АНАЛИЗ ИММУНОГИСТОХИМИЧЕСКИХ ФЛУОРЕСЦЕНТНЫХ ИЗОБРАЖЕНИЙ С ПОМОЩЬЮ НЕЙРОННЫХ СЕТЕЙ ГЛУБОКОГО ОБУЧЕНИЯ

Д.П. Жоголь, Е.В. Лисица, В.В. Скакун

Белорусский государственный университет, Минск, Беларусь E-mail: <u>danzhog@gmail.com</u>

В данной работе описываются результаты сегментации иммуногистохимических флуоресцентных изображений раковых клеток молочной железы с помощью нейронной сети глубокого обучения Detectron 2. Нейронная сеть показала хорошие результаты сегментирования ядер раковых клеток с автоматическим выделением их в отдельные объекты, одновременно решая сложную задачу разделения слипшихся ядер.

Ключевые слова: Detectron2; глубокое обучение; сегментация изображений; сегментация объектов; иммуногистохимические изображения.

введение

Гистология получила широкое применение в диагностической медицине при исследовании онкологических заболеваний. На 250 тысяч случаев МРТ диагностики приходится около полутора миллионов иммуногистохимических исследований. Однако проведение иммуногистохимических исследований по-прежнему затруднено ручным анализом данных, который требует как подготовки специалистов, так и временных ресурсов для визуального анализа. Необходимость в автоматизированных системах для данного процесса остается актуальной. Одним из методов количественной оценки онкологических процессов является подсчет количества пораженных клеток на изображениях. Соответственно, требуется выделить области, пораженные заболеванием, и в них произвести сегментацию раковых клеток. Однако, сложности с рутинной настройкой параметров и обработкой изображений препятствуют проведению анализа в приемлемые сроки.

На сегодняшний момент имеется значительное количество архитектур нейронных сетей, успешно применяемых для сегментации ядер раковых клеток [1]. Однако, одной из основных проблем, связанных с использованием сверточных нейронных сетей для сегментации изображений, является их ограничение в осуществлении семантической сегментации, т.е. определения метки принадлежности каждого пикселя к определенной категории. Это влечет за собой невозможность прямого выделения объектов изображения. Для решения данной проблемы требуется сложная постобработка результатов сегментации, включающая разделение "слипшихся" объектов и удаление неправильно сегментированных. Сравнительно недавно был анонсирован фреймворк нового поколения Detectron 2, разработанный исследовательской группой Facebook AI Research [2]. Detectron 2 основан на фреймворке РуТогсh и обеспечивает единый интерфейс при решении разнообразных задач анализа изображений, включая обнаружение объектов, сегментацию экземпляров и паноптическую сегментацию. Он включает в себя набор заранее обученных моделей машинного обучения, таких как Faster R-CNN [3], Mask R-CNN [4], RetinaNet [5] и DensePose [6], для обнаружения объектов и сегментации сцен. Цель данного исследования заключается в оценке эффективности применения фреймворка Detectron2 для сегментации ядер клеток на иммуногистохимических изображениях срезов раковых тканей.

РЕЗУЛЬТАТЫ

В статье исследуются трехканальные флуоресцентные изображения раковых клеток молочной железы, полученные с 10-кратным увеличением на инвертированном эпифлуоресцентном микроскопе Nikon TE200, оснащенном CCD-камерой серии Photometrics 300. Размер изображений 2048×2048 пикселей. Индикатором раковых клеток является белок эстроген-рецептор, помеченный красителем Су5 (регистрируемый в красном канале изображения). В цитоплазме раковых клеток накапливается белок цитокератин, маркированный красителем Су3 (регистрируемый в зеленом канале). Для маркировки всех ядер использован краситель 4,6- DAPI (регистрируемый в синем канале). Соответственно, маркерами раковых клеток являются два красителя – Су5 и Су3. В распоряжении авторов имеется 9 экспериментальных изображений, вручную размеченных экспертами. В размеченных бинарных изображениях маски ядер раковых клеток имеют значение 1.

Каждое исходное изображение было разделено на 16 фрагментов размером 512×512 пикселей, что дало в общей сложности 144 изображения. Эти изображения были далее разделены на наборы данных для обучения, валидации и тестирования, состоящие из 109, 20 и 15 изображений соответственно. Каждому изображению приписана бинарная маска, которая была преобразована в формат СОСО. Формат СОСО представляет собой JSON-файл, содержащий информацию об изображении, включая путь к файлу, его размеры, а также список аннотированных объектов, каждый из которых представлен ограничивающим прямоугольником и классом объекта. Далее изображения были нормализованы с применением метода, предложенного в исследовании [7].

Для исследования применения фреймворка Detectron2 для сегментации ядер раковых клеток был выбран язык программирования Python и библиотеки Detectron2, PyTorch, OpenCV, scikit-image, seaborn, pandas, NumPy, matplotlib. Разработка велась в среде Spyder. Реализованная архитектура нейронной сети условно разделяется на CNN-сеть вычисления признаков изображения, называемую backbone, и сеть head, являющуюся результатом работы отдельных нейронных сетей, отвечающих за предсказание охватывающей рамки, классификацию объекта и определение его маски. Функция потерь для них общая и включает три компонента:

$$L_{all} = L_{cls} + L_{box} + L_{mask},\tag{1}$$

где L_{all} – общая функция потерь модели; L_{cls} – функция потерь классификации (перекрестная энтропия между предсказанными и истинными классами объектов); L_{box} –функция потерь ограничивающей рамки; L_{mask} (mask loss) – функция потерь маски (бинарная перекрестная энтропия для каждого пикселя). Для оценки эффективности рассчитывались метрика точности (Accuracy):

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN},$$
(2)

где TP (true positive) – верно идентифицированные объекты класса, TN (true negative) – верно отклоненные объекты, FP (false positive) – неверно идентифицированные объекты (как принадлежащие классу), FN (false negative) – неверно отклоненные объекты (как принадлежащие классу), а также метрика средней точности (Average Precision, AP):

$$AP = \int_0^1 p(r)dr \tag{3}$$

где *p* – точность (*Precision* = $\frac{TP}{TP + FP}$), *r* – полнота (*Recall* = $\frac{TP}{TP + FN}$) из предположения, что ограничивающая рамка определена верно, если пересечение над объединением (Intersection over Union) $IoU \ge 0,5$.

Размер пакета (Batch size) установлен в 2. Скорость обучения оптимизатора 2,5е-4. Обучалась модель в течении 10000 итераций. Вычисления производились с помощью видеоускорителя Nvidia GeForce RTX 1070 с 8 ГБ видеопамяти. Обучение в сумме заняло около 2 часов, что показывает высокую обучаемость нейронной сети.

Полученные значения метрик приведены в таблице. AP50 обозначает Average Precision при пороге IoU = 0.5. Это означает, что предсказанная ограничивающая рамка считается верной, если её пересечение с истинной ограничивающей рамкой (IoU) больше или равно 50%. AP75 обозначает Average Precision при более строгом пороге IoU равном 0.75. Результаты сегментации одного фрагмента представлены на рисунке.

Показатели метрик на тестовом наборе данных

AP	AP50	AP75	Accuracy
63,236	87,278	74,315	0,923

Результаты сегментации. Слева – результат сегментации изображения с помощью Detectron 2, представленный 16-битной маской. В центре – исходное изображение. Справа бинарная маска (ground truth).

выводы

Применение фреймворка Detectron2 для задачи сегментации ядер клеток на иммуногистохимических изображениях продемонстрировало обнадеживающие результаты. Нейронная сеть была обучена на малой выборке из 109 размеченных изображений размером 512×512. Главное пре-имущество данного фреймворка заключается в возможности выделения каждого ядра как отдельного объекта, что значительно упрощает пост-обработку полученных результатов.

БИБЛИОГРАФИЧЕСКИЕ ССЫЛКИ

- 1. A review of deep-learning-based medical image segmentation methods / *Liu X*. [et al.] // Sustainability. V. 13. №. 3. 2021. P. 1224.
- Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo and Ross Girshick. Detectron 2. [Электронный ресурс]. URL: <u>https://github.com/facebookresearch/detectron2</u> (дата обращения: 01.03.2024).
- 3. Faster R-cnn: Towards real-time object detection with region proposal networks / Ren S. [et al.] //Advances in neural information processing systems. V. 28. 2015.
- 4. Mask R-cnn / He K. [et al.] // Proceedings of the IEEE international conference on computer vision. 2017. P. 2961-2969.
- 5. Focal loss for dense object detection / Lin T. Y. [et al.] //Proceedings of the IEEE international conference on computer vision. 2017. P. 2980-2988.
- Güler R. A., Neverova N., Kokkinos I. Densepose. Dense human pose estimation in the wild // Proceedings of the IEEE conference on computer vision and pattern recognition. 2018. P. 7297-7306.
- A method for normalizing histology slides for quantitative analysis / Macenko M. [et al.]
 // IEEE international symposium on biomedical imaging: from nano to macro. IEEE.
 2009. P. 1107-1110.