УДК 556.5(476)

АСИНХРОННОСТЬ В КОЛЕБАНИЯХ СТОКА РЕК БЕЛАРУСИ

А. А. Волчек

Брестский государственный технический университет, ул. Московская 267, 224017, г. Брест, Беларусь, Volchak@tut.by

Исследован режим колебаний различных видов стока по четырем рекам Беларуси за период с 1877 по 2020 гг. С помощью коэффициентов корреляции и асинхронности дана количественная оценка синхронности в формирования стока рек Беларуси.

Ключевые слова: расходы воды рек; асинхронность; обеспеченность; корреляция.

ASYNCHRONICITY IN RIVERS FLUCTUATIONS IN BELARUS

A. A. Volchak

Brest State Technical University, st. Moskovskaya, 267, 224017, Brest, Belarus, Volchak@tut.by

The regime of fluctuations of various types of flow along four rivers of Belarus for the period from 1877 to 2020 was studied. Using correlation coefficients and asynchrony, a quantitative assessment of synchronicity in the formation of river runoff in Belarus is given.

Keywords: river water flows; asynchrony; availability; correlation.

Водные ресурсы любой страны являются главным природным ресурсом, т. к. их количество и качество определяют экономику, развитие биосферы и человеческого общества. В тоже время водным ресурсам присущи значительные пространственно-временные колебания, что затрудняет их количественную оценку, прогноз и использование.

Цель настоящей работы — дать количественную оценку асинхронности в колебаниях различных видов стока за характерные интервалы времени.

Методологической основой исследований явились научные положения о стохастической природе речного стока. Системный анализ накопленной информации позволил синтезировать закономерности пространственно-временных колебаний водных ресурсов и объективно оценить их количественные характеристики, с помощью совместного использования коэффициентов асинхронности, корреляции и изменение обеспеченностей стока по территории.

В основу используемой методики положено определение эффекта асинхронности по совмещенным кривым обеспеченности суммарных хронологического и равнообеспеченного рядов значений модульных коэффициентов речного стока [1].

При построении кривой обеспеченности суммарного равнообеспеченного ряда модульные коэффициенты располагались в убывающем порядке и суммировались. Затем, в зависимости от места, занимаемого каждым членом такого суммарного убывающего ряда, ему присваивалась соответствующая обеспеченность, рассчитываемая как:

$$P = \frac{m}{n+1} 100\%$$

где m – номер члена в ранжированном ряду; n – количество членов ряда.

Построение кривой обеспеченности суммарного хронологического ряда осуществлялось путем суммирования модульных коэффициентов двух створов речного стока за соответствующие годы в хронологическом порядке, с последующим их ранжированием в убывающем порядке. Равнообеспеченные ряды получались путем суммирования предварительно ранжированных модульных коэффициентов для каждой пары точек.

Коэффициент асинхронности P-ой обеспеченности определяется как:

$$K_{ac}(P) = \frac{K_{xp}(P)}{K_{po}(P)}$$

где $K_{xp}(P) = \sum\limits_{i=1}^K K_{ij}$ – хронологическая сумма модульных коэффициентов

для і-го года; j — количество пунктов наблюдения; $K_{po}(P) = \sum\limits_{j=1}^K K_{pj}$ — сумма равнообеспеченных ранжированных модульных коэффициентов для каждой j-й пары створов.

При совместной оценке водных ресурсов двух рек учет асинхронности в их формировании стока осуществлялся по зависимости:

$$Q_j(P) = K_{ac}(P) \cdot Q_k(P),$$

где $Q_j(P)$, $Q_k(P)$ — расход воды j-й и k-й реки одинаковой обеспеченности.

Данный подход позволил оценить асинхронность в колебаниях среднегодовых, максимальных весеннего половодья, минимальных летнеосенних и зимних расходов воды рек Беларуси.

Исходными данными послужили материалы наблюдений Государственного учреждения «Республиканский центр по гидрометеорологии, контролю радиоактивного загрязнения и мониторингу окружающей среды» Министерства природных ресурсов и охраны окружающей среды Республики Беларусь за стоком 4 рек за период с 1877 по 2020 гг., т. е. 144 года, расположенных на юге, севере, западе и востоке страны: Припять в створе г. Мозыря ($Q_{\text{ср.год.}}$ =391 м³/с; $Q_{\text{вес.пол.}}$ =1580 м³/с; $Q_{\text{мин.л-ос.}}$ =154 м³/с; $Q_{\text{мин.зим.}}$ =155 м³/с), Западная Двина в створе г. Витебска ($Q_{\text{ср.год.}}$ =225 м³/с; $Q_{\text{вес.пол.}}$ =1500 м³/с; $Q_{\text{мин.л-ос.}}$ =52,2 м³/с; $Q_{\text{мин.зим.}}$ =54,6 м³/с), Неман в створе г. Гродно ($Q_{\text{ср.год.}}$ =194 м³/с; $Q_{\text{вес.пол.}}$ =792 м³/с; $Q_{\text{мин.л-ос.}}$ =89,5 м³/с; $Q_{\text{мин.зим.}}$ =71,9 м³/с), Днепр в створе г. Речицы ($Q_{\text{ср.год.}}$ =363 м³/с; $Q_{\text{вес.пол.}}$ =1710 м³/с; $Q_{\text{мин.л-ос.}}$ =152 м³/с; $Q_{\text{мин.зим.}}$ =129 м³/с).

На предварительном этапе проведен статистический анализ, восстановлены пропущенные данные с помощью программного комплекса «Гидролог-2» [2, 3, 4]. Для исследования влияния современного потепления климата, выполнен сравнительный анализ двух интервалов: 1877-1965 гг. период до начала массовых мелиораций, характеризующийся минимальным антропогенным воздействием и условно естественным водным режимом; с 1966 по 2020 гг. — период антропогенных воздействия и потепления климата, который в свою очередь разбит на два интервала: 1966-1986 гг. — период массовых мелиораций и 1987-2020 гг. — период современных климатических изменений.

Отдельно анализировались ряды наблюдений за последние 50 лет (1971-2020 гг.), т. е. расчетный период, рекомендуемый для определения статистических характеристик и построения математических моделей прогнозирования стока рек Беларуси.

На первом этапе выполнены расчеты обеспеченности по рассматриваемым видам стока и рекам по формуле (1). В качестве примера в табл. 1 приведены значения расходов воды за конкретный год и их обеспеченности для отдельных лет (середины расчетных интервалов). Как видно из табл. 1, наблюдается широкий разброс обеспеченностей как по годам, так и по видам стока. Поэтому при оценке водных ресурсов больших территорий необходимо учитывать асинхронность в их формировании.

Корреляционный анализ стока исследуемых рек показал существенную асинхронность в их формировании за рассматриваемый период в целом (табл. 2). Большая асинхронность имела место для интервала 1877-1965 гг. по сравнению с интервалом 1966-2020 гг., т. е. в период массовых

мелиораций и современного потепления климата. Крупномасштабные мелиорации привели к увеличению густоты речной сети и приближению ее к среднему значению по стране.

Таблица 1 Расход воды (м³/с) и обеспеченность (%) стока рек за отдельные годы

	Вид стока							
		Макси-	Минимальный			Макси-	Минимальный	
Год	Средне-	мальный	летне-		Средне-	мальный	летне-	
	годовой	полово-	осенний	зимний	годовой	полово- осенний	зимний	
		дья				дья	оссинии	
	Припять – Мозырь				Западная Двина – Витебск			
1972	267/81,1	598/85,2	120/61,4	145/41,4	154/89,7	798/89,7	36,5/77,9	37,3/73,8
1905	315/71,7	1180/55,6	89,5/83,5	78,9/81,4	319/10,3	2080/10,3	56,8/29,0	64,9/24,8
1977	486/19,3	1190/55,9	305/3,45	117/58,6	207/57,2	1570/57,2	49,0/44,8	39,8/69,0
2004	382/51,7	1140/59,3	164/40,0	166/33,1	244/34,5	2040/34,5	52,3/39,3	131/1,38
2002	342/62,8	919/70,3	111/68,3	180/28,3	180/73,8	903/73,8	33,6/81,4	60,2/32,4
	Днепр – Речица			Неман – Гродно				
1972	246/96,6	801/82,1	121/83,5	128/43,5	155/86,2	347/91,7	95,3/33,1	28,7/98,6
1905	460/12,4	3130/11,0	146/46,2	127/44,1	196/38,6	845/30,3	88,0/46,2	68,0/51,7
1977	307/76,6	925/74,5	170/28,3	81,4/75,9	203/33,1	448/80,0	106/18,6	49,3/87,6
2004	401/27,6	1830/39,3	194/13,1	208/10,3	192/44,1	192/99,3	105/20,0	81,3/24,8
2002	304/77,9	755/88,3	125/77,9	196/15,2	161/82,8	475/74,5	55,0/98,6	56,8/80,7

Таблица 2 Матрица коэффициентов корреляции стока рек

		Вид стока					
Река – створ	Период	Средне- Максимальный		Минимальный			
		годовой	половодья	летне-осенний	зимний		
Э П	1877 - 2020	0,33	0,48	0,28	0,52		
Западная Двина – Витебск	1877 - 1965	0,36	0,42	0,32	0,44		
	1966 - 1986	0,28	0,52	0,19	0,73		
Припять – Мо-	1987 - 2020	0,43	0,49	0,41	0,49		
зырь	1971 - 2020	0,33	0,39	0,32	0,43		
	1877 - 2020	0,56	0,70	0,47	0,35		
Помож Гродина	1877 - 1965	0,55	0,60	0,41	0,27		
Неман – Гродно Писир Ромина	1966 - 1986	0,79	0,80	0,60	0,66		
Днепр – Речица	1987 - 2020	0,58	0,35	0,72	0,38		
	1971 - 2020	0,52	0,58	0,62	0,51		

Современные климатические колебания внесли существенные изменения в структуру стока. Рост температуры в зимний период вызвал частые оттепели, что привело к увеличению минимальных зимних расходов, что в свою очередь привело к повсеместному снижению максимальных

расходов воды весеннего половодья. Среднегодовой сток особых изменений не претерпел. Рост минимальных летне-осенних расходов воды наблюдается на водосборах со значительными мелиорированными площадями [5].

В табл. 3 приведены значения коэффициентов асинхронности для очень многоводных (P=5 %) и очень маловодных (P=95 %) лет. При этих обеспеченностях коэффициенты асинхронности имеют максимальные отклонения от единицы. При обеспеченностях P <3 % и P >97 % коэффициенты асинхронности стремятся к единице. Величина отклонения коэффициентов асинхронности от единицы, по абсолютной величине, для маловодных лет больше, чем для многоводных.

Таблица 3 Матрица коэффициентов асинхронности стока рек

	Обеспе- ченность	Вид стока				
Река – створ		Средне- годовой	Моксимонгний	Минимальный		
гека – створ			половодья	летне-осен- ний	зимний	
Зап. Двина – Витебск	$Kac(P_{5\%})$	0,87	0,96	0,90	0,97	
Припять – Мозырь	Kac(P _{95%})	1,16	1,17	1,12	1,27	
Неман – Гродно	$Kac(P_{5\%})$	0,88	0,88	0,93	0,91	
Днепр – Речица	$Kac(P_{95\%})$	1,35	1,09	1,06	1,31	

В первом случае основной фактор формирования стока определяется геологическим строением водосбором рек. В многоводные годы главным в формировании стока выступают климатические факторы. Для многоводных лет $K_{\rm ac}$ <1, т. е. вероятность синхронного формирования максимальных среднегодовых расходов воды на реках меньше и слабо зависит от направления. Для максимальных расходов весеннего половодья асинхронность более выражена в долготном направлении.

В период маловодных лет асинхронность больше в долготном направлении для среднегодового стока и минимального зимнего стока.

Полученные результаты показали, что асинхронность в формировании стока рек Беларуси существенная и ее необходимо учитывать при оценке водных ресурсов для маловодных и многоводных лет.

Библиографические ссылки

- $1.\ \mathit{Логинов}\ B.\ \Phi.,\ \mathit{Волчек}\ A.\ A.\$ Водный баланс речных водосборов Беларуси. Минск: Тонпик, 2006. 160 с.
- 2. Валуев В. Е., Волчек А. А., Пойта П. С., Шведовский П. В. Статистические методы в природопользовании : учебное пособие для студентов высших учебных заведений. Брест: Изд-во Брестского политехнического института, 1999. 252 с.

- $\it 3. \, Bолчек \, A. \, A. \, \Gamma$ идрологические расчеты : учебное пособие. Москва : КНОРУС, 2021. 418 с.
- 4. Волчек А. А., Парфомук С. И. Пакет прикладных программ для определения расчетных характеристик речного стока // Веснік Палескага джзяржаўнага універсітэта. Серыя прыродазнаўчых навук. № 1. 2009. С. 22-30.
- 5. Волчек А. А., Корнеев В. Н., Парфомук С. И. Булак И. А. Водные ресурсы Беларуси и их прогноз с учетом изменения климата / под общ. ред. А. А. Волчек, В. Н. Корнеева. Брест : Альтернатива, 2017. 228 с.