весных условиях: при высокоскоростном нагреве и последующем охлаждении в них возникает высокая концентрация вакансий, которая оказывает влияние на структурные и фазовые превращения в тонких пленках.

В настоящей работе с помощью вычислительного эксперимента проведено исследование изменения концентрации точечных дефектов, в частности вакансий, в пленках алюминия и серебра. Исследованы изменения структуры поликристаллических пленок ГЦК металлов при лазерной термообработке.

Показано, что при импульсном лазерном воздействии на пленки ГЦК металлов с исходной концентрацией вакансий выше равновесной в течение всего времени действия импульса собирательная рекристаллизация протекает при наличии высокой неравновесной концентрации вакансий, стимулирующей миграцию межзеренных границ.

ПРИБЛИЖЕННОЕ ОПИСАНИЕ ОРИЕНТАЦИОННЫХ ЭФФЕКТОВ В ЖИДКОКРИСТАЛЛИЧЕСКИХ СЛОЯХ

Е. А. Мельникова

Белорусский государственный университет, г. Минск

Проблема управления характеристиками лазерного излучения является одной из актуальных в современной оптике. В этой связи в последнее время проявляется большой интерес к использованию жидких кристаллов для решения задач оптоэлектроники и обработки информации, обусловленный их уникальными электрооптическими свойствами.

В данной работе рассматривается возможность приближенного аналитического описания ориентации директора жидкого кристалла $\theta(z)$ при средних и высоких превышениях порогового значения электрического поля. Ограничиваясь первым членом эллиптического интеграла [1]

$$F(\theta(z), \theta_m) = \left(\frac{1}{4}\cos\theta_m\right) \ln\left(tg\left(\frac{\pi}{4} + \frac{1}{2}\arcsin\left(\frac{\sin\theta}{\sin\theta_m}\right)\right)\right),\tag{1}$$

получаем при $\theta_m ≈ 1$

$$\theta(z) = 2 \operatorname{arctg}\left(e^{\pi \frac{E}{E_t} \frac{z}{d}}\right) - \frac{\pi}{2}, \tag{2}$$

где E — величина электрического поля, E_t — пороговое поле, θ_m — ориентация директора в центре плоскопараллельного слоя $\left(z = \frac{d}{2}\right)$.

Выражение $\theta(z)$ можно представить в виде:

$$\theta(z) = \frac{\pi}{2} - \Pi\left(\pi \frac{E}{E_t} \frac{z}{d}\right),\tag{3}$$

где $\Pi \left(\pi \frac{E}{E_t} \frac{z}{d} \right)$ – "угол параллельности" Лобачевского.

Результаты расчетов показали, что при значениях $E/E_t > 2$ максимальная погрешность, достигаемая в центре слоя, исходя из приближенного представления $\theta(z)$ (2), составляет менее 3 %. С уменьшением значения $\frac{z}{d}$ погрешность существенно уменьшается. Таким образом, можно утверждать, что полученное приближение, описывающее зависимость $\theta(z)$, имеет достаточно широкие границы применимости.

1. Градштейн И. С., Рыжик И. М. Таблицы интегралов, сумм, рядов и произведений. – М., 1963.

УСТРОЙСТВО ДЛЯ КОНТРОЛЯ КАЧЕСТВА ОБРАБОТКИ ПОВЕРХНОСТЕЙ

М. М. Кугейко, А. Е. Семёнов, Б. Б. Виленчиц

Белорусский государственный университет, г. Минск

При обнаружении поверхностных дефектов объектов для решения задачи исключения методических погрешностей, обусловленных изменениями аппаратурных констант приемно-излучающих блоков и изменениями в окружающей среде, а также для расширения числа контролируемых дефектов предложен метод и разработана структур-