СВОЙСТВА И ХАРАКТЕРИСТИКИ ГЕТЕРОЛАЗЕРОВ НА GaSb

Е. П. Сачков ¹, В. К. Кононенко ², В. М. Стецик ¹, И. С. Манак ¹

¹ Белорусский государственный университет, Минск ² Институт физики им. Б. И. Степанова НАН Беларуси, Минск

Гетеролазеры в системе GaInAsSb—AlGaAsSb используются как источники излучения для спектроскопии газов и мониторинга окружающей среды [1]. Исследованию температурной зависимости

порогового тока лазеров на основе данных гетероструктур с квантовыми ямами уделяется большое внимание [2–4].

случае общем на зависимости плотности порогового тока от температуры $j_{th}(T)$ можно выделить два или три участка: от предельно низких температур до T_1 – участок постоянного или медленного роста $j_{th}(T)$, от T_1 до T_2 – пологий участок экспоненциального роста j_{th} , выше T_2 – участок более крутого экспоненциального Второй роста. И третий участки зависимости $j_{\rm th}(T)$ аппроксимируются обычно формулой

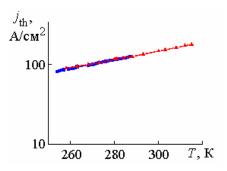


Рис. 1. Температурная зависимость плотности порогового тока лазерного диода на основе гетероструктуры GaInAsSb—AlGaAsSb

$$j_{\text{th}}(T \ge T_i) = j_{\text{th}}(T_i) \exp(T - T_i) / T_{0i} \sim \exp(T / T_{0i}),$$
 (1)

где $i = 1, 2; T_{0i}$ – параметры аппроксимации [5].

Для гетеролазеров в системе GaInAsSb-AlGaAsSb наблюдается практически экспоненциальная зависимость $j_{th}(T)$ ОДНИМ характеристическим параметром T_{01} в диапазоне температур 250–320 К. характеристической Среднее значение температуры составляет $< T_0 > = 76,1$ К (рис. 1). Таким образом, при T > 260 К для исследованных гетеролазеров существенна роль безызлучательных оже-процессов в активной области и их влияние на порог генерации.

- 1. Joullié A., Christol P. // C. R. Physique. 2003. Vol. 4, No. 6. P. 621–637.
- 2. Suchalkin S., Shterengas L, Kisin M. et al. // Appl. Phys. Lett. 2005. Vol. 87, No. 4. P. 041102.
- 3. Баженов Н. Л., Мынбаев К. Д., Иванов-Омский В. И. и др. // ФТП. 2005. Т. 39, № 10. С. 1252—1256.
- 4. *Adamiec P., Bohdan R., Bercha A. et al.* // Phys. stat. sol. (b). 2007. Vol. 244, No. 1. P. 187–191.
- 5. Грибковский В. П. Полупроводниковые лазеры. Мн.: Университетское, 1988. 304 с.