ОБ ОТНОСИТЕЛЬНОМ ПОВОРОТЕ ДЛЯ ТРЕХМЕРНОЙ ЛИНЕЙНОЙ ДИФФЕРЕНЦИАЛЬНОЙ СИСТЕМЫ

Рассмотрим две линейные дифференциальные системы:

$$\dot{\bar{x}}(t) = A\bar{x}(t),\tag{1}$$

$$\dot{\bar{y}}(t) = B\bar{y}(t),\tag{2}$$

с начальными условиями $\bar{x}(t)|_{t=0}=\bar{x}^0,\; \bar{y}(t)|_{t=0}=\bar{y}^0;\; A$ и B — действительные постоянные матрицы 3-го порядка, $\bar{x}(t)$ и $\bar{y}(t)$ — векторы (столб-

цы) размерности 3.

В каждой точке траекторий систем (1) и (2) строим соответствующий сопровождающий трехгранник. Исследуем ограниченность относительного поворота [1] касательных векторов $\overline{\tau}_A(t)$ и $\overline{\tau}_B(t)$, а также векторов нормали $\overline{v}_A(t)$ и $\overline{v}_B(t)$ построенных трехгранников, где $\overline{\tau}_A(t)$ — касательный орт, а $\overline{v}_A(t)$ — орт нормали сопровождающего трехгранника некоторой траектории системы (1), $\overline{\tau}_B(t)$ и $\overline{v}_B(t)$ — соответствующие орты для траектории системы (2).

Известно [2], что об ограниченности некоторой непрерывной функции $\varphi(t)$ можно судить по поведению функции $\cos \varphi(t)$. Относительный поворот векторов $\overline{\tau}_A(t)$ и $\overline{\tau}_B(t)$, $\overline{v}_A(t)$ и $\overline{v}_B(t)$ будем оценивать, исследуя

функции

$$\cos \left[\overline{\tau}_A(t) \right]^{\wedge} \overline{\tau}_B(t) = \cos \left[\overline{v}_A(t) \right]^{\wedge} \overline{v}_B(t) = \cos \left[\overline{v}_A(t) \right]^{\wedge} \overline{v}_A(t) = \cos \left[\overline{v}_A(t) \right]^{\wedge} \overline{v}_B(t) = \cos \left[\overline{v}_A(t) \right]^{\wedge} \overline{v}_A(t) = \cos \left[$$

Матрицы А и В можно [3] представить в виде:

$$A = T\dot{J}_A T^{-1}, \ B = S\dot{J}_B S^{-1}, \tag{3}$$

где T и S — некоторые невырожденные матрицы, а матрицы \hat{J}_A и \hat{J}_B имеют специальный вид в зависимости от собственных чисел матриц A и B. Обозначим собственные числа матриц A и B соответственно λ_1 , λ_2 , λ_3 и $\hat{\lambda}_1$, $\hat{\lambda}_2$, $\hat{\lambda}_3$;

$$\bar{x} = \exp(At) \, \bar{x}^0, \ \bar{y} = \exp(Bt) \, \bar{y}^0;
T^{-1} \, \bar{x}^0 = [x_1, x_2, x_3]', \ S^{-1} \, \bar{y}^0 = [y_1, y_2, y_3]';
S' \, A \bar{x} = [F_1(t), F_2(t), F_3(t)]', \ k_1 = \sqrt{x_2^2 + x_3^2}, \ \hat{k}_1 = \sqrt{y_2^2 + y_3^2};
S' \, [(A \bar{x}, A \bar{x}) \, A^2 \bar{x} - (A \bar{x}, A^2 \bar{x}) \, A \bar{x}] = [\hat{F}_1(t), \hat{F}_2(t), \hat{F}_3(t)]',
S' \, T = C = \{c_i\}, i, j = 1, 2, 3.$$

Имеют место следующие утверждения.

Теорема 1. Если матрицы A и B имеют только действительные собственные числа, то для любого решения $\overline{x}(t)$ системы (1) и для любого решения $\overline{y}(t)$ системы (2) относительный поворот касательных векторов $\overline{\tau}_A(t)$ и $\overline{\tau}_B(t)$, а также векторов нормали $\overline{v}_A(t)$ и $\overline{v}_B(t)$ ограничен на всем промежутке [0; $+\infty$ [. Теорема 2. Пусть B— нормальная матрица [3]. Когда λ_1 , λ_2 , λ_3 ,

Теорема 2. Пусть B — нормальная матрица [3]. Когда λ_1 , λ_2 , λ_3 , λ_1 — действительные, а λ_2 , λ_3 — мнимые собственные числа, относительный поворот $\overline{\tau}_A(t)$ и $\overline{\tau}_B(t)$ на промежутке [0; $+\infty$ [ограничен, если $F_1(t) \neq 0$ либо $F_1(t) \equiv 0$, но $\lambda_1 y_1 \neq 0$, и неограничен, если $F_1(t) \equiv 0$,

 $\lambda_1 y_1 = 0$. Относительный поворот $v_A(t)$ и $v_B(t)$ на промежутке $[0; +\infty[$ ограничен, если $\hat{F}_1(t) \not\equiv 0$ либо $\hat{F}_1(t) \equiv 0$, но $\hat{\lambda}_1(\hat{\lambda}_1 - \hat{\mu}) \, \hat{k}_1 y_1 \not= 0$ и неограничен, если $\hat{F}_1(t)\equiv 0$, $\hat{\lambda}_1(\hat{\lambda}_1-\hat{\mu})\hat{k}_1y_1=0$, где $\hat{\mu}=\text{Re }\hat{\lambda}_2$. Последующие теоремы формулируются в предположении, что обе

матрицы A и B — нормальные.

Теорема 3. Когда λ_2 , λ_3 $\hat{\lambda}_2$, $\hat{\lambda}_3$ — минмые собственные числа, причем $k_1=0$, относительный поворот $\overline{\tau}_A(t)$ и $\overline{\tau}_B(t)$ на промежутке $[0;+\infty]$ ограничен, если $\stackrel{\wedge}{\lambda_1} y_1 \neq 0$ либо $\stackrel{\wedge}{\lambda_1} y_1 = 0$, но $c_{11} \neq 0$, и неограничен, если $\lambda_1 y_1 = 0$ is $c_{11} = 0$.

Теорема 4. Когда λ_1 , λ_2 , $\hat{\lambda}_2$, $\hat{\lambda}_3$ — мнимые собственные числа, причем $\hat{k}_1=0$, относительный поворот $\overline{\tau}_A(t)$ и $\overline{\tau}_B(t)$ на промежутке $\{0;+\infty[$ ограничен, если $\lambda_1x_1\neq 0$ либо $\lambda_1x_1=0$, но $c_{11}\neq 0$, и неограничен, если $\lambda_1 x_1 = 0 \text{ if } c_{11} = 0.$

Теорема 5. Когда λ_2 , λ_3 , $\hat{\lambda}_2$, $\hat{\lambda}_3$ —мнимые собственные числа и $k_1\hat{k_1}\neq 0$, относительный поворот $\tau_A(t)$ и $\tau_B(t)$ на промежутке $[0; +\infty[$ ограничен, если $x_1y_1c_1,\lambda_1\lambda_1\neq 0$ и $\lambda_1>\mu$, $\stackrel{\wedge}{\lambda_1}>\stackrel{\wedge}{\mu}$, где $\mu=\operatorname{Re}\lambda_2$, $\stackrel{\wedge}{\mu}=\operatorname{Re}\stackrel{\wedge}{\lambda_2}$.

Теорема 6. Когда λ_2 , λ_3 λ_2 , λ_3 — мнимые собственные числа ($\lambda_2 = \mu +$ $+i\mathbf{v};\ \hat{\lambda}_2=\hat{\mu}+i\hat{\mathbf{v}})/$ и $k_1\hat{k_1}\neq 0$, для ограниченности относительного поворота касательных векторов $\bar{\tau}_A(t)$ и $\bar{\tau}_B(t)$ на промежутке $[0; +\infty[$ достаточно выполнение одного из следующих условий:

- 1. $\lambda_1 x_1 = 0$, $|c_{11}| = 1$, $\hat{\lambda}_1 y_1 \neq 0$; 2. $\lambda_1 x_1 \neq 0$, $|c_{11}| = 1$, $\hat{\lambda}_1 y_1 = 0$;
- 3. $\lambda_1 x_1 = 0$, $|c_{11}| = 1$, $\hat{\lambda}_1 y_1 = 0$, $v = \hat{v} \operatorname{sgn}(c_{11} \det C)$.

Относительный поворот этих векторов на промежутке [0; +∞[неограничен, если $\lambda_1 x_1 = 0$, $\hat{\lambda}_1 y_1 = 0$, $|c_{11}| = 1$, $v \neq \pm \hat{v}$

Теорема 7. Когда λ_2 , λ_3 , $\hat{\lambda}_2$, $\hat{\lambda}_3$ — мнимые собственные числа, относительный поворот векторов нормали $\overline{\nu}_A(t)$ и $\overline{\nu}_B(t)$ на промежутке $[0; +\infty[$ ограничен, если выполнено хотя бы одно из условий:

- 1. $|c_{11}| = 1$, $k_1(\lambda_1 \mu) \lambda_1 x_1 = 0$, $(\hat{\lambda}_1 \hat{\mu}) \hat{k}_1 \hat{\lambda}_1 y_1 \neq 0$;
- 2. $|c_{11}| = 1$, $k_1(\lambda_1 \mu) \lambda_1 x_1 \neq 0$, $(\lambda_1 \mu) k_1 \lambda_1 y_1 = 0$;
- 3. $|c_{11}| = 1$, $k_1(\lambda_1 \mu) \lambda_1 x_1 = 0$, $(\hat{\lambda}_1 \hat{\mu}) \hat{k}_1 \hat{\lambda}_1 y_1 = 0$, $v = \hat{v} \operatorname{sgn}(c_{11} \det C)$. Относительный поворот этих векторов на промежутке [0; +∞[неограничен, если $k_1(\lambda_1 - \mu) \lambda_1 x_1 = 0$, $(\lambda_1 - \mu) k_1 \lambda_1 y_1 = 0$, $|c_{11}| = 1$, $v \neq \pm v$.

ЛИТЕРАТУРА

1. Мазаник С. А.— Вести. Белорусского ун-та. Сер. 1, физ., мат. и мех., № 2, 1977, c. 74.

2. Красносельский М. А. Векторные поля на плоскости.— М., 1963.

Гантмахер Ф. Р. Теория матриц. — М., 1967.

Поступила в редакцию 25.05.78.