Сиднонимины как модуляторы ответа растений на действие засухи

<u>Гурина А. К.</u>^{A*}, Леонова Т. С.^Б, Шумилина Ю. С.^Б, Маргарит А. А.^Б, Силинская С. А.^Б, Орлова А. А.^Б, Соболева А. В.^{Б,Д}, Черепанов И. А.^В, Калганова Н. В.^В, Билова Т. Е.^{A,Б}, Камионская А. М.^Г, Черевацкая М. А.^A, Фролов А. А.^Б

^A Кафедра физиологии и биохимии растений, Санкт-Петербургский Государственный Университет, Университетская наб, 7/9, Санкт-Петербург, Россия;

^Б Лаборатория аналитической биохимии и биотехнологии, Институт Физиологии Растений им. К. А. Тимирязева, РАН, Ботаническая ул. 35, Москва, Россия;

^В Институт элементоорганических соединений им. А.Н. Несмеянова РАН, Москва, Россия;

 $^{\Gamma}$ Федеральный исследовательский центр «Фундаментальные основы биотехнологии» PAH, Москва, Российская Федерация $^{\Pi}$ Институт биохимии растений, Γ алле, Γ ермания. $^{*}E$ -mail: gnastyak0@gmail.com

Ключевые слова: Pisum sativum, ВЭЖХ-МС, засуха, протеомика, сиднонимины, фитоэффекторы.

Широко известно, что засуха представляет собой один из ключевых климатических факторов, негативно сказывающихся на продуктивности растений и качестве урожая. По мере развития молекулярных методов исследования и, как следствие, нашего понимания механизмов, лежащих в основе развития ответа на стресс, в биотехнологии был разработан ряд подходов для его модуляции. Фитоэффекторы – разнородная группа химических соединений, воздействующих на различные молекулярные мишени в организме растений и нацеленных на модуляцию ответа на стрессоры различной природы, повышение урожайности, увеличение биомассы и прочие показатели продуктивности. Их исследование предполагает комплексный подход, включающий в себя подбор оптимальных концентраций и матрицы (растворителя) с последующим анализом биодоступности вещества для растения, поиск наиболее эффективного способа аппликации и тестирование на различных сельскохозяйственных культурах на уровне физиологии, динамики биохимических маркеров стресс-ответа и, в конечном итоге, эффектор-зависимых изменениях метаболома и протеома.

Химические вещества из группы сиднониминов представляют собой перспективные фитоэффекторы. Это мезоионные гетероциклические соединения, интерес к которым в качестве эффекторных агентов вызван, в частности, их способностью генерировать оксид азота (NO). Предполагается, что, являясь донорами NO, данные соединения способы регулировать активность определенных белков, задействованных в защитных пу-

тях (в частности, регуляции гормонального сигналинга), через нитрозилирование остатков цистеина в полипептидной цепи. Ранее было показано, что тестируемые сиднонимины B1-01 и SP-13 проявляли протекторные свойства, а В1-05 – гербицидные. После проведения предварительной оценки стресс-ответа растений гороха на физиологическом и биохимическом уровне, был выполнен протеомный анализ семян молочной спелости в трех вариантах обработки сиднониминами: предобработка семян, обработка листьев или комбинированная обработка. Для этого было проведено выделение тотальной фракции белка семян, которая была подвергнута ограниченному протеолизу трипсином и проанализирована с помощью нанопоточной обратнофазовой жидкостной хроматографией, сопряженной онлайн с масс-спектрометром Orbitrap Fusion Tribrid (nanoRP-HPLC-LIT/Q-Orbitrap-MS). Статистический анализ на базе программного обеспечения Protome Discoverer 2.2, Progenesis QI с последующей обработкой данных в среде программирования R позволил выявить белки, дифференциально-экспрессированные в ответ на воздействие засухи и сиднониминов, установить их функциональные классы и субклеточную локализацию. В результате было выдвинуто предположение о протекторном потенциале исследуемых веществ.

Исследование выполнено при поддержке Российского Научного Фонда (проект 22-26-00337).

Роль антрахинона париетина в устойчивости к обезвоживанию талломов лишайника Xanthoria parietina

<u>Даминова А. Г.</u>^{A*}, Лексин И. Ю.^A, Хабибрахманова В. Р.^A, Гурьянов О. П.^A, Галеева Е. И.^A, Трифонова Т. В.^A, Вескеtt R. Р.^Б, Минибаева Ф. В.^A

 A Казанский институт биохимии и биофизики, ФИЦ КазНЦ РАН, Казань, Россия. *E-mail: daminova.ag@gmail.com

^B School of Life Sciences, University of KwaZulu-Natal, Scottsville, South Africa

Лишайники представляют собой фотосинтезирующие симбиотические ассоциации, таллом которых образован двумя основными партнерами — микобионтом (грибной партнер, в основном, аскомицеты) и фотобионтом (водоросль или цианобактерии) (Eisenreich et al., 2011). Лишайники отличаются разнообразием форм и цвета и могут произрастать на поверхности почти каждого субстрата, включая почву, камни, кору деревьев. Лишайники относят к экстремофильным организмам ввиду их феноменальной устойчивости к действию неблагоприятных факторов окружа-