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Combining the recent achievements of sparse matrix and network analysis, graph theory, and theoretical
computer science, we propose a new approach to the construction of numerical methods for finding optimal
solutions to the sensor location problem for a bidirectional graph.
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The problem of minimizing the set M of monitored nodes being the locations of sensors that
collect the necessary information about the network flow [1, 2] is NP-complete [3]. A brute-force
search for the optimal solution (the minimum set of monitored nodes), is associated with huge
computational costs [3, 4].

Consider a finite connected oriented bidirectional graph (network) G =(1,U ), where the set of
arcs U is defined on the direct product 1x1, |I| <o, U<, Let X;j be the unknown flow on the
arc (i, j) €U . A bidirectional graph G has the following property: if there exists an arc (i, j) U

with a flow X; then the corresponding arc (j,i)€U with some flow X; also exists. The flow
function x:U — R satisfies the following system:

Y %Y in:{o, iel\1, (1)
)

jeli (U) jeli (U X, el

where X; is the external flow into the node i< 1" <1, X; is the flow on the arc (i, j)eU ,

j
N (U):{j el:(i, j)eU}, I[(U):{j el :(j,i)eU}. For external flows, the following condition
holds: ) x =0. For each arc (i,j)€U one knows the fraction p; €(0,1] of X; in the total
iel”
outgoing flow Z X; from the node i. Suppose for each node i< there exists a canonical arc
]€|i+(u)
(i, k) eU ,where kel (U) and X; # 0. Using special programmable devices (sensors) we monitor
the nodes M < | and get the following data:

Xij: f. jE|i+(U); in = fji’ j€|i_(U);

ij 1
X=fiemnr; ()
X =B, fy. ﬂij:%, jely (UMK}, iel (U), keM. €)

Note that in the equation (3) we have

17 (U)\{k}|=1.
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Given the set M < | of monitored nodes of the graph G we build the graph 6:(7,6) being
the unobserved part of G . Let us remove the arcs and nodes with the known flows (2)—(3) from the
graph G . Then the system of equations to get the unknown flows X;, (i, j) €U, X;, i el =Inl’
, has the form

a, iel\l,
IR Xu{ ' - 4)
XI

jel () jel; (0) +a, iel,

=Bl py=h Tl (U)K,

ik

|.*(u)\>1, icl. (5)

where @;, i< 1, are constants obtained from the system (1) using the a priori information (2)—(3) and
(i,k)eU are the canonical arcs of the nodes i< 1.
The sparse system of equations (4)—(5), uniquely determined by the set M < I of the graph G

—_

, connects the unknown arc flows X;, (i, j) cU and external flows X;, i€l , of the unmonitored

part G of the network and can be: 1) underdetermined; 2) overdetermined; 3) exactly determined. In
[5], a constructive theory of decomposition of basis graphs for solving the sparse underdetermined
systems (4)—(5) is developed. In cases 1) and 2) one should rebuild the set of monitored nodes M ,
the unmonitored part G =(T,U) and the system (4)—(5). The rebuild is finished when the matrix of

the system (4)—(5) has rank equal to the number of unknowns. In case 3 the set of monitored nodes
M of the graph G is suitable for finding the unknown flows of the unmonitored part Gz(T,L_J)

from the system (4)—(5). The graph GZ(T,U), i.e. the unmonitored part of G=(1,U), may be
disconnected. Some connectivity components of graph G may not contain nodes from the set i
with non-zero external flow. The basis graph of such a component IS a spanning tree. For those

connectivity components that have some nodes from the set | the basis graph is a forest with the
properties described in [4].

Example. Optimal solution. Fig. 1 shows the finite connected biderectional graph G =(1,U),
| ={1,2,3,4,5,6} | U ={(£2),(L3),(21).(2.4),(2,6),(31),(35).(4.2),(45),(46),
(53),(5,4),(5 6),(6,2),(6,4),(6,5)} ., and the set of nodes with non-zero external flow
" ={2,4,5,6}.
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Fig. 1. Initial graph G

For the given graph the system of equations (1) has the form
Xt X 3= Xy =X, =0,
Xo1 F X4+ X6 = X =Xy = Xgp =Xy,
Xag T X5 = X3 X3 = 0,
Xpp T Xyst X g =Xy =X g =Ko s =Xy, (6)
XsatXsatXs6 = X5 = X5 = X5 = %5,
Koo T X4t X5 =X = Xgp = %56 = X5
Suppose the set of monitored nodes for the graph G shown in Fig. 1is M = {2} Consider the
cut of the network G with the source set M (and the sink set 1\M). Let CS (M ) be the cut-set (of
arcs) and 1(CS(M)) be the set of nodes incident to the edges of CS(M ). We form the sets
M* =1 (CS(M))\M ={1,4,6}, M =MuUM’ ={1,2,4,6}, | \M~ ={3,5}.

In sensor location problem (SLP) the flows on every incoming and outgoing arc for each node
ieM (M is the set of monitored nodes) are known as well as the external flows X; = fiiiemn1:

Xo= f1,21 X1 = f2,1, Xou = f2,4a
Xyp = f4,2, X6 = fz,ev X2 = fs,z, Xy = f2- (7
We substitute the known values of the variables (7) into the system of equations (6) and remove
the arcs CS (M ) and the only monitored node 2 from the graph G . The resulting graph G’ is shown
in Fig. 2. The rest of the flows for the outgoing arcs of the nodes M ™ =1(CS (M ))\M ={1,4,6} can
be expressed by the following equations:
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X45 = 421

P
X6 =2 f4,2’ (8)
Py

X, = Dot §

6,4 6,21

6,2

X5 = k f6,2 .
6,2
Let us substitute (7) and (8) into the system of equations (6) and remove the arc with known

flows (8) from the graph G'. The resulting graph Gz(T,U) is shown in Fig. 3. And the system of

equations (6) takes the following form:

f1,2 +& f1,2 - f2,1 X3, = 0,
Py,

f2,1 + f2,4 + fz,e - f1,2 - f4,2 - f6,2 = fz’

Pis
X31+ X35 — f1,2 X553 = 0,
1,2

f4,2 +% f4,2 +h f4,6 - X2,4 - X5,4 _% fe,z =Xy (9)
4,2 4,2 ps,z

Pas Ps 5
st X5 4t X556 = Xg5 — f4,2 - f6,5 =X,
4,2 Ps 2

Ps.4 Pe5 Ps.6
fe,z + fe,z + f6,2 - f2,6 - f4,2 —Xs56 = X5 -

6,2 6,2 4,2

°

Fig. 2. Graph G’
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Fig. 3. Graph G = (T,U)

The flows X ;, (i, j)eU, on the arcs outgoing from the nodes | \M" ={3,5} are unknown.

So we form the additional equations of type (5):
Thus, the additional equations are

Pss

Xy, = —=X
31 3,57
Pss
Ps 5
X553 = X565 (10)
5,6
Ps 4
X540 = X5 -
5.6

Suppose the sensors are ideal, so that the second equation of the system (9) is consistent though
degenerate, and rewrite the system (9)—(10) omitting the degenerate equation:

Pis

X531 = f1,2 + fl,2 - fz,l’
1,2
Prs
X1t X5 = X553 = f1,2 )
Pr>
Pas Pase Pe.4
Xoa X4 t%X, = f4,2 + f4,2 + f4,e - fe,z '
4,2 4,2 Ps 2
Pys Ps 5
gt X4t X5 6= X5 =X = f4,2 + f6,5 '
4,2 6,2
Pe.4 Ps.s Ps.6
X5+ Xg = fe,z + f6,2 + fa 2= fz,e - f4,2 ' (11)
6,2 Ps 2 P4
Ps4
X31— X35 = 0,
P35
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X X-. =0,
5,3 p5‘6 5,6
Ps.4
Xsg—— X556 =
4 p5‘6 6

The number of both equations and unknowns in the system (11) is 8.
We compute the rank of the matrix of the system (11). If the matrix is of full rank, then the
system (11) has a unique solution.
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