессы в популяциях.

Одномерные стохастические процессы. Двумерные стохастические процессы. Параболические уравнения для плотности распределения популяций. Стохастические пространственные модели популяций.

Тема 4.6. Имитационное моделирование популяций.

Описательная модель. Разностные уравнения математической модели. Клеточные автоматы. Абстрактные эволюционные модели. Пример дарвинской модели.

Раздел 5. Некоторые модели в экологии

Tema 5.1. Описательная модель распространения загрязняющей примеси в грунтовых водах.

Основные положения, параметры и функции модели. Моделирование источников воды и примеси. Динамические уравнения перемещения воды с примесью в пористой среде. Уравнение перемещения примеси в грунтовых водах. Уравнение движения воды в грунте. Моделирование очистных сооружений.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ Очная форма получения высшего образования с применением дистанционных образовательных технологий (ДОТ)

темы		K		во ауди	торных		COB	
Номер раздела,	Название раздела, темы	Лекции	Практические занятия	Семинарские занятия	Лабораторные занятия	Иное	Количество часов УСР	Форма контроля знаний
1	2	3	4	5	6	7	8	9
1	Математическое моделирование	8			6		2	
1.1	Принципы математического моделирования	2			2			опрос и проверка отчета по лабораторной работе
1.2	Электродинамика	2			2			опрос и проверка отчета по лабораторной работе
1.3	Стационарные уравнения	2					2	опрос и проверка отчета по лабораторной работе
1.4	Уравнение Лапласа	2			2			коллоквиум
2	Математические методы обработки информации	8			6		2	
2.1	Ряды Фурье для периодических функций	2			2			опрос и проверка отчета по лабораторной работе
2.2	Непрерывное преобразование Фурье	2			2			опрос и проверка отчета по лабораторной работе
2.3	Применение рядов Фурье и преобразования Фурье	4			2		2	Контрольная работа проверка отчета по лабораторной работе
3	Введение в теорию динамических систем	4			4			

3.1	Динамические системы	2	2	опрос и проверка отчета по лабораторной работе
3.2	Фазовый поток и фазовый портрет динамической системы	2	2	опрос и проверка отчета по лабораторной работе
4	Математическое моделирование в биологии. Модели популяций.	12	12	
4.1	Модель Мальтуса для популяции	2	2	опрос и проверка отчета по лабораторной работе
4.2	Модель Лотки-Вольтерра	2	2	опрос и проверка отчета по лабораторной работе
4.3	Моделирование пространственно - распределенных популяций	2	2	опрос и проверка отчета по лабораторной работе
4.4	Пространственное моделирование двухкомпонентных популяций	2	2	опрос и проверка отчета по лабораторной работе
4.5	Марковские стохастические процессы в популяциях	2	2	опрос и проверка отчета по лабораторной работе
4.6	Имитационное моделирование популяций	2	2	опрос и проверка отчета по лабораторной работе
5	Некоторые модели в экологии	2	2	
5.1	Описательная модель распространения загрязняющей примеси в грунтовых водах	2	2	Контрольная работа

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Основная литература

- 1. Горлач, Б. А. Математическое моделирование. Построение моделей и численная реализация: учебное пособие для студентов вузов, / Б. А. Горлач, В. Г. Шахов. Изд. 5-е, стер. Санкт-Петербург; Москва; Краснодар: Лань, 2023. 291 с. URL: https://e.lanbook.com/book/305219.
- 2. Чеб, Е. С. Интегральные преобразования : учеб. материалы для студ. фак. прикладной математики и информатики : в 2 ч. / Е. С. Чеб ; БГУ, Фак. прикладной математики и информатики, Каф. компьютерных технологий и систем. Минск : БГУ, Ч. 2 : . 2022. 61 с. URL: https://elib.bsu.by/handle/123456789/292888.
- 3. Ризниченко, Г. Ю. Математическое моделирование биологических процессов. Модели в биофизике и экологии : учебное пособие для вузов / Г. Ю. Ризниченко. 2-е изд., перераб. и доп. Москва : Юрайт, 2024. 181с.
- 4. Моделирование экологических процессов: учебно-методическое пособие / С. А. Лаптёнок, и др.; УО "Международный гос. экологический институт им. А. Д. Сахарова" БГУ, Факультет мониторинга окружающей среды, Кафедра ядерной и радиационной безопасности, Кафедра экологической медицины и радиобиологии. Минск: ИВЦ Минфина, 2022. 143 с. URL: https://elib.bsu.by/handle/123456789/289033.

Дополнительная литература

- 1. Умняшкин, С.В. Теоретические основы цифровой обработки и представления сигналов/ С.В.Умняшкин. М.:Техносфера, 2021. 550 с.
- 2. Ерофеенко В.Т., Козловская И.С. Уравнения с частными производными и математические модели в экономике: Курс лекций. Изд. стереотипное. М.: Книжный дом «ЛИБРОКОМ», 2018. 248 с.
- 3. Альсевич, Л.А. Практикум по дифференциальным уравнениям : учеб. пособие для студ. матем., физических и экономических спец. вузов / Л. А. Альсевич, С. А. Мазаник, Л. П. Черенкова. 2-е изд., испр. и доп. Минск : БГУ, 2000.-311 с.

Перечень рекомендуемых средств диагностики и методика формирования итоговой отметки

Текущий контроль осуществляется путем оценки знаний и активности студентов на лабораторных занятиях, контрольных мероприятий в форме контрольной работы, коллоквиума, отчета по лабораторным работам, отчета по самостоятельным работам.

Выполнение заданий является обязательным для всех студентов.

Основным средством диагностики усвоения знаний и овладения необходимыми компетенциями по учебной дисциплине «Математическое моделирование» является проверка отчетов по лабораторным работам, выполняемых в рамках часов, отводимых на лабораторные занятия, контрольная работа, коллоквиум.

Отметка за лабораторное занятие включает:

- ответ (полнота ответа) 30 %
- выполнение лабораторной работы 70 %

Коллоквиум используются для обобщения и систематизации учебного материала. В коллоквиум включаются теоретический вопрос и решение практической задачи. При оценивании коллоквиума внимание обращается на:

- содержание и последовательность изложения теоретического вопроса -30%
- соответствие и полноту раскрытия вопроса 30 %
- грамотный научный подход к решению практической задачи 40%

Формой промежуточной аттестации по дисциплине учебным планом предусмотрен экзамен.

Для формирования итоговой отметки по учебной дисциплине используется модульно-рейтинговая система оценки знаний студента, дающая возможность проследить и оценить динамику процесса достижения целей обучения. Рейтинговая система предусматривает использование весовых коэффициентов для текущей и промежуточной аттестации студентов по учебной дисциплине.

Формирование итоговой отметки в ходе проведения контрольных мероприятий текущей аттестации (примерные весовые коэффициенты, определяющие вклад текущей аттестации в отметку при прохождении промежуточной аттестации):

- ответы на лабораторных занятиях-20%
- результаты коллоквиума 30 %
- отчеты по лабораторным работам 20%
- контрольная работа 30%

Итоговая отметка по дисциплине рассчитывается на основе итоговой отметки текущей аттестации (рейтинговой системы оценки знаний) 40 % и экзаменационной отметки 60 %.

Примерный перечень заданий для управляемой самостоятельной работы

Управляемая самостоятельная работа предлагается в виде лабораторной работы

Тема 1.3. Стационарные уравнения (2 ч).

В лабораторной работе необходимо решить краевую задачу в Wolfram Mathematica. Обеспечение на образовательном портале – методические указания для выполнения работы.

Форма контроля – проверка отчета по лабораторной работе.

Тема 2.3. Применение рядов Фурье и преобразования Фурье (2 ч)

В лабораторной работе необходимо с помощью преобразования Фурье решить поставленную задачу. Обеспечение на образовательном портале — методические указания для выполнения работы.

Форма контроля – проверка отчета по лабораторной работе.

11

Описание инновационных подходов и методов к преподаванию учебной дисциплины

При организации образовательного процесса используется *практико-ориентированный подход*, который предполагает:

- освоение содержание образования через решения практических задач;
- приобретение навыков эффективного выполнения разных видов профессиональной деятельности;
- ориентацию на генерирование идей, реализацию групповых студенческих проектов, развитие предпринимательской культуры;
- использование процедур, способов оценивания, фиксирующих сформированность профессиональных компетенций.

Методические рекомендации по организации самостоятельной работы обучающихся

Для организации самостоятельной работы учебной студентов дисциплине «Математическое моделирование» следует использовать современные информационные технологии, разместить в сетевом доступе комплекс учебных и учебно-методических материалов (учебно-программные материалы, учебное издание для теоретического изучения дисциплины, презентации лекций, методические указания к лабораторным электронные версии домашних заданий, материалы текущего контроля и текущей аттестации, определить соответствие позволяющие деятельности обучающихся требованиям образовательных стандартов высшего образования и учебно-программной документации, в том числе вопросы для подготовки зачету, задания, вопросы ДЛЯ самоконтроля, К список рекомендуемой литературы, информационных ресурсов и др.).

Примерный перечень вопросов к экзамену

- 1. Вывод уравнения колебания струны.
- 2. Постановка краевых задач для волнового уравнения.
- 3. Вывод уравнения теплопроводности.
- 4. Постановка краевых задач для тепловых процессов.
- 5. Уравнения Максвелла.
- 6. Вывод уравнения Гельмгольца.
- 7. Краевые задачи Дирихле и Неймана.
- 8. Формулы Грина.
- 9. Объемный и поверхностный потенциалы.
- 10.Ряд Фурье по тригонометрической системе для периодических функций, заданных на отрезке $[-\pi,\pi],[0,\pi],[-l,l]$ Ряд Фурье по тригонометрической системе для четных и нечетных периодических функций.
- 11. Комплексная форма ряда Фурье и его связь с вещественной формой.

- 12. Сходимость ряда Фурье в точке для кусочно-гладких функций.
- 13. Эффект Гиббса и методы его подавления.
- 14.Спектр периодических функций и его свойства. Спектры четных и нечетных функций.
- 15. Суммирование рядов Фурье.
- 16.Интеграл Фурье в комплексной форме. Непрерывное преобразование Фурье абсолютно суммируемых функций. Синус- и косинус-преобразования Фурье.
- 17. Свойства преобразования Фурье.
- 18. Непрерывное преобразование Фурье квадратично суммируемых функций.
- 19. Спектральный анализ непериодических функций.
- 20. Свертка и корреляция. Основная теорема о свертке.
- 21. Применение рядов Фурье и непрерывного преобразование Фурье при решении прикладных задач.
- 22. Основные понятия теории динамических систем.
- 23. Стационарные точки динамической системы с одномерным фазовым пространством.
- 24. Бифуркации в динамических системах с одномерным фазовым пространством.
- 25. Фазовый поток и фазовый портрет динамической системы с двумерным фазовым пространством. Изоклины и нульклины.
- 26. Анализ устойчивости стационарных точек динамической системы с двумерным фазовым пространством на основе линеаризации. Типы устойчивости стационарных точек.
- 27. Предельные циклы динамической системы с двумерным фазовым пространством. Теорема Пуанкаре-Бендиксона.
- 28. Модель Мальтуса для популяции.
- 29. Исследование автономных моделей. Логистическая модель популяции.
- 30. Модель Лотки-Вольтерра. Математическая модель «хищник-жертва».
- 31. Устойчивость популяционных моделей. Обобщения моделей.
- 32. Моделирование перемещения бактерий. Функции рождения и уничтожения.
- 33. Вывод уравнения Колмогорова Петровского Пискунова.
- 34. Автомодельные решения популяционных уравнений.
- 35.Описательная модель популяции амеб. Моделирование механизмов передвижения. Функции рождения и уничтожения.
- 36. Уравнения пространственной динамики популяции амеб. Закон сохранения количества вещества.
- 37. Постановка начально краевых задач.
- 38.Одномерные стохастические процессы.
- 39. Двумерные стохастические процессы.
- 40. Параболические уравнения для плотности распределения популяций.
- 41. Стохастические пространственные модели популяций.
- 42. Имитационное моделирование популяций.
- 43. Разностные уравнения математической модели.

- 44. Клеточные автоматы.
- 45. Абстрактные эволюционные модели.
- 46.Описательная модель распространения загрязняющей примеси в грунтовых водах.
- 47. Динамические уравнения перемещения воды с примесью в пористой среде.
- 48. Моделирование очистных сооружений.

протокол согласования учебной программы уо

Название учебной дисциплины, с которой требуется согласование	Название кафедры	Предложения об изменениях в содержании учебной программы учреждения высшего образования по учебной дисциплине	Решение, принятое кафедрой, разработавшей учебную программу (с указанием даты и номера протокола)
Учебная дисциплина не требует согласования			

Заведующий кафедрой доктор педагогических наук, профессор

Zell .

В. В. Казаченок

24 мая 2024 г.

ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ К УЧЕБНОЙ ПРОГРАММЕ МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

1-31 03 04 Информатика

7 семестр

на 2025/2026 учебный год

№ п/п	Дополнения и изменения	Основание
1	В учебно-методической карте на стр. 8-9 в колонке «Форма контроля знаний» в пунктах 1.4, 4.2 добавить: Контрольная работа.	Изменения в учебных планах

Учебная программа пересмотрена и одобрена на заседании кафедры компьютерных технологий и систем (протокол № 15 от 24 июня 2025 г.)

Заведующий кафедрой, д. пед. наук, профессор

В. В. Казаченок

УТВЕРЖДАЮ жис Декан факультета

к. ф.-м. наук, доцент

Ю.Л. Орлович