Краткие сообщения

УДК 535.215.6

А. М. КУЛЬША, В. Б. ЯРЖЕМБИЦКИЙ

ВЛИЯНИЕ ЭЛЕКТРОДОВ ИЗ SnO₂ НА ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ФОТОЭЛЕМЕНТОВ

Пленки двуокиси олова получают все более широкое использование при изготовлении различных приборов в качестве прозрачных проводящих покрытий. В данной работе рассматриваются возможности использования SnO_2 в качестве электрода к кремниевым p-n-фотоприемникам типа солнечных элементов и координатно-чувствительным приемникам.

Таблица 1 Методы изготовления исследуемых фоточувствительных структур на основе кремния

Структуры	Методы изготовления слоев				
	NI	SnO ₂	At	p-n	
Ni — SnO ₂ — (КЭС — 0,01) — — (КДБ — 0,3) — Al	электро- хим. осажден.	пиролиз [1]	вакуумное напыление, вжигание	Эпитаксия	
Ni — SnO ₂ — (КДБ — 0,02) — — (КЭФ — 4,5) — Ni	то же	то же		диффузия	

В табл. 1 приведены данные о методах изготовления исследуемых фоточувствительных структур; p-n-переход находится на глубине (1-3) мкм; толщина пластины 400 мкм.

Двуокись олова наносилась методом пиролиза [1] при температуре подложки ~500° С. Травление пленки SnO₂ производилось плавиковой кислотой или соляной с цинковым порошком.

На рис. 1 представлены спектральные зависимости фото э. д. с. и геометрия структур, а на рис. 2 — нагрузочные характеристики фотоэлементов (при освещении лампой КГМ:24-150 и плотности падающей мощности излучения $P \approx 24.4$ мВт/см²). Из рис. 1 и 2 следует, что p-n-переходы, покрытые пленкой SnO₂, обладают более высокой чувствительностью в области спектра 0.5-1.1 мкм. Полярность фото э. д. с. всегда соответствовала разделению электронно-дырочных пар в поле p-n-перехода. Дополнительным подтверждением этого является отсутствие влияния SnO₂ на форму спектра фото э. д. с. Форма нагрузочных кривых указывает на существенное влияние последовательного сопротивления на параметры исследуемых структур, когда они используются в качестве солнечных элементов (СЭ). Более полное представление о влиянии SnO₂ на параметры СЭ может быть получено при рассмотрении табл. 2. Фактор заполнения (*FF*) рассчитывался по формуле [2]:

$$FF = \left(1 - \frac{1}{\alpha V_{xx}}\right) \left(1 - \frac{\ln \alpha V_{xx}}{\alpha V_{xx}}\right),\tag{1}$$

где V_{xx} — напряжение холостого хода; $\alpha = q/nkT$, n принималось равной 1, что соответствует диффузионному протеканию тока. Выражение (1) не учитывает влияние последовательного сопротивления СЭ, и поэтому в табл. 2 величина фактора заполнения оказывается несколько завышенной. Из табл. 2 видно, что к. п. д. СЭ увеличивается в присутствии пленки SnO₂.

Таблица 2[°] Параметры исследуемых структур

Структуры	<i>V</i> _{хх} , в	I _{К.3} , mA/см ²	FF	К. п. д.,
Ni—SnO ₂ —(ҚЭС—0,01) — (ҚДБ—0,3)—A1	0,44	3,2	0,79	4,5
Без SnO ₂	0,38	2,6	0,76	3,07
$Ni - SnO_2 - (KДБ - 0,02) - (KЭФ - 4,5) - Ni$	0,38	6,3	0,76	7,4
Без SnO ₂	0,18	2,4	0,62	1,1

Известно [2], что пиролитическое нанесение SnO₂ на кремний приводит к окислению его поверхности. Причем наличие тонкой пленки окисла кремния существенно не сказывается на величине тока короткого замыкания [2]. Поэтому повышение к. п. д. и других параметров фотоэлементов может быть связано с уменьшением скорости поверхностной рекомбинации на пассивированной поверхности кремния, а также с улучшением условий собирания основных носителей заряда сплошным прозрачным электродом в сравнении с кольцевым непрозрачным контактом.

Влияние пленки SnO_2 на чувствительность координатно-чувствительных приемников изучалось на структурах $n^+ - p$ с прямоугольными алюминиевыми электродами на p-стороне. Оказалось, что в присутствии пленки SnO_2 , нанесенной на низкоомную n-область p-n-перехода, чувствительность фотоприемника увеличилась в три-четыре раза (110—150 мв/мВт·мм²). Количественно рост чувствительности не может быть обусловлен лишь просветляющим свойством SnO_2 на кремнии. По-видимому, создание гетероперехода приводит к появлению значительного

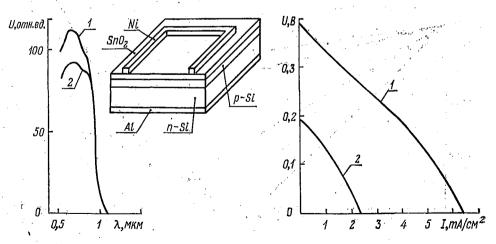


Рис. 1. Спектральные зависимости фото э. д. с. и геометрия структуры: I-c пленкой SnO_2 ; $2-Ges\ SnO_2$

Рис. 2. Нагрузочные характеристики фотоэлементов. Обозначения такие же, как и на рис. 1

изгиба зон на поверхности кремния, и, следовательно, к снижению потерь на поверхностную рекомбинацию электронов в тонком n-слое.

Полученные результаты позволяют рекомендовать применение пленок SnO_2 для улучшения ряда характеристик СЭ и координатно-чувствительных фотоприемников.

ЛИТЕРАТУРА

1. Лямичев И.Я., Марковский Л.Я., Николаев Ю. Н., Орлов И.Н.— Прикладная электролюминесценция.— М., 1974, с. 169.

2. Ghosh A. K. et al.— J. Appl. Phys., 1978, v. 49, № 6, p. 3490.

Поступила в редакцию 08.12.78.

НИИ ПФП, кафедра физики полупроводников

УДК 621.315.592

 Π . Φ . ЛУГАКОВ, Т. А. ЛУКАШЕВИЧ

КИНЕТИКА ОТЖИГА КОМПЛЕКСОВ БОР-ДИВАКАНСИЯ В КРЕМНИИ p-ТИПА

При облучении кристаллов кремния p-типа эффективно образуются радиационные дефекты (РД) с донорным уровнем E_v +0,21 эВ, относительно природы которых существуют различные точки зрения [1—3]. Выполненные нами в последнее время исследования по кинетике накопления РД в p-Si [4] позволили сделать заключение, что в состав этого дефекта входят атом бора и две вакансии (ВW). Данная работа выполнялась с целью определения некоторых параметров отжига комплекса ВW (порядок реакции и энергия активации отжига, а также частотный фактор, характеризующий скорость отжига дефекта).

Изучались легированные бором кристаллы с исходным удельным сопротивлением 10 Ом см, выращенные методом зонной плавки в вакууме. Образцы для измерений были облучены при температуре 50° С электронами с энергией 10 МэВ (интегральный поток $\Phi = 1 \cdot 10^{16}$ см⁻²).

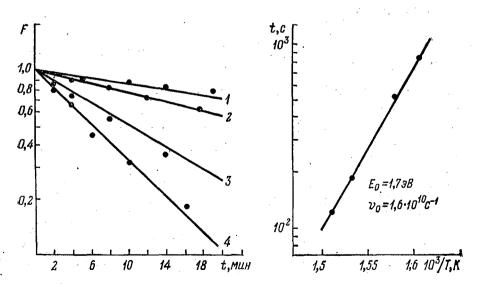


Рис. 1. Зависимость доли неотожженных дефектов от времени при различных температурах отжига: $1-350;\ 2-360;\ 3-380;\ 4-390^{\circ}\text{ C}$

Рис. 2. Зависимость времени отжига дефектов от обратной температуры