## СТРУКТУРНЫЕ И ЭЛЕКТРОФИЗИЧЕСКИЕ СВОЙСТВА ТОНКОПЛЕНОЧНЫХ ПОКРЫТИЙ TIALCUN И TIALCUCN

#### Ю. В. Болотина

yuliya7x7@gmail.com; Научный руководитель — В. А. Зайков, старший преподаватель

Методом магнетронного распыления сформированы наноструктурированные нитридные TiAlCuN и карбонитридные TiAlCuCN покрытия. С помощью сканирующей электронной микроскопии (СЭМ) и энергодисперсионной рентгеновской спектроскопии (ЭДРС) изучена структура и элементный состав TiAlCuCN и TiAlCuN покрытий. Четырехзондовым методом с помощью измерителя удельных сопротивлений (ИУС) исследованы электрофизические характеристики TiAlCuN и TiAlCuCN покрытий.

**Ключевые слова:** магнетронное распыление; растровая электронная микроскопия; электрофизические измерения; удельное сопротивление; плазменная плина.

### **ВВЕДЕНИЕ**

переходных Керамические покрытия нитридов осаждаемые методами реактивного магнетронного распыления, в состав которых входят следующие компоненты (Ti, Al, Cu, Si)N привлекают большое внимание исследователей, вследствие их наноструктурного строения (размер зерен менее 100 нм) и металлической природы проводимости, связанной с гранецентрированной кубической решеткой, ОТ структуры TiN (fcc-TiN стуктура). ведущей свой генезис такие покрытия могут иметь, как замечательные Следовательно, механические свойства – высокие показатели твердости, предела отличные электрофизические упругости, износостойкости, так и характеристики, что позволит использовать их в энергетике, космических технологиях и др. [1 - 3].

# ФОРМИРОВАНИЕ ПОКРЫТИЙ TIALCUN И TIALCUCN И МЕТОДЫ ИХ ИССЛЕДОВАНИЯ

Осаждение покрытий TiAlCuN и TiAlCuCN проводилось методом реактивного магнетронного распыления на модернизированной установке УВН 2М, оснащенной магнетронным распылителем и ионным источником «Радикал», системами нагрева подложек, подачи смещения на подложку и модульным комплексом управления расходом газов (МКУРГ) [4]. Для осаждения покрытий использовались подложки из монокристаллического кремния Si (100), из монокристаллического кремния с термически выращенным окислом толщиной до 1,5 мкм, титана

марки ВТ1-0. Для распыления использовали две композитных мишени TiAlCu состава: мишень № 1 (46,4 ат. % Ti; 45,5 ат. % Al; 8,1 ат % Cu) и мишень № 2 (69 ат. % Ti; 23 ат. % Al; 8 ат. % Cu), изготовленные методом взрывного прессования.

Перед осаждением покрытий производилась ионная очистка поверхности подложек. Для контроля расхода аргона, азота и ацетилена использовалась зависимость интенсивностей спектральных излучения плазмы разряда от содержания реактивного газа в вакуумной Прибор МКУРГ позволял стационарно поддерживать камере. неравновесный характеризующийся режим распыления мишени, величиной степени реактивности α [4]. Количество углерода в составе покрытий контролировалось соотношением парциальных давлений реактивных газов  $N_2/C_2H_2$ .

Все процессы осаждения проводили при двух значениях степени реактивности  $\alpha$ :  $\alpha = 0,605$  (покрытия имели состав близкий к стехиометрическому) и  $\alpha = 0,474$  (покрытия нестехиометрического состава, обогащенного металлическими Ti и Al компонентами).

Режимы и нумерация образцов покрытий TiAlCuN и TiAlCuCN в соответствии с условиями их осаждения приведены в таблице 1.

Таблица 1Режимы осаждения и нумерация образцов покрытий TiAlCuN и TiAlCuN всоответствии с технологическими условиями их осаждения

| α                                   | 0,605     |      |           |      | 0,474     |     |           |      |
|-------------------------------------|-----------|------|-----------|------|-----------|-----|-----------|------|
| Тип покрытия                        | TiA       | lCuN | TiAlCuCN  |      | TiAlCuN   |     | TiAlCuCN  |      |
| Ток разряда I, A                    | 1,0       |      | 1,0       |      | 1,0       |     | 1,0       |      |
| Напряжение U, В                     | 370 - 400 |      | 390 - 440 |      | 370 - 400 |     | 390 - 440 |      |
| P <sub>N2</sub> / P <sub>C2H2</sub> | -         |      | 1/1       |      | -         |     | 1/1       |      |
| U <sub>cm</sub> , B                 | -200      |      | -200      |      | -200      |     | -200      |      |
| T, °C                               | 370       |      | 380       |      | 370       |     | 380       |      |
| Мишень                              | 1         | 2    | 1         | 2    | 1         | 2   | 1         | 2    |
| Номер образца                       | 1N1       | 2N1  | 1CN1      | 2CN1 | 1N2       | 2N2 | 1CN2      | 2CN2 |

Морфология, микроструктура и элементный состав исследуемых покрытий на кремниевых подложках изучались методом сканирующей

электронной микроскопии (СЭМ) с помощью электронного микроскопа Hitachi S-4800 (Япония).

Электрофизические характеристики покрытий TiAlCuN и TiAlCuCN исследовались четырехзондовым методом на установке ИУС.

### РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В таблице 2 по результатам обработки микрофотографий СЭМ и спектров ЭДРС представлены: компонентный состав, толщина, скорость осаждения нитридных покрытий TiAlCuN и карбонитридных покрытий TiAlCuCN. Обнаружено, что в спектрах ЭДРС присутствуют менее 2 ат. % примесей О и Ar, попадающих в покрытие в процессе осаждения из остаточной атмосферы.

Таблица 2 Степень реактивности (α), стехиометрия состава, толщина (h), время (τ) и скорость (v) осаждения нитридных покрытий TiAlCuN и TiAlCuCN на Si

| $N_{\underline{0}}$ | α     | (Ti + Al)ат. | (N+C) | (Ti+Al)/ | h    | τ    | v     |
|---------------------|-------|--------------|-------|----------|------|------|-------|
| образц              |       | %            | ат. % | (N+C)    | HM   | c    | нм/с  |
| a                   |       |              |       |          |      |      |       |
| 1N1                 | 0,605 | 43,63        | 44,70 | 0,9928   | 1900 | 5400 | 0,352 |
| 1N2                 | 0,474 | 47,05        | 37,94 | 1,240    | 1290 | 2580 | 0,500 |
| 2N1                 | 0,605 | 43,84        | 44,16 | 0,9928   | 1120 | 3000 | 0,373 |
| 2N2                 | 0,474 | 56,17        | 31,40 | 1,789    | 1280 | 2580 | 0,496 |
| 1CN1                | 0,605 | 41,23        | 47,27 | 0,8722   | 1460 | 3000 | 0,487 |
| 1CN2                | 0,474 | 56,17        | 31,40 | 1,789    | 1530 | 2580 | 0,593 |
| 2CN1                | 0,605 | 50,70        | 40,91 | 1,239    | 1580 | 3000 | 0,527 |
| 2CN2                | 0,474 | 59,09        | 30,08 | 1,964    | 1640 | 2580 | 0,636 |

Из анализа таблицы 2 можно сделать вывод, что скорость осаждения покрытий зависит от степени реактивности  $\alpha$ , т.е. от соотношения между парциальными давлениями азота и аргона для нитридного TiAlCuN покрытия и от соотношения между парциальными давлениями реактивного газа (смеси азота и ацетилена) и аргона для карбонитридного TiAlCuCN покрытия. Уменьшение степени реактивности  $\alpha$  от значения  $\alpha = 0.605$  до величины  $\alpha = 0.474$  приводит к увеличению скорости осаждения покрытия TiAlCuN на 23 %, а покрытия TiAlCuCN на 22 %.

На рисунке представлена СЭМ — микрофотография покрытия TiAlCuN на кремнии на сколе (образец 1N1). Размер зерна в различных сечениях по толщине покрытия определялся методом секущей.

Анализ всех микрофотографий показывает, что для всех покрытий как TiAlCuN, так и TiAlCuCN характерна плотная столбчато-зернистая микроструктура, с небольшим увеличением в диаметре столбцов по мере роста покрытий. Средний размер столбцов не превышает 40 -70 нм.

В таблице 3 представлены результаты электрофизических измерений четырехзондовым методом слоевого ( $R_{\square}$ ) и удельного ( $\rho$ ) сопротивлений.



СЭМ — микрофотография на сколе покрытия TiAlCuN на кремнии. Образец 1N1; подложка — Si;  $\alpha$  = 0,605. Средний размер зерна 65 нм и 59 нм

Таблица 3 Степень реактивности (α), слоевое сопротивление (R□), толщина (h), удельное сопротивление (ρ)покрытий TiAlCuN и TiAlCuCN на SiO<sub>2</sub>

| № образца | α     | R□, Ом/□ | h, мкм | ρ, мкОм∙см |
|-----------|-------|----------|--------|------------|
| 1N1       | 0,605 | 33,57    | 1,9    | 6378       |
| 1N2       | 0,474 | 5,37     | 1,29   | 693        |
| 2N1       | 0,605 | 2,98     | 1,12   | 334        |
| 2N2       | 0,474 | 1,20     | 1,28   | 154        |
| 1CN1      | 0,605 | 32,66    | 1,46   | 4768       |
| 1CN2      | 0,474 | 6,99     | 1,53   | 1069       |
| 2CN1      | 0,605 | 2,83     | 1,58   | 447        |
| 2CN2      | 0,474 | 1,36     | 1,64   | 223        |

Анализ слоевого и удельного сопротивления покрытий нитридов TiAlCu/TiAlCuN и карбонитридов TiAlCu/TiAlCuCN на SiO<sub>2</sub>-подложках показал, что покрытия TiAlCu/TiAlCuN и TiAlCu/TiAlCuCN состава близкого к стехиометрическому  $\alpha = 0,605$  имеют большее сопротивление, чем покрытия, полученные при  $\alpha = 0,474$ . Вероятная причина — добавка Сu, которая концентрируется по границам зерен и приводит к снижению потенциального барьера. Покрытия, полученные из мишени 2 с отношением стехиометрии Ti:Al = 3:1, имеют на порядок меньшее

значение удельного сопротивления чем покрытия, полученные из мишени 1 с отношением стехиометрии Ti:Al=1:1.

### Библиографические ссылки

- 1. *Витязь П.А., Свидунович Н.А., Куис.* Наноматериаловедение // Минск: Вышэйшая школа, 2015. 511 с.
- 2. Development and characterization of TiAlN (Ag, Cu) nanocomposite coatings deposited by DC magnetron sputtering for tribological applications / D. Perea [et al.] // Surface and Coatings Technology. 2020. Vol. 381. P. 125–138.
- 3. Microstructure and mechanical properties of nanomultilayered AlTiN/Cu coatings prepared by a hybrid system of AIP and PDCMS / H. Mei [et al.] //Ceramics International. 2022.Vol. 402. P. 126-139.
- 4. Gas flow control system in reactive magnetron sputtering technology / *I.M. Klimovich* [et al.] // Instruments and measurement methods, 2015, vol. 6, no. 2, P. 139–147.