ИССЛЕДОВАНИЕ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ ЛИГНИНСОДЕРЖАЩИХ ГИДРОГЕЛЕЙ

Д. А. Тарасова, И. С. Черепанов, И. А. Черенков

ФГБОУ ВО «Удмуртский государственный университет», Ижевск, Россия

Гидрогелевые среды имитируют естественное окружение клеток, не нарушая их обмен веществами с окружающей средой. Конструкты из гелеобразующих материалов с иммобилизованными клетками имеют перспективы для использования в системах биодеградации органических веществ. При этом остается актуальным вопрос о поиске оптимального состава гелеобразующей среды, сочетающей в себе биосовместимость, хорошие механические и регулируемые биодеградационные свойства. Целью работы стало исследование физико-химических свойств биосовместимых гидрогелей на основе поливинилового спирта (ПВС), альгината натрия (АН) и лигнина (Л).

Гидрогели получали путем сшивания синтетической полимерной матрицы из ПВС в сочетании АН и Л. Для этого компоненты растворяли в дистиллированной воде при постоянном перемешивании. Полученную смесь вводили в водный раствор CaCl₂ и H₃BO₃, формируя сферические конструкты, и оставляли на сутки для сшивания. Затем конструкты переносили в раствор сульфата натрия для стабилизации [1].

Обнаружено, что лигнин хорошо комбинируется с гелеобразователями в исследованных пропорциях. Являясь трудно расщепляемым субстратом [2], он призван обеспечить более длительную деградацию конструктов, а его сорбционные свойства позволят стабилизировать биомассу и обеспечить захват органических загрязнителей для последующей утилизации клетками.

Были исследованы гидратационные свойства полученных носителей. Дегидратация наиболее интенсивно происходит в первые сутки. При регидратации в первые часы происходит резкий рост значений массы с дальнейшим выходом на постоянные значения, что говорит о быстрой абсорбции воды композитом.

Сорбционные свойства композитных гидрогелей ПВС/Л/АН были изучены на растворе метиленового голубого. Наибольшую адекватность представления сорбционных характеристик конструктов с лигнином показала математическая модель Фрейндлиха, согласно которой адсорбция происходит на гетерогенном слое сорбента с неопределенным количеством активных центров связывания.

На ИК-спектрах твердая фаза полученных гидрогелей характеризуется полосами, указывающими на сочетание в структуре сорбента фрагментов ПВС (1643 см⁻¹), АН (1035 см⁻¹) и Л (1516 см⁻¹), несколько смещенных от своих положений в исходных спектрах, что подтверждает образование межмолекулярных связей между компонентами композита. В последствии ИК-спектры будут анализироваться для контроля биодеградации конструктов.

Таким образом экспериментально обоснована возможность получения гидрогелевых носителей на основе ПВС и АН с включением в их состав лигнина и изучены их физико-химические свойства. Такие материалы имеют перспективы для формирования конструкций различной геометрии для иммобилизации биомассы и конструирования искусственного неклеточного матрикса-имитатора биопленок.

Библиографические ссылки

- 1. Wang P. H., Chang Y. R., Lee D. J. Shape stable poly(vinyl alcohol) hydrogels with immobilized activated sludge at repeated dry-rewet cycles // Bioresour. Technol. 2019. Vol. 289. P. 121662.
- 2. Физическая химия лигнина. Под ред. Боголицына К.Г., Лунина В.В., Москва: Академкнига, $2010.-489~\mathrm{c}.$