ВЛИЯНИЕ ДОБАВОК КРЕМНИЯ НА СОСТАВ И СТРУКТУРУ ТОНКОПЛЕНОЧНЫХ ПОКРЫТИЙ TIALSIN И ИХ ПРИМЕНЕНИЕ

А. А. Михалёнок

s0rd3s@aol.com; Научный руководитель — В. А. Зайков, старший преподаватель

Методом магнетронного распыления сформированы наноструктурные нитридные TiAlSiN покрытия. С помощью энергодисперсионной рентгеновской спектроскопии (ЭДРС) проведены исследования элементного состава, а методом сканирующей электронной микроскопии (СЭМ) их структуры. Полученные покрытия являются однородными, плотными и не содержат видимых дефектов по всей площади поверх □ ности. Установлено, что микромеханические свойства TiAlSiN покрытий позволяют использовать их в машиностроении и изделиях космической техники.

Ключевые слова: магнетронное распыление; энергодисперсионная рентгеновская спектроскопия; растровая электронная микроскопия; наноиндентирование.

ВВЕДЕНИЕ

Наноструктурные покрытия TiAlN с различным соотношением Ti/Al металлов, представляют больший интерес вследствие их высокой твердости, износостойкости и устойчивости к воздействию радиационного излучения. В работе [1] предложена концепция, согласно которой сверхтвердые покрытия могут быть сформированы добавлением кремния в TiAlN, что способствует образованию нанокомпозитных покрытий TiAl-SiN, состоящих из свободных от дислокаций нанокристаллитов размером до 20 нм, разделенных прослойкой аморфной фазы Si_3N_4 размером 1-3 нм. Настоящая работа посвящена практической реализации этой концепции.

ФОРМИРОВАНИЕ ПОКРЫТИЙ TIALSIN И МЕТОДЫ ИХ ИССЛЕДОВАНИЯ

Покрытия TiAlSiN наносились методом реактивного магнетронного распыления на различные типы подложек: титан марки BT1-0, монокристал пический кремний Si (100), монокристаллический кремний с термически выращенным оксидом SiO2. Для контроля и управления процессом реактивного магнетронного распыления использовался разработанный в лаборатории элионики НИИПФП им. Севченко модульный комплекс управления расходом газов (МКУРГ) [3]. С помощью МКУРГа стационарно поддерживался неравновесный режим

распыления мишени, характеризующийся величиной степени реактивности α [3]. Формирование покрытий TiAlSiN осуществлялось из двух композитных мишеней, изготовленных методом взрывного прессования. Состав мишени № 1: 46 ат. % Ti; 46 ат. % Al; 8 ат. % Si и мишени № 2: 69 ат. % Ti; 23 ат. % Al; 8 ат. % Si. Режимы осаждения и нумерация образцов покрытий приведены в таблице 1.

 Таблица 1

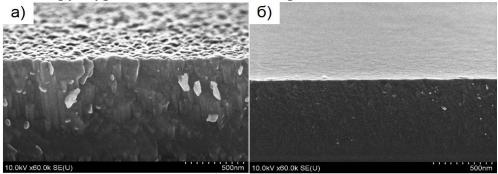
 Режимы осаждения и нумерация образцов покрытий TiAlSiN в соответствии с технологическими параметрами их формирования

Образец	1N1	1N2	1N3	2N1	2N2	
Мишень	1	1	1	2	2	
α	0,605	0,526	0,474	0,526	0,421	
Ток разряда <i>I</i> , А	1,0	1,0	1,0	1,0	1,0	
Напряжение U , В	350–365	390–400	390–400	400–410	410–420	
$U_{\scriptscriptstyle CM},\mathrm{B}$	-150	-180	-200	-200	-200	
$T_{no\partial \Lambda}$, °С	370	350	370	380	380	

Морфология и микроструктура полученных покрытий TiAlSiN, а также их толщина исследовались методом сканирующей электронной микроскопии (СЭМ) с использованием микроскопа Hitachi SU 3400 (Япония) в режиме вторичных электронов. Элементный состав исследуемых покрытий определялся методом ЭДРС. Микромеханические характеристики полученных покрытий исследовались методом наноиндентирования по методике Оливера и Фарра [4] на приборе NanoHardness Tester (NHT2) CSM Instruments (Швейцария), оснащенным алмазным индентором Берковича.

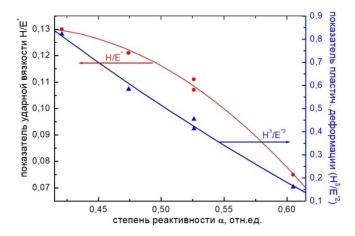
РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В таблице 2 по результатам обработки микрофотографий СЭМ и спектров ЭДРС представлены: компонентный состав, толщина, скорость осаждения покрытий TiAlSiN. Обнаружено, что в спектрах ЭДРС присутствуют менее 2 ат. % примесей О и Аг, попадающих в покрытие в процессе осаждения из остаточной атмосферы. Концентрация кремния в составе покрытий (около 8 ат %) примерно совпадает с концентрацией кремния в мишени. В таблицу 2 также добавлены результаты наноиндентирования – нанотвердость (Н) и значения приведенного модуля Юнга (Е*).


Из анализа таблицы 2 следует, что уменьшение степени реактивности α на 22 % от значения $\alpha = 0,605$ до величины $\alpha = 0,474$ для мишени 1 приводит к увеличению скорости формирования TiAlSiN покрытий на Si подложках на 85 %, при этом доля металлической компоненты (Ti+Al) в покрытии увеличивается на 47%; а для мишени 2уменьшение степени

реактивности α на 20 % от значения $\alpha = 0,526$ до величины $\alpha = 0,421$ приводит к увеличению скорости формирования TiAlSiN покрытий на Si подложках только на 11 %, при этом доля металлической компоненты (Ti+Al) в покрытии увеличивается всего на 24 %.

Tаблица 2 Степень реактивности (α), стехиометрия состава, толщина (h), время (τ) искорость (ν) осаждения нитридных TiAlSiN, а также нанотвердость (H) и приведенный модуль Юнга (E^*), полученные наноиндентированием


Образе ц	α	(Ti+Al) , at. %	(N+C) , ат. %	(Ti+Al)/(N+C	h, нм	τ, c	v, _{HM} / c	Н, ГПа	Е [*] , ГПа
1N1	0,60 5	39,08	52,62	0,74	117 0	252 0	0,46	28,7 4	384,5 8
1N2	0,52 6	47,42	42,52	1,12	137 0	186 0	0,74	35,9 7	335,8 5
1N3	0,47 4	45,56	43,13	1,06	132 0	156 0	0,85	39,5 2	324,9 7
2N1	0,52 6	48,70	43,86	1,11	880	138 0	0,64	37,1 4	335,9 2
2N2	0,42 1	52,42	38,00	1,38	823	144 0	0,57	48,9 9	378,1 3

На рисунке 1 а) и б) представлены СЭМ — микрофотографии поперечных сечений покрытий TiAlSiN на кремнии для режимов 1N1 и 2N1. Установлено, что полученные покрытия являются однородными, плотными, не содержат видимых дефектов по всей площади поверхности. Анализ совокупности СЭМ — микрофотографий для всех исследованных образцов показывает, что уменьшение степени реактивности α приводит к уменьшению размера зерен. Наибольший поперечный размер столбчато-зеренной структуры наблюдается для образца 1N1.

Puc. 1. СЭМ – микрофотографии поперечных сечений покрытий TiAlSiN на кремнии: а) 1N1 – степень реактивности $\alpha = 0,605$; б) 2N1 – степень реактивности $\alpha = 0,526$

На рисунке 2 представлены зависимости показателя ударной вязкости H/E^* и показателя сопротивления пластической деформации H^3/E^{*2} покрытия TiAlSiN от степени реактивности α .(данные таблицы 2). Нанотвердость сформированных покрытий варьируется в диапазоне H=28-49 ГПа, а приведенный модуль Юнга – $E^*=324-506$ ГПа.

Рис. 2. Зависимость показателя ударной вязкости H/E^* и показателя сопротивления пластической деформации H^3/E^{*2} покрытия TiAlSiN от степени реактивности α

Нанотвердость сформированных покрытий варьируется в диапазоне $H=28-49\ \Gamma\Pi a$, а модуль Юнга — $E^*=324-506\ \Gamma\Pi a$. Покрытия TiAlSiN демонстрируют высокие показатели ударной вязкости $H/E^*=0.08-0.13$ и сопротивления пластической деформации $H^3/E^{*2}=0.16-0.82$. Микромеханические свойства сформированных наноструктурированных нитридных TiAlSiN покрытий позволяют использовать их в машиностроении и в изделиях космической техники [5].

Библиографические ссылки

- 1. *Витязь П.А., Свидунович Н.А., Куис.* Наноматериаловедение // Минск: Вышэйшая школа, 2015. 511 с.
- 2. *Cavaleiro A., Hosson J. T. M.* Nanostructured Coatings (Nanostructure Science and Technology) //Berlin, 2006. 648 p. https://doi.org/10.1007/978-0-387-48756-4.
- 3. Gas flow control system in reactive magnetron sputtering technology / I.M. Klimovich [et al.] // Instruments and measurement methods, 2015, vol. 6, no. 2, P. 139–147.
- 4. *Oliver*, *W.C.*, *Pharr G.M.* Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology // Journal of Materials Research. 2004. Vol. 19, No. 1. P. 3-20.
- 5. Structural-phase states and micromechanical properties of nanostructured TiAlCuN coatings / S.V. Konstantinov [et al.] // Doklady of the National Academy of Sciences of Belarus, 2023, vol. 67, no. 2, pp. 101–110.