АВТОМАТИЧЕСКИЙ АНАЛИЗ ВЫЯВЛЕНИЯ ЗОН КОРНЯ НА ИЗОБРАЖЕНИЯХ ФЛУОРЕСЦЕНТНОЙ МИКРОСКОПИИ

Кабулов Т.А., Кезик С.В., Недзьведь О.В., Мацкевич В.С., Демидчик В.В.

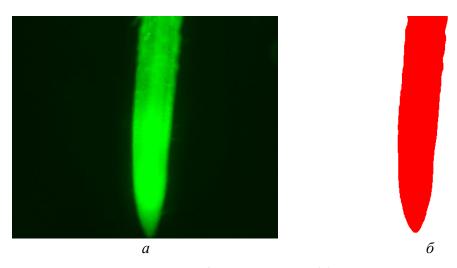
Белорусский государственный университет, г. Минск; kabulovtimur64@gmail.com

В работе рассматривается метод автоматического выделения зон корней Arabidopsis thaliana на изображениях флуоресцентной микроскопии.

Ключевые слова: флуоресцентная микроскопия; анализ изображений; сегментация; анализ корней; дистанционная карта.

ВВЕДЕНИЕ

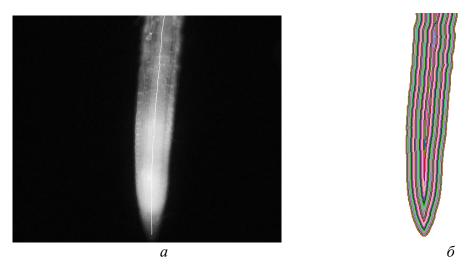
В последние годы исследования в области феномики растений значительно продвинулись благодаря применению современных технологий визуализации. Одним из ключевых инструментов в этом направлении является флуоресцентная микроскопия, которая позволяет с высокой точностью наблюдать за структурами и процессами в живых организмах. Так, изучение структуры и функции корней растений с помощью флуоресцентной микроскопии открывает новые возможности для понимания их взаимодействия с окружающей средой и механизмов адаптации к различным условиям [1].


В корне выделяют несколько зон: зона корневого чехлика, зона деления, зона роста и растяжения, зона всасывания и проведения. Наблюдение за выделением активных форм кислорода (АФК) в различных корневых зонах имеет решающее значение, поскольку АФК играют важную роль в регулировании роста и развития растений, влияя на различные процессы в различных частях корня. Исследования показывают, что уровни АФК динамически генерируются или удаляются в растениях для адаптации к различным средам, что влияет на развитие корней. В зоне деления корня АФК необходимы для деления клеток, в то время как в зоне удлинения они способствуют дифференцировке клеток. Такое пространственное распределение АФК имеет важное значение для баланса между пролиферацией и дифференциацией корневых стволовых клеток как во время нормального развития растения, так и во время стресса [2].

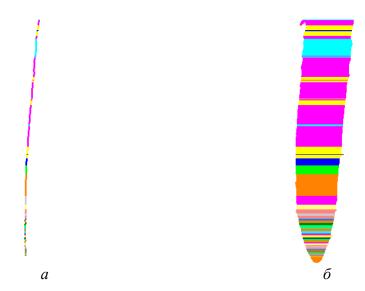
Мониторинг АФК имеет решающее значение для определения конкретной роли АФК в реагировании на стресс и для разработки стратегий повышения устойчивости растений в неблагоприятных экологических условиях.

Сегментация изображений, полученных с помощью флуоресцентной микроскопии, является ключевым этапом анализа, позволяющим выделить интересующие объекты или зоны для дальнейшего изучения. В контексте корневых систем растений, сегментация зон корня на флуоресцентных изображениях представляет собой сложную задачу из-за высокой степени гетерогенности структур, перекрывающихся элементов и разнообразия форм. Автоматизация подобного процесса позволило бы сократить время анализа и улучшить его качество.

АЛГОРИТМ ВЫДЕЛЕНИЯ ЗОН КОРНЯ


Входными данными алгоритма являются изображения флуоресцентной микроскопии, которые приводятся к полутоновому виду (рис. 1a). Следующим шагом является бинаризация изображения корня (рис. 1б).

 $Puc.\ 1.\$ Исходное изображение корня (a) и его бинарный образ (b)


Для бинарного изображения строится скелет, который отображает среднюю линию корня (рис. 2 а).

На следующем шаге строится дистанционная карта, которая отображает расстояние до края корня в каждой точке [3]. Это расстояние выражено в значениях пикселей на данной карте (рис 2 б).

Рис. 2. Выделение средней линии на исходном изображении корня (a) и дистанционная карта (δ)

При объединении средней линии с картой расстояний строится распределение ширины вдоль корня (рис. 3a). По этим значениям определяется коэффициент коррекции по ширине для каждого пикселя изображения вдоль корня (рис. 3б).

Рис. 3. Объединение дистанционной карты со средней линией (a) и распределение коэффициента ширины по образу корня (δ)

Перемножение коэффициентов коррекции по ширине с яркостью исходных пикселей для области корня позволяет выделить зоны корня на изображении (рис. 4).

Рис. 4. Зона корневого чехлика, зона деления, зона роста и растяжения, зона всасывания и проведения выделены разными оттенками серого

ЗАКЛЮЧЕНИЕ

Данный алгоритм позволяет выделить зоны корня методами сегментации на изображениях флуоресцентной микроскопии. В дальнейшем это позволяет соотносить результаты мониторинга АФК с фазами роста и развития растения и служит для разработки стратегий повышения устойчивости растений в неблагоприятных экологических условиях.

БИБЛИОГРАФИЧЕСКИЕ ССЫЛКИ

- 1. *D. Wangenheim, R. Hauschild, J. Friml.* Light Sheet Fluorescence Microscopy of Plant Roots Growing on the Surface of a Gel // Journal of Visualized Experiments. 2017. Vol. 18 (119). doi: 10.3791/55044.
- 2. Mechanisms of ROS Regulation of Plant Development and Stress Responses/ H. Huang [et al.] // Frontiers in Plant Science. 2019. doi: 10.3389/fpls.2019.00800.
- 3. *Huang, X.* Two-Stage Segmentation Framework Based on Distance Transformation // Sensors (Basel). 2021. Vol. 22(1). doi: 10.3390/s22010250