МЕТОДЫ ОЦЕНКИ ВЛИЯНИЯ КОСМИЧЕСКОЙ ПОГОДЫ НА БОРТОВЫЕ СИСТЕМЫ НИЗКООРБИТАЛЬНЫХ СПУТНИКОВ

Е.М. Глеба, В.С. Баранова, А.А. Спиридонов, В.Е. Черный, Д.В. Ушаков, В.А. Саечников

Белорусский государственный университет, Минск, Беларусь E-mail: rct.gleba@bsu.by

В работе исследуется метод оценки влияния космической погоды на бортовые системы спутников на основе анализа телеметрии базы данных SatNOGS и выявления аномалий при помощи модели машинного обучения Polaris ML с использованием алгоритма XGBoost, реализующего метод Ньютона-Рафсона.

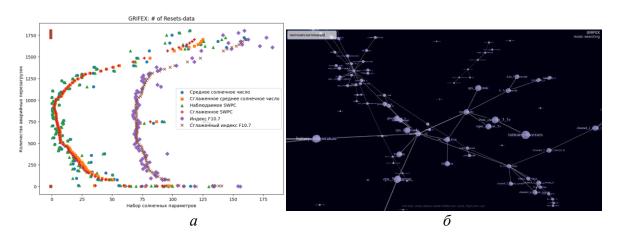

Ключевые слова: космическая погода; солнечная активность; аномалии телеметрии; SatNOGS; корреляционный анализ; модели искусственного интеллекта.

Введение. Космическая погода представляет собой комплекс явлений, происходящих в околоземном космическом пространстве, которые могут влиять на работу низкоорбитальных спутников. К ним вспышки, выбросы корональной солнечные геомагнитные бури. Влияние космической погоды может проявляться в виде аномалий телеметрии, сбоев в работе бортовых систем и даже полной потери спутника [1]. В большинстве случаев, для обнаружения аномалий используются критерии на основе пороговых значений нижних и верхних пределов наиболее критичных параметров телеметрии бортовой электроники наноспутника. Также в последнее время, в область проектирования эксплуатации наноспутников внедряются И автоматизированные системы мониторинга телеметрии, состояния которые используют различные модели машинного обучения [2]. автоматизированные Подобные системы оценивают В работоспособность бортовых систем на момент испытаний или в режиме полетной диагностики. Спутник является сложной электрической системой, где события на каждом узле (компоненты бортовых систем) могу привести к последовательности не предугаданных сбоев. Причиной сбоев может послужить как естественные неполадки бортовых компонентов, так и внешние факторы. В данной работе проводится оценка взаимосвязи и влияния солнечной активности на работу бортовой электроники по данным телеметрии космических аппаратов.

Платформа Polaris ML. Приложение Polaris ML от LibreSpace использует алгоритм машинного обучения XGBoost для анализа взаимосвязей между параметрами телеметрии бортовых систем спутника. Polaris ML способен рассчитать и визуализировать взаимосвязи между параметрами телеметрии и степень их влияния друг на друга в виде

графа связностей. В процессе трехмерного исследования производительность модели искусственного интеллекта Polaris ML была значительно усовершенствована путем переноса соге инфраструктуры на С++, а именно выделением прекомпилированных библиотек ввода/вывода и кэширования промежуточных расчетов обучения. Также в приложение Polaris были добавлены декодеры для отслеживания целевых спутников и модуль, собирающий информацию о солнечной активности, работающий в отдельном контейнере Docker. Кроме того, был доработан инструмент для построения графов связностей и веб-интерфейс. Внедрены решения для прямого взаимодействия с панелью управления сервера SatNOGS, что позволяет получать дополнительные данные о состоянии интересующих спутников.

На рис. 1 представлена архитектура финальной системы, включающая в себя внесенные доработки и усовершенствования.


Puc. 1. Архитектура приложения Polaris

Этапы проведения анализа: 1) Автоматическое извлечение данных из различных источников. Включая данные телеметрии из сети SatNOGS и космической погоды NASA SWPC (NOAA); 2) Этап машинного обучения [4, 5] (XGBoost), на котором анализируется взаимосвязь всех извлеченных данных и формируется файл графика JSON в качестве выходных данных. Файл содержит описания параметров телеметрии и их значения в кадрах

с временными метками; 3) Визуализация построением графа связности, а также сложенного нормализованного вида телеметрии, отображающего аномалии параметров; 4) Экспортирование выходных данных графиков для дальнейшего анализа.

Как упоминалось ранее, был создан дополнительный модуль, который извлекает информацию о космической погоде с серверов NASA SWPC/NOAA. Эти данные сохраняются в базу данных InfluxDB, которая развернута локально в отдельном контейнере Docker Compose. Модуль также оснащен функциями для анализа данных орбитальных параметров в форматах TLE и OMM, а также для прогнозирования движения спутников на основе этих данных [6, 7].

Анализ перезагрузок основного процессор и граф связности. На рис. 2 (а) представлена взаимосвязь количества перезагрузок основного процессора наноспутника формата 3U GRIFEX от следующих индексов солнечной активности за период с 2019-03-03 по 2024-02-22: среднемесячные значения пятен S.I.D.C., SWPC/SWO и f10,7 см радиоизлучение. На рис. 2 (б) представлен результат использования модели Polaris ML для построения 3D графа связности параметров телеметрии спутника GRIFEX за период 2015–2021 г.

Puc. 2. а - диаграмма количества принудительных перезагрузок основного процессора с набором параметров активности Солнца для спутника GRIFEX; δ - 3D граф связности параметров телеметрии спутника GRIFEX

Как видно, количество перезагрузок основного процессора GRIFEX стремительно накапливалось в период 2019—2020 г., когда индексы солнечной активности SWPC/SWO и f10,7 см были относительно постоянны. С 2020 начался новый 5-летний цикл солнечной активности, что соответствуют замедлению роста количества перезагрузок. Причина такого поведения объясняется графом связности. Из анализа графа видно, все взаимо-

зависимые параметры телеметрии образуют взаимосвязанные ветки относительно времени (rtc_unix_time), а также относительно критичных параметров.

Общее количество перезагрузок основного процессора (numresets) непосредственно связанно с токовым потреблением в бортовой системе питания, в частности, с значением тока на общей шине питания (battery_bus_current), с уровнем тока на шине 3,3 В (bus_current_3_3v), с уровнем тока на шине 3,3 В основного процессора (fcpu_3v3_current), с уровне тока на шине 3,3 В аккумулятора (li_3v3_current). Из графа также видно, что на количество перезагрузок процессора влияет число запущенных процессов (totnumprocesses). Можно предположить, что количество перезагрузок связанно с просадкой напряжения на шине питания за счет низкой температуры на аккумуляторах (battery_temperature). При увеличении солнечной активности увеличился общий световой поток, что привело к повышению температуры, стабилизации напряжения и несвойственному замедлению роста числа перезагрузок процессора.

Таким образом, доработанная и адаптированная модель Polaris ML может быть использована для комплексного анализа взаимосвязей и влияния различных факторов на работу бортовой электроники наноспутников, в частности, солнечной активности. Оценка большего объема данных позволит выявить наиболее уязвимые системы спутника для разработки безопасных режимов работы его бортового оборудования в условиях агрессивной солнечной активности.

БИБЛИОГРАФИЧЕСКИЕ ССЫЛКИ

- 1. Green J. C., Likar J., Shprits Y. Impact of space weather on the satellite industry // Advancing Earth and space science, 2017. № 15. C. 804–818.
- 2. *Schlag L., O'Meara C., Wickler M.* Numerical Analysis of Automated Anomaly Detection Algorithms for Satellite Telemetry // SpaceOps Conference, 2018. C.1-13.
- 3. XGBoost: A Scalable Tree Boosting System [Электронный ресурс]. URL https://xgboost.readthedocs.io/en/latest/ (дата обращения: 07.03.2024).
- 4. Boumghar R., Silva J., Angelis I., Schulster J., Donati A. Enhanced awareness in space operations using multipurpose dynamic network analysis // Space Operations: Inspiring Humankind's Future. Springer International Publishing. 2018. P. 795-810
- 5. *Ray B.K.*, *Tsay R.S.* Bayesian methods for changepoint detection in long-range dependent processes // Journal of Time Series Analysis. 2002. V. 23. P. 687–705.
- 6. *Bottou L.* Stochastic gradient learning in neural networks // Proceedings of Neuro-Nimes. 1991. V. 91.
- 7. *Killick R., Fearnhead P., Eckley I.A.* Optimal detection of changepoints with a linear computational cost // J. Amer. Statist. Assoc. 2012. V. 107. P. 1590–1598.