СТРУКТУРНЫЕ И ЭЛЕКТРОФИЗИЧЕСКИЕ СВОЙСТВА ТОНКОПЛЕНОЧНЫХ ПОКРЫТИЙ TIALCUN И TIALCUCN

Ю. В. Болотина

yuliya7x7@gmail.com; Научный руководитель — В. А. Зайков, старший преподаватель

Методом магнетронного распыления сформированы наноструктурированные нитридные TiAlCuN и карбонитридные TiAlCuCN покрытия. С помощью сканирующей электронной микроскопии (СЭМ) и энергодисперсионной рентгеновской спектроскопии (ЭДРС) изучена структура и элементный состав TiAlCuCN и TiAlCuN покрытий. Четырехзондовым методом с помощью измерителя удельных сопротивлений (ИУС) исследованы электрофизические характеристики TiAlCuN и TiAlCuCN покрытий.

Ключевые слова: магнетронное распыление; растровая электронная микроскопия; электрофизические измерения; удельное сопротивление; плазменная длина.

ВВЕДЕНИЕ

переходных Керамические покрытия нитридов металлов, осаждаемые методами реактивного магнетронного распыления, в состав которых входят следующие компоненты (Ti, Al, Cu, Si)N привлекают большое внимание исследователей, вследствие их наноструктурного строения (размер зерен менее 100 нм) и металлической природы проводимости, связанной с гранецентрированной кубической решеткой, ОТ структуры TiN (fcc-TiN стуктура). ведущей свой генезис такие покрытия могут иметь, как замечательные Следовательно, механические свойства – высокие показатели твердости, предела отличные электрофизические упругости, износостойкости, так и характеристики, что позволит использовать их в энергетике, космических технологиях и др. [1 - 3].

ФОРМИРОВАНИЕ ПОКРЫТИЙ TIALCUN И TIALCUCN И МЕТОДЫ ИХ ИССЛЕДОВАНИЯ

Осаждение покрытий TiAlCuN и TiAlCuCN проводилось методом реактивного магнетронного распыления на модернизированной установке УВН 2М, оснащенной магнетронным распылителем и ионным источником «Радикал», системами нагрева подложек, подачи смещения на подложку и модульным комплексом управления расходом газов (МКУРГ) [4]. Для осаждения покрытий использовались подложки из монокристаллического кремния Si (100), из монокристаллического кремния с термически выращенным окислом толщиной до 1,5 мкм, титана марки ВТ1-0. Для распыления использовали две композитных мишени TiAlCu состава: мишень № 1 (46,4 ат. % Ti; 45,5 ат. % Al; 8,1 ат % Cu) и мишень № 2 (69 ат. % Ti; 23 ат. % Al; 8 ат. % Cu), изготовленные методом взрывного прессования.

Перед осаждением покрытий производилась ионная очистка поверхности подложек. Для контроля расхода аргона, азота и ацетилена использовалась зависимость интенсивностей спектральных линий излучения плазмы разряда от содержания реактивного газа в вакуумной камере. Прибор МКУРГ позволял стационарно поддерживать неравновесный мишени, характеризующийся режим распыления величиной степени реактивности α [4]. Количество углерода в составе покрытий контролировалось соотношением парциальных давлений реактивных газов N₂/C₂H₂.

Все процессы осаждения проводили при двух значениях степени реактивности α : $\alpha = 0,605$ (покрытия имели состав близкий к стехиометрическому) и $\alpha = 0,474$ (покрытия нестехиометрического состава, обогащенного металлическими Ті и Аl компонентами).

Режимы и нумерация образцов покрытий TiAlCuN и TiAlCuCN в соответствии с условиями их осаждения приведены в таблице 1.

Таблица 1

	-				-			
α		0,	505		0,474			
Тип покрытия	TiAlCuN		TiAlCuCN		TiAlCuN		TiAlCuCN	
Ток разряда I, А	1,0		1,0		1,0		1,0	
Напряжение U, B	370 - 400		390 - 440		370 - 400		390 - 440	
P_{N2} / P_{C2H2}	-		1/1		-		1/1	
U _{см} , В	-200		-200		-200		-200	
Т, °С	370		380		370		380	
Мишень	1	2	1	2	1	2	1	2
Номер образца	1N1	2N1	1CN1	2CN1	1N2	2N2	1CN2	2CN2

Режимы осаждения и нумерация образцов покрытий TiAlCuN и TiAlCuCN в соответствии с технологическими условиями их осаждения

Морфология, микроструктура и элементный состав исследуемых покрытий на кремниевых подложках изучались методом сканирующей

электронной микроскопии (СЭМ) с помощью электронного микроскопа Hitachi S-4800 (Япония).

Электрофизические характеристики покрытий TiAlCuN и TiAlCuCN исследовались четырехзондовым методом на установке ИУС.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В таблице 2 по результатам обработки микрофотографий СЭМ и спектров ЭДРС представлены: компонентный состав, толщина, скорость осаждения нитридных покрытий TiAlCuN и карбонитридных покрытий TiAlCuCN. Обнаружено, что в спектрах ЭДРС присутствуют менее 2 ат. % примесей О и Ar, попадающих в покрытие в процессе осаждения из остаточной атмосферы.

Таблица 2

N⁰	α	(Ti + Al)ат.	(N + C)	(Ti+Al)/	h	τ	v
образц		%	ат. %	(N+C)	HM	с	нм/с
а							
1N1	0,605	43,63	44,70	0,9928	1900	5400	0,352
1N2	0,474	47,05	37,94	1,240	1290	2580	0,500
2N1	0,605	43,84	44,16	0,9928	1120	3000	0,373
2N2	0,474	56,17	31,40	1,789	1280	2580	0,496
1CN1	0,605	41,23	47,27	0,8722	1460	3000	0,487
1CN2	0,474	56,17	31,40	1,789	1530	2580	0,593
2CN1	0,605	50,70	40,91	1,239	1580	3000	0,527
2CN2	0,474	59,09	30,08	1,964	1640	2580	0,636

Степень реактивности (α), стехиометрия состава, толщина (h), время (τ) и скорость (v) осаждения нитридных покрытий TiAlCuN и TiAlCuCN на Si

Из анализа таблицы 2 можно сделать вывод, что скорость осаждения покрытий зависит от степени реактивности α , т.е. от соотношения между парциальными давлениями азота и аргона для нитридного TiAlCuN покрытия и от соотношения между парциальными давлениями реактивного газа (смеси азота и ацетилена) и аргона для карбонитридного TiAlCuCN покрытия. Уменьшение степени реактивности α от значения $\alpha = 0,605$ до величины $\alpha = 0,474$ приводит к увеличению скорости осаждения покрытия TiAlCuN на 23 %, а покрытия TiAlCuCN на 22 %.

На рисунке представлена СЭМ – микрофотография покрытия TiAlCuN на кремнии на сколе (образец 1N1). Размер зерна в различных сечениях по толщине покрытия определялся методом секущей.

Анализ всех микрофотографий показывает, что для всех покрытий как TiAlCuN, так и TiAlCuCN характерна плотная столбчато-зернистая микроструктура, с небольшим увеличением в диаметре столбцов по мере роста покрытий. Средний размер столбцов не превышает 40 -70 нм.

В таблице 3 представлены результаты электрофизических измерений четырехзондовым методом слоевого (R_□) и удельного (ρ) сопротивлений.

СЭМ — микрофотография на сколе покрытия TiAlCuN на кремнии. Образец 1N1; подложка — Si; α = 0,605. Средний размер зерна 65 нм и 59 нм

Таблица 3

№ образца	α	R□, Ом/□	h, мкм	ρ, мкОм∙см
1N1	0,605	33,57	1,9	6378
1N2	0,474	5,37	1,29	693
2N1	0,605	2,98	1,12	334
2N2	0,474	1,20	1,28	154
1CN1	0,605	32,66	1,46	4768
1CN2	0,474	6,99	1,53	1069
2CN1	0,605	2,83	1,58	447
2CN2	0,474	1,36	1,64	223

Степень реактивности (α), слоевое сопротивление (R□), толщина (h), удельное сопротивление (ρ)покрытий TiAlCuN и TiAlCuCN на SiO₂

Анализ слоевого и удельного сопротивления покрытий нитридов TiAlCu/TiAlCuN и карбонитридов TiAlCu/TiAlCuCN на SiO₂-подложках показал, что покрытия TiAlCu/TiAlCuN и TiAlCu/TiAlCuCN состава близкого к стехиометрическому $\alpha = 0,605$ имеют большее сопротивление, чем покрытия, полученные при $\alpha = 0,474$. Вероятная причина – добавка Cu, которая концентрируется по границам зерен и приводит к снижению потенциального барьера. Покрытия, полученные из мишени 2 с отношением стехиометрии Ti:Al = 3:1, имеют на порядок меньшее

значение удельного сопротивления чем покрытия, полученные из мишени 1 с отношением стехиометрии Ti:Al = 1:1.

Библиографические ссылки

- 1. Витязь П.А., Свидунович Н.А., Куис. Наноматериаловедение // Минск: Вышэйшая школа, 2015. 511 с.
- 2. Development and characterization of TiAlN (Ag, Cu) nanocomposite coatings deposited by DC magnetron sputtering for tribological applications / D. Perea [et al.] // Surface and Coatings Technology. 2020. Vol. 381. P. 125–138.
- 3. Microstructure and mechanical properties of nanomultilayered AlTiN/Cu coatings prepared by a hybrid system of AIP and PDCMS / H. Mei [et al.] //Ceramics International. 2022.Vol. 402. P. 126-139.
- 4. Gas flow control system in reactive magnetron sputtering technology / *I.M. Klimovich* [*et al.*] // Instruments and measurement methods, 2015, vol. 6, no. 2, P. 139–147.