### УДК 502.21

## ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ ДРЕВЕСНЫХ ОТХОДОВ ДЛЯ КУЛЬТИВИРОВАНИЯ КСИЛОТРОФНЫХ ГРИБОВ

#### М. А. Шелоник

ГНУ «Институт природопользования НАН Беларуси», ул. Франциска Скорины, 10, 220114, г. Минск, Беларусь, maria.shelonik006@gmail.com

Проанализированы перспективы использования продуктов древесных отходов в качестве субстрата для выращивания ксилотрофных грибов. Выявлены преимущества древесных отходов перед другими сельскохозяйственными отходами с минимальными затратами для получения готовой продукции.

*Ключевые слова:* ксилотрофы; древесные отходы; опилки; лигнинцеллюлозный комплекс; грибоводство.

# PROSPECTS FOR THE USE OF WOOD WASTE FOR THE CULTIVATION OF XYLOTROPHIC FUNGI

### M. A. Shelonik

«Institute of Nature Management of the National Academy of Sciences of Belarus», 10 Franziska Skaryna Street, 220114, Minsk, Belarus, maria.shelonik006@gmail.com

The article is devoted prospects of using wood waste products as a substrate for growing xylotrophic fungi are analyzed. The advantages of wood waste over other agricultural waste for the early production of finished mushroom products have been revealed.

*Keywords:* xylotrophs; wood waste; sawdust; lignin-cellulose complex; mushroom farming.

В связи с общемировой тенденцией расширения многоцелевого использования древесины актуальными являются вопросы утилизации древесных отходов [6,7]. Древесные отходы производства представляют собой деревообработки. отходы лесозаготовок, лесопиления И что 40-60% древесины превращается в основную Установлено, продукцию, в отходы уходит 32 % из которых 60-65 % используются в качестве вторичного сырья [2]. Однако, образующиеся в процессе биодеструкции токсичные вещества и высокая устойчивость микробной биодеградации, не позволяет использовать древесинные отходы напрямую. Поэтому наиболее экологически оправданным

способом утилизации древесных отходов является использование их в качестве субстрата для выращивания ксилотрофных грибов.

Грибы являются важной частью пищевой цепи и имеют высокую популярность как источник питательных веществ и богатого вкуса, который является неотъемлемой частью традиционной как западной, так и восточной кухни [3]. Одними из наиболее выращиваемых грибов являются шампиньоны, вешенки, шиитаке, фламмулина и т. д. Все они относятся к семейству Agaricaceae, однако главное преимущество вешенки и шиитаке, так называемых древоразрущающих грибов (или ксилотрофов), перед шампиньонами заключается в их возможности культивирования на различных типах лигнин-целлюлозных субстратах, которые чаще всего являются сельскохозяйственными отходами, без необходимости в приготовленном компосте и покровной почве [5]. Как правило, тип субстратов для выращивания грибов зависит от имеющихся растительных или сельскохозяйственных отходов. В Европе для выращивания ксилотрофов используется преимущественно пшеничная солома, в то время как в странах Юго-Востока Азии более популярны опилки [13]. Из древесных отходов в качестве субстратов чаще используют опилки, щепу. Опилки, представляя собой отходы деревообрабатывающего производства являются самой естественной и пригодной для развития ксилотрофных грибов средой. В природе ксилотрофные макромицеты являются неотъемлемой частью лесных экосистем, разного генезиса, выполняя широкий спектр функций, и используют древесину и как источник питания, и как среду обитания [5].

Древоразрущающие свойства грибов обусловлены наличием у них мощной ферментативной системой, участвующей в деструктивном разложении древесины за счет гидролиза полисахридной составляющей [8], что позволяет потреблять не только целлюлозу, но и лигнин. Древесина как среда обитания для живых организмов довольна, специфична, и это связано с тем, что лигноуглеводный комплекс, во-первых, устойчив к микробной биодеградации, а во-вторых - древесина имеет особый газовый режим [9]. Согласно источникам литературы, для древесины характерны низкие концентрации кислорода (1,2–4,5%) и высокие концентрации углекислого газа (7,2–26,3) [11,12]. Ксилотрофные грибы являются единственными организмами, приспособленными к такой среде обитания. На это указывает то, что они чувствительны к кислороду (рост прекращается при концентрации кислорода 0,4 %), устойчивы к высоким концентрациям углекислого газа (рост мицелия наблюдается при концентрации 30-40 %) и способны длительное время сохранять жизнеспособность при отсутствии кислорода [10].

Опилки имеют ряд преимуществ перед другими видами отходов:
— структура опилок представляет собой пористую систему, состоящую из каналов и пор, которые позволяют удерживать воду как губка. В опилках содержится больше лигнина. Лигнин — природный полимер, представляющий собой коллоидное вещество. Присутствие лигнина в опилках помогает склеить волокна целлюлозы в древесине. Когда древесина расщепляется на опилки, лигнин распределяется по частицам, создавая сеть гидрофильных (влаголюбивых) участков. Эти участки имеют сильное сродство к воде, что позволяет опилкам легко впитывать и удерживать влагу [4]. Способность грибного субстрата сохранять влагу в течение длительного времени необходимо, чтобы поддерживать здоровый рост грибов, предотвращать загрязнение и регулировать колебания температуры.

- кислотность опилок обычно имеет нейтральную реакцию, чем у соломы, что более полезно для роста грибов. Большинство видов грибов предпочитают среду от слегка кислой до нейтральной с pH от 5,5 до 7,0. Опилки обычно имеют pH около 6-7, что находится в этом диапазоне, в то время как солома может иметь более высокий pH, что может подходить не для всех грибов [1,3].
- время освоения мицелием субстрата из опилок происходит быстрее. Что, может быть, связано с большей площадью поверхности, которая позволяет обеспечить больше места для роста грибного мицелия. Это может способствовать более быстрой колонизации субстрата мицелием, что приводит к более быстрому образованию грибов [10].

Однако несмотря все преимущества опилок и их широкое применение в качестве субстрата для культивирования грибов-ксилотрофов, древесные опилки чаще всего используются лишь как небольшая часть в смеси различных органических субстратов. Объясняется это тем, что свежие опилки, независимо от состава, крайне бедны основными биогенными элементами. Было установлено, что в них полностью отсутствуют фосфор, калий, гуминовые кислоты, а количество азота варьируется от следовых до 0.2 мас. %. При высокой доле органического вещества, процент золы составляет всего 2–3 мас. %, что приводит к высокому массовому соотношению С/N, и соответственно влияет на развитие и рост мицелия [1]. Для повышения урожайности к опилкам добавляют отруби зерновых культур (рис, пшеница и т.д). Минеральные добавки (мел, известь и т.д) обеспечивают определенный уровень рН и служат источником кальция и серы [3].

В ходе исследований было отмечено, что лучше использовать свежие опилки лиственных пород (дуб, клен, ясень, лиственница и т.д). Опилки хвойных пород не используют т.к. они содержат смолы и фенольные вещества, тормозящие рост мицелия [8,10]. Появление «пушистого» мицелия вешенки наблюдалось через 5-6 дней (рисунок 1), который смог освоить 60 % субстрата, в то время как сбор урожая произошел на двадцатый день, что согласно источникам литературы о цикле развития и плодоношения вешенки как ксилотрофа [3].



Развитие мицелия ксилотрофного гриба на примере вешенки

Таким образом, можно сделать вывод о том, что использование отходов деревоперерабатывающей промышленности в качестве сырья для получения грибной продукции создают экологическую и экономическую альтернативу утилизации данных отходов.

### Библиографические ссылки

- 1. *Беловежец Л. А.* Агрохимические показатели компоста на основе древесных опилок / Л. А. Беловежец, А. В. Третьяков // Химия в интересах устойчивого развития.2020. № 28. С. 124—130.
- 2. Грошев, И. М. Образование и использование отходов деревообрабатывающей промышленности / И. М. Грошев, Е. М. Герасимович // Технология и техника лесной промышленности: тезисы докладов 80-й научно-технической конференции профессорско-преподавательского состава, научных сотрудников и аспирантов (с международным участием), 1-12 февраля 2016 г. / Белорусский государственный технологический университет; [гл. ред. И. М. Жарский]. Минск: БГТУ, 2016. С. 62-63.
- 3. *Нурметов, Р. Д.* Выращивание шампиньонов и вешенки: руководство / Р.Д. Нурметов, Н.Л. Девочкина Москва : Россельхозакадемия, 2010. 68 с.
- 4. Особенности опилок как наполнителя при производстве материалов из древесных отходов / М. В. Филичкина [и др.] // Лесотехнический журнал. 2013. № 2. С. 26-30.
- 5. Получение плодовых тел *Pleurotus eryngii* на эксперементальном субстрате из опилок осины Е.В. Павлюченко, Е.В. Плотников // Труды Международной научной конференции, посвященной 135-летию кафедры ботаники и 145-летию Томского государственного университета, Томск, 14–16 ноября 2023 года / Национальный исследовательский Томский государственный университет. 2023. С. 364-366.
- 6. Проблемы использования древесных отходов в малой энергетике Беларуси / Н. О. Азовская [и др.] // Труды БГТУ.2020. Серия 1, № 2. С. 254-258.

- 7. Статистический ежегодник Республики Беларусь 2023. Минск: Национальный статистический комитет Республики Беларусь, 2023. 490 с.
- 8. *Тишенков А. Д.* Культивирование шиитаке. Школа грибоводства, 2000, № 1, С. 6-14.
- 9. *Mukhin, V. A.* Eco-Physiological Adaptations of the Xylotrophic Basidiomycetes Fungi to CO2 and O2 Mode in the Woody Habitat J. / V.A. Mukhin, D. K. Diyarova // Fungi. 2022, Vol. 8, № 12. P. 1-16.
- 10. Optimization of King Oyster Mushroom (*Pleurotus eryngii*) Substrate Using Lignocellulosic Affordable Wastes/ Janpoor J. [and ets.] // Journal of Horticultural Science. 2018. Vol. 31, №. 4. P. 778–788
- 11. *Scheffer, T. C.* O2 requirements for growth and survival of wood-decaying and sapwood-staining fungi / Scheffer, T.C. // Canadian Journal of Botany. 1986. № 64. P.1957–1963.
- 12. *Tabak*, *H*. *H*. The effects of gaseous environments on the growth and metabolism of fungi / H.H. Tabak, W.B. Cooke // Bot. Rev. 1968. № 34. P. 126–252.
- 13. *Thomas G. V.*, *Prabhu S. R.*, *Reeny M. Z.*, *Bopaiah B. M.* Evaluation of lignocellulosic biomass from coconut palm as substrate for cultivation of Pleurotus sajorcaju (Fr.) Singer // World Journal of Microbiology and Biotechnology. 1998. № 14. P. 879–882.