ВОЗДЕЙСТВИЕ НАНОИМПУЛЬСНОГО ЛАЗЕРНОГО ИЗЛУЧЕНИЯ НА ТОНКИЕ ПЛЕНКИ СЕЛЕНИДА КАДМИЯ

Г. Д. Ивлев, С. А. Манего

Институт электроники НАН Беларуси, Минск

В работе исследовалось влияние моноимпульсного лазерного облучения на фоточувствительные, люминесцентные, электрофизические свойства и морфологию поверхности тонких пленок селенида кадмия. Пленки селенида кадмия толщиной 0.5-1.2 мкм с концентрацией носителей тока $3\text{-}10^{16}$ см⁻³ были получены методом катодного трехэлектродного распыления с дополнительным ВЧ-смещением. Пленки облучались одиночными импульсами излучения рубинового лазера при длительности импульса по полувысоте 80 нс и плотности энергии W, варьируемой от 0.04 до 0.2 Дж/см. Неравномерность распределения энергии в лазерном пятне диаметром 5 мм не превышала $\pm 5\%$.

Анализ данных электронной микроскопии показал, что при плотностях энергии более $0.16~\rm Дж/cm$ происходило слияние зерен вследствие оплавления пленки. Факт плавления CdSe более выражен при дальнейшем, хотя и незначительном, повышении W до $0.18~\rm Дж/cm$, при котором обнаружено разрушение и выброс некоторого количества материала пленки. Модифицированная в этом режиме пленка CdSe также характеризуется наличием пор в количестве $-2.5-10~\rm ^7 cm^-$.

Установлены зависимости фоточувствительности и интенсивности фотолюминесценции облученных пленок от величины W. Интенсивность ИК-полосы люминесценции с ростом W уменьшается, а максимум интенсивности полосы сдвигается в длинноволновую сторону с $X_{max} = 909$ нм (W = 0 Дж/см²) до $X_{max} = 975$ нм (W = 0.11 Дж/см²). Анализ влияния лазерного воздействия на пленки CdSe и изменения спектральных характеристик ИК-люминесценции дают основания предположить, что данная полоса обусловлена вакансиями селена (V_{s_o}) и кислорода (O_{se}). В диапазоне плотностей энергии лазерного воздействия 0.15-0.2 Дж/см наблюдается возрастание фоточувствительности поликристаллических пленок CdSe в 2-3 раза.

Установлено, что яркостная температура зоны лазерного облучения пленок CdSe примерно на 150 К ниже, чем пленок $CdS_{02}Se_{0\cdot 8}$. Наблюдаются особенности изменения отражательной способности пленок (при лазерном воздействии) на длине волны зондирующего излучения 1.06 мкм.