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NMMUTAIITMOHHOE MOAEANPOBAHUE
OAHOHYKAEOTUAHBIX TEHETUUYECKUX ITOAUMOP®N3MOB
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Annomayus. J{ns uieHTHGUKALN OTHOHYKIICOTHIHBIX TOMMMOP(U3MOB B moclnenoBarenbHocTsax Monekyn JIHK npen-
JIOKEH TIOJIXOJT, OCHOBAHHBII Ha MIMUTALIMOHHOM MOJICITMPOBAaHHH CAHTOB OT/IEITbHBIX HyKJICOTHIIOB C HCIIOIB30BAHIEM TeHEePALIHH
CITy4aifHBIX COOBITHI IO OeTa-pacipeieIeHHIO I HOPMAJIBHOMY PacpeIelICHHIO, TTapaMeTPhl KOTOPBIX OLIEHUBAIOTCS Ha 6aze
HUMECIOHINXCA OKCIICPUMCHTAJIBHBIX JTaHHBIX. Pa3pa60TaHHBIﬁ TMOAXO/ MOBBIACT TOYHOCTD OIPEACIICHNA OAHOHYKIICOTUAHBIX
nonumop¢usmoB B Monekynax JIHK u mo3BossieT nccienoBars 10CTOBEPHOCTD PE3YJIBTaTOB OT/ACIBHBIX SKCIIEPUMEHTOB
1 OLEHHUTh TOYHOCTH NAapaMETPOB, MOJTYUYECHHBIX B PEaJbHBIX YCIOBHIX IPOBEACHUS SKCIEpUMeHTa. MIMuTannoHHas
MOJIeITb U METO/IbI aHAITH3a BepU(HLIUPOBAHBI HA HAOOPE JaHHBIX TEHOMHOTO cekBeHnpoBanus Monekya JHK yenoBeka,
npenocTaBieHHBIX KoHCOopIyMoM GIAB (Genome in a Bottle Consortium). BeimorHeH cpaBHUTEIBHBIN aHATIH3 H3BECTHBIX
CTATUCTUYECKHX aJlTOPUTMOB HACHTU(DHUKALNH OXHOHYKJICOTHIHBIX OIUMOP(GHU3MOB U METOI0B MAIITHHOTO O0Yy4eHNS,
rapaMeTphl KOTOPBIX HACTPAMBAIOTCS 10 CMOJICIMPOBAHHBIM JJAHHBIM T€HOMHOTO cekBeHupoBaHus monekyn JIHK gemo-
Beka. Jlydrnime pe3ynbraTsl HOJIyYeHbI Il MOZIeIel MalllMHHOTO 00y4YeHUs], Y KOTOPBIX TOYHOCTb HACHTH(UKAIINY CAlTOB
OJTHOHYKJICOTH/THBIX TTOJMMOPGHU3MOB Ha 2—5 % BBIIIE, YeM y KIIACCHUECKUX CTAaTUCTUYECKUX METOJIOB.
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Abstract. We propose an approach for the identification of single nucleotide polymorphisms (SNPs) in DNA sequen-
ces, based on the simulation modelling of sites of single nucleotides using the generation of random events according to
the beta or normal distributions, the parameters of which are estimated from the available experimental data. The deve-
loped approach improves the accuracy of determining SNPs in DNA molecules and permits to investigate the reliability
of specific experiments as well as to estimate the errors of determination of the parameters obtained in real experimental
conditions. The verification of the simulation model and analysis methods is carried out on a set of reference human
genomic DNA sequencing data provided by the Genome in a Bottle Consortium. The comparative analysis of the existing
statistical SNP identification algorithms and machine learning methods, trained on the simulated data from the genomic
sequencing of human DNA molecules, is carried out. The best results are obtained for machine learning models, in which
the accuracy of SNP identification is 2—5 % higher than for classical statistical methods.

Keywords: single nucleotide polymorphism; SNP; SNP identification; simulation modelling; machine learning.

Acknowledgements. This work was carried out in the framework of the state programme of scientific research «Con-
vergence-2025» (grant No. 3.04.3.1, state registration No. 20211918).

Introduction

Genetic polymorphism affects the human phenotype and other living organisms [1]. Single nucleotide poly-
morphisms (SNPs) are one of the most common types of genetic variation in the human genome. Knowledge
of the genes involved in cancer development, combined with the ability of genome sequencing and bioinfor-
matics analysis, is an important tool for screening patients at risk and assisting in genetic counseling [2].

Statistical methods of binomial distribution, entropy-based, Fisher’s exact tests and machine learning me-
thods are applied for identifying the SNPs in humans and plants [1; 3; 4]. These methods are quite universal
and simple for programme implementation, however, they are computationally expensive and difficult to be
effectively applied in the analysis of experimental data with a high noise level and various experimental distor-
tions, which are the sources of gaps, repetitions, and other anomalous values [5]. Practical experimental studies
use simulation modelling to select a proper SNP identification algorithm, test competing pipelines of analysis,
and evaluate the performance of specific experimental designs for studying biophysical systems [6; 7]. Simu-
lations are critical for testing methods and studying the effects of different phenotypic and genetic architectures
of biological traits. Modelled genotypes and phenotypes reflect the intended understanding of the true structure
of the phenotype, but do not guarantee the biological correctness of real phenotypes [8]. Simulation model-
ling is also used to generate training data for machine learning methods to directly identify SNP sites in real
data from a single sequencing experiment [4]. In this case, the formation of simulated training data can have
advantages in terms of accuracy and efficiency in the analysis of experimental data both with a low coverage
(a number of nucleotide reads) and with gaps due to experimental distortions.

Various approaches to mathematical modelling of genetic polymorphisms, based on accounting the parameters
of experimental equipment, the use of probabilistic models and statistical methods, and auxiliary biological in-
formation, are published elsewhere [9; 10]. However, due to complexities in the types of genetic data, modelling
methods, data formats, terminology, and assumptions made in existing software applications, choosing a reliable
tool for a particular study could be a resource- and time-consuming process [11]. It should be noted that only a few
modelling methods use experimental results (or measured parameters) and a complex simulation scheme with
a covariant noise structure. As the complexity of analysis increases, researchers need sophisticated modelling of
realistic genotype and phenotype structures from the measured characteristics of specific experiments. Simulated
data from a particular experiment provide more accurate training datasets for machine learning algorithms to
identify SNP sites.

This article presents an approach for simulating SNP sites in DNA sequences based on the beta and nor-
mal distributions, the parameters of which are determined from the available experimental data. It allows us
to model the features of specific experiments and form learning datasets for training classification models of
machine learning algorithms. The performance of the developed computational algorithms is confirmed in the
course of a comparative analysis of the most effective existing statistical algorithms for identifying SNP sites
on experimental human genomic sequencing data.
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Methodology

Simulation modelling of SNPs in DNA sequences. The object (nucleotide sites of sequenced DNA mole-
cules) can be investigated using a natural experiment or simulation modelling [12]. The scheme of study of the
object according to experimental data is shown in fig. 1.
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Fig. 1. Scheme of the study of sequenced DNA molecules
in natural and simulation experiments

In a natural sequencing experiment (see fig. 1, block 2), data from the object of study (block 1) are recorded.
Data processing is carried out in block 6, analysing the integral characteristics of the data, and in block 4, iden-
tifying the SNPs. The choice of data processing methods is determined by the specifics of a certain problem
being solved and includes methods and models for finding the required solution. In a simulated or computa-
tional experiment (blocks 5 and 6) the same object model is considered as in the real experiment (block 2).
The mathematical model of the object under study M can be either parametric (the operator of mathematical
transformations ¥ is known up to some parameters 4), or non-parametric (a family of operators F'is considered,
among which the suitable ones are selected for solving a given problem), and includes a physical model, rep-
resenting both the object and the experimental sequencing facility (block 2). To describe the behaviour of the
object in various experiments, it is required to include the output experimental characteristics of the equipment
and the recorded data (block 3) in the object of simulation. The concept of an object of simulation includes
modelling the behaviour of the object under specific experimental conditions (for example, with known distri-
butions and parameters describing the data). Modelling nucleotide sites based on the estimated characteristics
of the experimental data is carried out in block 6. In block 4, data processing is performed, namely, the search
for SNP sites using a proper algorithm. The choice of data processing methods is determined by the complexity
of real data (a low coverage, gaps, duplicates, a high level of experimental noise, etc.). To confirm the vali-
dity of simulation models, a comparison of the data characteristics of computational and natural experiments
is required. For generative modelling tasks, applied to improve the prediction accuracy of machine learning
models, the presence of experimental data might not be necessary.

Algorithm for simulation of SNP sites. The subsection describes the algorithm for simulating SNP sites,
assuming that the main data characteristics, such as the numbers of nucleotide coverages, are of the beta or
normal distributions [13], whose parameters are determined from the available experimental data.

Suppose a site j contains the reference nucleotide base r (nucleotides A, C, G or T, indicating the alignments
of the sequenced reads on the reference genome [1]); D = {bl, b,, b;, b4} is a set of n reads (coverage) of nu-
cleotide bases A, C, G or T, recorded from sequencing the site j; the number of coverage » (also the numbers
of nucleotide bases b, b,, by, b,, characterising a given nucleotide coverage in the site j) obey the beta (1) or
normal (2) distributions:

r (OL +B ) a-1 -1
nb(x, a, B):—x (l—x) , (1)
I'(a)+T(B)
where B and a (B, o > 0) are some parameters that determine the shape of the distribution curve; I is the gam-
ma function,;

! (x—n)’
o227 exp 262

ng(x, L, G) = , 2)

where p and o are parameters of the mathematical mean and standard deviation.

The idea of modelling is to randomly generate Nqy, positions of SNP sites in the sequence of the consi-
dered molecule S, consisting of N nucleotide sites, for each of which the numbers n, b, b,, b;, b, are reproduced
according to the beta or normal distributions in the defined range [n,,; 7, | For a non-reference site j, the
number of coverage » is modelled, then the numbers of coverages for the reference by, and non-reference b, .
nucleotides are generated from the resulting n. Nucleotide coverages for the SNP site are modelled similarly.
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It is assumed that there are coverages of no more than two different nucleotide bases on the site. The proposed
simulation algorithm reproduces datasets as close as possible to experimental conditions, given by the numbers
of nucleotide coverages and the laws of their distributions, the number of SNP sites. The flow diagram of the

algorithm for modelling SNP sites is shown in fig. 2.
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Fig. 2. Flow diagram of the algorithm for modelling SNP sites

Algorithm
Step 1: initialise the model parameters N, Ng\p, 1., and n,,,., o and B (or p and o) (see fig. 2, block 1).

Experimentally extracted sets of the parameters a and B (or p and o) of the beta (or normal) distribution for
SNP and non-SNP sites are given for simulating the numbers n, b, b,, b;, b,.

min max>

Step 2: generate the SNP site positions L={/,, ,, ..., Iysxp | in the sequence S according to the uniform

discrete distribution in the interval [1; N ] (block 2). Set the position index j = 1.

Step 3: sample the reference and non-reference nucleotide bases, gamble the total number of reads 7 on
the current site j as a realisation of a random variable of the beta or normal distribution with experimentally
extracted parameters (block 3).

Step 4: check if the site jis SNP, i. e. j € L (block 4). Accordingly go to step 5 or 6.

Step S: generate the numbers of coverages of nucleotide bases by, b,, by, b, by the beta distribution with
experimentally assessed parameters for non-SNP sites (block 5). Go to step 7.

Step 6: generate the numbers of nucleotide coverages b, b,, b;, b, by the beta distribution with experimen-
tally assessed parameters for SNP sites (block 6).

107



Kypnaa Besopycckoro rocyiapcTBeHHOro yuupepcurera. Maremaruka. Uadopmaruka. 2024;2:104-112
Journal of the Belarusian State University. Mathematics and Informatics. 2024;2:104-112

Step 7: record the simulated characteristics of the site j to a data file (block 7).

Step 8: check the termination condition of the simulation algorithm (block 8). If all sites in the sequence are
simulated, i. e. j = NV, then stop the simulation. Otherwise j = j + 1 (block 9) and go to step 3.

Machine learning methods. To apply the machine learning algorithms [14;15], it is necessary to form
a set of features characterising a nucleotide site. It was decided to use four features: X, is the number of cove-
rage of the reference nucleotide; X, — X, are the numbers of coverages for non-reference nucleotides sorted in
descending order. The data are normalised to the number of coverage n.

Taking into account the limited number of four features, and the binary classification problem (SNP and
non-SNP site classes) to be solved, it is preferable to test the basic machine learning methods [16], such as con-
ditional inference trees (CIT) [17], classification and regression tree (CART) [18] and support vector machines
with a linear separating function (SVM) [19].

Evaluating SNP identification algorithms. The performance of the algorithms is evaluated using the standard
classification measures for unbalanced classes, such as precision (P), recall (R) and score F, characterising the
properties of the algorithms accept false positive (FP), non-SNPs as SNPs (precision) and false negative (FN),
SNPs as non-SNPs (recall), events and their combined contribution ] (equations (3)—(5), where TP is true
positive) [20]:

L 3)
TP + FP
Rt @)
TP + FN
2
ey ©

Programme development of algorithms. In the course of the work, R-functions are developed that im-
plement various stages of simulation modelling and SNP identification algorithms. It is proposed to integrate
the developed functions into a dedicated R-package that can be used to model synthetic datasets, according to
a concrete experiment, in order to comprehensively test and select the best algorithms for identifying SNP sites,
as well as for generative data modelling to train identification algorithms based on machine learning models.
The statistical analyses were conducted using the R-functions dbeta, dnorm, nls, ctree, rpart and svm [21].

Results

Experimental data. Reference data on human chromosomes 10 and 22, publicly available from the Genome
in a Bottle Consortium (GIAB), are taken as experimental datasets [22]. The choice of GIAB data is due to
the fact that today it is the most reliable benchmark data for solving problems related to the study of genomic
polymorphism in humans (from the development of new instrumental methods of «wet» biology to the com-
parison of algorithms for detecting polymorphic sites). The dataset on chromosomes 22, used for recovering
the experimental parameters for simulation modelling, contains characteristics of 29 633 768 nucleotide sites,
of which 36 150 are truly identified SNPs. A fragment of the dataset is presented in table 1.

Table 1
Fragment of the experimental dataset
Nucleotide
Chromosome : position | Reference
A C G T
chr22 : 47891620 T 0 0 0 27
chr22 : 47891621 G 0 0 28 0
chr22 : 47891622 T 0 0 0 30

Organisation of a computational experiment. We analysed the experimental characteristics of the se-
lected dataset of chromosome 22 in order to determine the distribution laws of the nucleotide coverages and
to estimate their unknown parameters. Then we checked the adequacy of the developed mathematical model.
The machine learning models were trained on specially simulated datasets, generated with the estimated ex-
perimental parameters of data distributions on the chromosome 22. Based on the selected sets of experimental
data on chromosomes 10 and 22, we conducted a comparative analysis of the most effective existing (tradi-
tional or classical) statistical SNP identification and machine learning algorithms, trained on simulated data.

108



TeopeTuyeckne 0ocHOBBI HH(pOpMATHKH
Theoretical Foundations of Computer Science

Analysis of the experimental characteristics of genomic sequencing datasets. We analysed the histograms
of the number of coverage n, the maximum number of nucleotide coverages max {bi} and residuals between the
total and maximum numbers of coverages m =n — max{bi} for non-SNP and SNP sites. Approximations of

histograms were performed using the density functions of the beta and normal distributions (the R-functions
dbeta and dnorm). To estimate the parameters of distributions, the nonlinear least-squares method was used
(the R-function nls). The results of histogram approximations are shown in fig. 3.
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Fig. 3. Normalised histograms / of the number of coverage 7 (a, ¢) and the residuals between the total
and maximum numbers of coverages m (b, d) for non-SNP (a, b) and SNP (c, d) sites.

Approximations are made by the density functions of the beta n,, (black) and normal n, (red) distributions;
parameter estimates are o = 1.57 (standard error is equal 0.02), $ =7.9 (0.2), and p=9.2 (1.1),

6 =25.9 (0.7) for the fragment a; oo = 0.5 (standard error is equal 0.05), =20 (2) for the fragment b;

o = 1.45 (standard error is equal 0.02), § = 8.4 (0.2), and p = 5.8 (1.6), o = 25.2 (0.8) for the fragment c;
o = 1.71 (standard error is equal 0.05), $ = 7.7 (0.3), and p = 5.3 (0.6), = 9.2 (0.6) for the fragment d

Our results suggest that the beta distribution is appropriate for the studied integral characteristics of the con-
sidered experimental data. The normal distribution is less accurate, but its application might be valid to other
types of experiments, possibly demonstrating essential normality in data distributions. It should be noted that

it is possible to apply in simulation models other types of probability distributions.

The experimental estimates of the distribution parameters are further used in the simulation model to ge-
nerate training data for machine learning methods. A fragment of the simulated dataset is presented in table 2.

Table 2
Fragment of the simulated dataset
Nucleotide
Chromosome : position | Reference
A C G
chrX: 1 G 0 0 | 33
chrX: 2 C 0 | 14
chrX :3 T 0 0 20

109



Kypnaa Besopycckoro rocyiapcTBeHHOro yuupepcurera. Maremaruka. Uadopmaruka. 2024;2:104-112
Journal of the Belarusian State University. Mathematics and Informatics. 2024;2:104-112

As a test of the validity of the developed model, we use visual inspection of the plots of simulated and ex-
perimentally verified histograms for the number of coverage n and the accuracy of restoring the modelled para-
meters when estimating the distribution parameters. We simulated a sequence of 10 000 sites with the parameters
of the beta and normal distributions, reconstructed from the experimental data, and approximated the histo-
grams using the beta and normal distributions. Model parameters were estimated using the R-functions dbeta
and dnorm. The histograms were successfully fitted by the given density functions (fig. 4). The parameters of
the simulation models are within 95 % confidence intervals of the parameter estimations, which supports the
correctness of the developed simulation model, namely, that the procedures for modelling the numbers of site
coverages according to the beta and normal distributions are correct.

a b
hy ny A hy ng A
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Fig. 4. Normalised histograms % of the number of coverage n in datasets modelled
with the experimentally estimated parameters of the beta (a) and normal (b) distributions.
Approximations are made by the density functions of the beta 7, (black) and normal n, (red) distributions;
parameter estimations are o = 1.50 (standard error is equal 0.02), § = 7.6 (0.2) for the fragment a;
u = 10.4 (standard error is equal 0.9), 6 =25.2 (0.6) for the fragment b

Comparative analysis of SNP identification algorithms. We performed the comparative analysis of the
most effective existing statistical SNP identification algorithms, such as binomial distribution test (BDT), entropy-
based test (EBT) and Fisher’s exact test (FET), with some fundamental machine learning techniques trained
on simulated datasets. An efficient software implementation of BDT was developed, a feature of which is the
automation of the selection of a threshold value when identifying SNP sites. It is proposed to use the value 107
as a threshold value of probabilities, where £ is the average number of coverage estimated from the simulated or
experimental dataset. As FET, a modification of the algorithm from the R-package Rsubread is considered [23].
Our programme implementation of EBT [24] is taken, where thresholds in identifying SNP sites are the entro-
py E which is more than 0.21 and the p-value which is less than 0.5.

The machine learning methods of CIT (the R-function ctree of the package party), CART (the R-function
rpart of the package rpart) and SVM (the R-function svm of the package e/(071) were trained on synthetic
data simulated with the beta distribution. A training dataset contained 40 000 nucleotide sites, of which 20 000
were SNPs.

Based on the nine selected sets of experimental data on chromosomes 10 and 22, we conducted a comparative
analysis of the most effective SNP identification and machine learning algorlthms trained on simulated data
The results of SNP identification at nine datasets of 20 000 sites (per each set), starting from site positions 12 - 10°,
60 -10°, 84 -10°, 108 - 10° on chromosome 10 and from site positions 3 - 10%,9-10% 15 -10% 21 -10% 27 -10° on
chromosome 22, are collected in tables 3 and 4.

Table 3
SNP identification algorithms efficiency
by the score F; on chromosome 10
.. F, %
Start position
BDT EBT FET CIT CART SVM
12-10° 88.9 100 97.4 100 94.8 97.4

60 -10° 96.8 94.1 96.9 100 98.4 98.4
84 -10° 90.3 97.0 96.9 95.4 90.0 90.0
108 -10° 100 96.9 96.8 100 98.4 98.4
Mean 94.0 97.0 97.0 98.9 95.4 96.1
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Table 4

SNP identification algorithms efficiency
by the score F; on chromosome 22

£, %

Start position
BDT EBT FET CIT CART SVM

3.10° 15.4 17.1 11.8 22.2 21.1 20.0
9-10° 97.2 973 94.3 98.6 95.8 95.8
15-10° 86.7 95.7 90.6 98.5 90.3 92.1
21-10° 90.3 82.9 91.4 97.1 87.5 90.9
27-10° 92.7 88.9 97.5 97.6 95.0 97.6
Mean 76.5 76.4 77.1 82.8 77.9 79.3

Chromosome 10. The highest mean score /| was obtained for the CIT machine learning model, and the lo-
west score F; was obtained for the classical BDT method. The accuracy by the score /| of machine learning
methods slightly exceeds that of classical methods. The mean score F] of the best machine learning model CIT
does not significantly differ from the value of the FET method (the p-value of the two sample paired Student’s
t-test for not equal variances is 0.19).

Chromosome 22. The highest mean score F; was obtained for the CIT machine learning model, the lowest
score F; was obtained for the classical EBT method. The accuracy by the score F; exceeds that of classical
methods. The mean score F| of the best machine learning model CIT is statistically significantly higher than
that of the best classical FET method (the p-value of the two sample paired Student’s ¢-test for equal variances
is 0.03). A significant increase in accuracy may be due to training the model on experimental data for chromo-
some 22.

Additionally, we investigated the CIT and CART methods trained on experimental datasets, sampled from
the experimental data on chromosome 22. A typical dataset of 72 261 sites was considered, 36 150 of which
were SNPs and the rest randomly selected non-SNPs. The classification accuracy by the score £, did not ex-
ceed 60—70 % on the simulated and experimental data. The poor classification may be due to some reasons, for
example, a possibly inferior training dataset or, perhaps, the simulation model is indeed better at forming the
training datasets by focusing on reproducing the important (primary) sources of information in the data and not
taking into account the minor (secondary) signals present in the real data.

These results let us conclude that for real experimental data it is preferable to use machine learning models,
trained on simulated data. The mean accuracy of SNP identification in terms of the score F] is 2—5 % higher for
the machine learning models, in particular decision tree-based, than for classical statistical methods. The CIT
model shows the highest accuracy, while BDT, EBT, FET have similar mean accuracy.

Conclusions

An approach for simulation modelling of SNPs in DNA sequences has been developed, which is based on
the generation of random events according to the beta or normal distribution, the parameters of which are esti-
mated from experimental data, and it applies machine learning methods trained on simulated data to identify the
single nucleotide genetic polymorphism sites. This approach has some distinct advantages, namely, it permits:
a) to achieve the higher accuracy of determining SNPs in genomic sequencing data; b) to simulate data closely
reproducing the real experimental conditions in order to study the reliability of specific experiments and assess
the accuracy of the results obtained under the observed experimental conditions; ¢) to generate synthetics data
for training machine learning methods and subsequently create the classification models of machine learning
algorithms to identify the SNPs in specific experimental datasets; d) to generate datasets for testing and com-
paring available SNP identification methods to analyse real data obtained for specific experimental conditions.
The verification of the developed simulation model and the analysis algorithms is realised on the examples
of large humane chromosome sequencing datasets. The comparative analysis of efficient existing statistical
SNP identification algorithms of BDT, EBT and FET and machine learning methods of CIT, CART and SVM,
trained on synthetic data, is carried out. The best results are obtained for machine learning models, namely, the
accuracy of SNP identification by the score F] is 2—5 % higher for the trained on simulated data CIT than those
for the methods of BDT, EBT and FET.
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